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Abstract

Following a feasibility study in 2000–2001 on using the EISCAT ionospheric research
radars to detect centimetre-sized space debris in the frame of an ESA contract, we
are now finishing a continuation study, aimed at achieving debris detection and
parameter estimation in real-time. A requirement is to “piggy-back” space debris
measurements on top of EISCAT’s normal ionospheric work, without interfering
with that work, and to be able to handle about 500 hours of measurements per
year. We use a special digital receiver back-end in parallel with EISCAT’s standard
receiver. We sample fast enough to correctly band-pass sample the EISCAT ana-
log frequency band. To increase detection sensitivity, we use coherent pulse-to-pulse
integration. The coherent integration is built-in in our method of parameter estima-
tion, which we call the match function (MF) method. The method is derived from
Bayesian statistical inversion, but reduces, with standard assumptions about noise
and prior, to minimizing the least squares norm ‖z(t)− bχ(R, v, a; t)‖, where z is
the measured signal and {b χ} is a set of model signals. Because the model signals
depend linearly on the amplitude b, it is sufficient to maximize the magnitude of
the inner product (cross correlation) between z and χ, the amplitude estimate is
then determined by direct computation. The magnitude of the inner product, when
properly normalized, is the MF. To construct the set of model signals, we sample the
EISCAT transmission, in the same way as we sample the received signal, and apply
linearly changing Doppler-shifts to it. Our initial implementation of the MF-method
in 2001 was about four orders of magnitude too slow for real-time applications, but
we have now gained the required speed factors. A factor of ten comes from using
faster computers, another factor of ten comes from coding our key algorithms in C
instead of Matlab. The largest factor, typically 100–300, comes from using a special,
approximative, but in practice quite sufficient, method of finding the MF maximum.
Test measurements show that we get real-time speed already when using a single
dual-processor 2 GHz G5 Macintosh to do the detection computations.
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1 Introduction

It is estimated that there are approximately 200 000 objects larger than 1 cm
currently orbiting the Earth, as an enduring heritage of four decades of space
activity. This estimate includes the functioning satellites, but by far the most
objects are what is called space debris (SD), man-made orbital objects which
no longer serve any useful purpose. Many of the small-sized (less than 10 cm)
particles are due to explosions of spacecraft and rocket upper stages, but there
are also exhaust particles from solid rocket motors, leaked cooling agents,
and particles put into space intentionally for research purposes. The large
(> 10 cm) objects have known orbits and are routinely monitored by the U.S.
Space Surveillance Network, but information about the smaller particles is
fragmentary and mainly statistical. Especially, in Europe there is no radar
that is routinely used for monitoring small-size SD.

From 2000, we have been involved in two studies, contracted by ESA (ESA,
1999, 2002), to start utilizing the EISCAT ionospheric research radars also
for space debris measurements. Since the early 1980’s, the EISCAT mainland
radars have been performing ionospheric measurements at least 2000 hours
per year; and since the late 1990’s, after the EISCAT Svalbard radar became
operational, EISCAT has been measuring more than 3000 hours per year.
Our aim is to be able to use a substantial amount of these operating hours
for simultaneous space debris measurements. In our initial study (Markkanen
et al., 2002), we showed that it is feasible, and technically straightforward,
to conduct SD measurements in parallel with normal EISCAT ionospheric
measurements, without interfering with those measurements.

Our approach is to operate a separate digital receiver back-end, which we call
the SD receiver, in parallel with the EISCAT standard digital receiver. This
allows us to implement our own, amplitude domain data processing, the match
function or matched-filtering (MF) method. The MF-method seeks to increase
detection sensitivity by implementing pulse-to-pulse coherent integration. To
make the hardware as simple and cheap as possible, the custom-made part
of the SD receiver is basically just a fast sampler and digital demodulator;
all special processing is done in fast but still cheap general purpose worksta-
tions. The SD receiver samples the EISCAT second intermediate frequency
(IF2) band fast enough to capture the relevant frequency channels into a sin-
gle digital stream, without doing the customary channel separation. We need
to sample with the rate of about a million complex samples per second contin-
uously. This produces a fairly large amount of data, more than 10 GBytes per
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hour. Early on, ESA suggested that we should strive to do the data analysis
in real-time, so that the raw data could be quickly disregarded and the data
storage requirements kept modest. We describe the main features of the SD
receiver in section 3.

A straightforward implementation of the MF-method implies long data vec-
tors, with lengths of hundreds of thousands complex points, to be Fourier-
transformed a few thousand times per every second of raw data. At the third
European Space Debris Conference, in 2001, we had to concede that with
the processing speed that we had achieved at the time, it would take several
centuries of CPU time to analyze just one year’s quota of EISCAT space de-
bris measurements. However, soon afterwards, M. Lehtinen realized that by
accepting some loss of detection sensitivity and a small bias in the velocity
estimate, it would be possible to speed up MF computation drastically, typ-
ically by more than two orders of magnitude. We use the term fast match
function algorithm (FMF) for the resulting computation scheme. We outline
the algorithm in section 7 of this paper.

The results of the initial study were encouraging. The achieved detection sensi-
tivity was equivalent to being able to observe a spherical target with diameter
of about 2 cm at the range of 1000 km. With the advent of the FMF-algorithm,
the processing speed, though still sluggish, was starting to become useful.
In 2003, ESA commenced a new study with us to increase the processing
power so that large amounts of EISCAT SD measurements could be conve-
niently handled in real-time. The study has achieved the required processing
speed. In addition to the factor of 100 delivered by the FMF-algorithm, we
now use computers that are about ten times faster than what we had available
in 2001. A final required factor of ten to the speed was obtained by coding the
MF- and FMF-algorithms in C, instead of using Matlab as was done in the
initial study.

The EISCAT system (Baron, 1984, 1986; Wannberg et al., 1997) consists of
three separate radars: monostatic VHF radar, located near Tromsø, Norway,
operating at 224 MHz; monostatic but two-antenna EISCAT Svalbard Radar
in Longyearbyen, Svalbard, operating at 500 MHz; and tristatic EISCAT UHF
radar at 930 MHz, with transmitter in Tromsø and receivers in Tromsø and in
Kiruna, Sweden, and Sodankylä, Finland. All the transmitters operate in the
megawatt peak power range and routinely utilize high (10–20%) duty cycles.

Even though hard target echoes are routinely detected, standard EISCAT
data processing is not optimized for hard targets. The characteristic feature
expected from small hard targets is long signal coherence time, typically sev-
eral hundred milliseconds. By the signal’s (phase-) coherence we mean that
the signal phase φ0(t) obeys a deterministic functional form for some duration
of time, called the coherence time.
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EISCAT’s normal ionospheric signal has a coherence time less than a millisec-
ond in most parts of the ionosphere. This time is much shorter than the interval
between transmitted pulses, which in EISCAT is typically 3–10 ms. Therefore,
echoes from individual pulses are uncorrelated, and can only be added usefully
in the power domain. This is done by computing, for each pulse m and a set
of ranges r, power spectra Gm(r; f), and adding the spectra over the pulses,
G(r; f) =

∑
m Gm(r; f). This is called non-coherent pulse-to-pulse integration.

It should be noted that, within a single transmission-reception (T/R) cycle,
computing the range-gated power-spectrum G1(r; f) achieves coherent inte-
gration of the samples. In fact, for a single uncoded pulse, the MF-method,
too, in effect just computes range-gated power spectra.

To achieve coherent integration from pulse to pulse, the MF-method adds the
echoes from different T/R cycles in the amplitude domain, taking care that
the pulses are added with equal phase. The method, in essence, removes all
phase variation from the signal before adding the samples. This is achieved by
guessing the phase factor eiφ0(t) of the signal, and canceling it by multiplying
the signal by the complex conjugate of the guess, e−iφ0(t). The guesses in
our implementation are generated by brute force. We search through a large
set of parametrized model functions, and use the one which achieves best
cancellation of the phase, that is, which results in largest integrated amplitude.
After the phase variation has been successfully removed, the remaining part
of the signal can safely be integrated, both within a single pulse, and from
pulse to pulse. Actually, dividing the radar data into T/R cycles is artificial
from the MF-method point of view. It is more natural to consider the totality
of transmission during an integration period as just a waveform pattern, to be
matched against the totality of reception, irrespective of how the patterns are
divided into T/R cycles. In particular, there is no need for the T/R cycles to
be identical, either in terms of length or transmission content.

As long as the signal stays coherent (i.e. obeys the assumed model), coherent
integration suppresses the non-coherent background noise, so that the effective
signal-power to noise-power ratio increases in direct proportion to the number
of pulses integrated. This increases detection sensitivity. Non-coherent inte-
gration, in contrast, does not increase signal-to-noise ratio. The drawback in
coherent integration, besides being computationally more demanding due to
the long data vectors, is that if the signal model is not accurate, the ensuing
phase error can actually start to reduce the integrated amplitude. 1 In our
case, coherent integration beyond about 300 ms does not seem to improve
detection sensitivity.

1 We accept that there is a grain of truth in the statement claiming that “most
radars utilize non-coherent integration”, because “maintaining coherency [. . .] is
very costly and challenging to achieve.” (Mahafza, 2000)
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Part of the reason for the unexpectedly short apparent coherence time is that,
although we (in section 5) will derive a model signal that we believe should be
quite accurate for small structureless targets, for performance reasons we can-
not actually use the ideal model. The approximative model that we actually
use, both in the MF- and FMF-algorithms, is suitable for single-frequency-
channel transmissions. The different frequency channels in our multi-frequency
signal will have slightly different Doppler-shifts because the Doppler-shift de-
pends on transmission frequency. It is impossible to cancel all the Doppler
phase factors simultaneously using only the single model phase factor, which
is available in the FFT-compatible approximative model.

We derive, in section 4, the MF-method from Bayesian statistical inversion (Lehti-
nen, 1986). Within the probabilistic Bayesian approach, the estimates for the
basic parameters: range, radial velocity, radial acceleration and signal ampli-
tude or signal total energy, are the most probable parameter values, given the
measured noisy signal. With our assumptions, this solution is also the one
that minimizes the least squares norm between the measured signal and the
set of model functions. The solution is also equal to the maximum-likelihood
solution.

During several test campaigns over four years, we have collected and analysed
about 50 hours of data at the EISCAT UHF radar in Tromsø. These data
have been taken mostly for method development and verification purposes.
We will not attempt to describe the data in this paper, but only mention
that the mean event rate has been about 20 events per hour. The observed
height distribution seems to reproduce the well-known main features of SD
distribution in the low Earth orbit region. Our measurements cover altitude
up to about 4000 km, with gaps that depend on the EISCAT experiment that
we have been attached to. It is clear that the EISCAT UHF radar can observe
targets down to effective diameter (diameter of a hypothetical spherical target
on the antenna optical axis that would give the observed signal strength at the
observed range) of about 2.0–2.2 cm at 1000 km range. However, we cannot
say much about the actual target cross section, for the EISCAT antennas do
not have monopulse feed. At the moment at least, there is no way that would
allow pinpointing the actual target direction within the radar beam, and so
the target’s radar cross section cannot be deduced from the observed signal
strength. 2 We hope that in the future we can partly alleviate this problem by
collecting fairly large amounts of data—perhaps about 500 hours annually—
so that the antenna beam pattern can be taken into account statistically, and
meaningful comparisons with space debris models made.

2 Recently, there has been discussions within EISCAT about emulating the
monopulse capability by making the antenna feed slightly asymmetric and rotating
the feed rapidly, but the feasibility of this scheme has not yet been verified.
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2 The EISCAT UHF radar

So far in our measurements, we have been using mainly the EISCAT UHF
radar. The block diagram of the UHF radar’s Tromsø site is shown in Fig. 1.
The radar’s radio-frequency (RF) band is centered at 929 MHz, and there
are 14 transmission frequencies available, 300 kHz apart. In the most com-
mon, current, EISCAT experiment modes, two frequency channels are used.
Recently those have been centered at 929.9 MHz (EISCAT frequency F13)
and 930.2 MHz (F14). The RF signal is mixed in two stages to the second
intermediate frequency (IF2) band, using local oscillators at 812.0 MHz and
128 MHz, so that F13 maps to 10.1 MHz and F14 to 9.8 MHz. (In the space
debris receiver, F13 and F14 ultimately map to -0.1 MHz and +0.2 MHz in the
baseband.) The IF2 band is formed by the radar’s anti-aliasing filter, which is
7 MHz wide and centered at 11.2 MHz.

In the standard EISCAT data processing, the second IF is digitized by a 14-bit
analog-to-digital converter (A/D), which produces a continuous sample stream
at the rate of 15 Msamples s−1. The stream of IF2 samples is distributed to
the multi-channel, VME-based EISCAT digital receiver, each channel taking
one slot in a VME crate. Custom hardware in each digital channel performs
quadrature detection, followed by sampling rate reduction appropriate to the
typical 10–50 kHz final channel bandwidth. The baseband sample stream is
buffered, and further processing to average sample correlation products is done
on UNIX-based computers.

The EISCAT UHF transmitter consists of a programmable radar controller
that generates the pulse patterns, either uncoded on/off pulses or various
classes of binary phase codes; an exciter system that converts the radar con-
troller output to RF around 929 MHz; and a klystron power amplifier that
consists of two klystron tubes, in principle able to deliver combined peak power
of about 2.5 MW. The power during our space debris measurements has been
1.0–1.5 MW. The maximum transmitter duty cycle is 12.5%, and, in practice,
duty cycles near this value are also used in most experiments.

The 32 m UHF antenna has a fully steerable parabolic dish, with Cassegrain
optics, and a slewing rate of about 1.3◦ s−1 both in azimuth and elevation.
The antenna pointing direction is calibrated using celestial radio sources, and
is believed to be accurate to better than 0.1◦ in most directions. The time and
frequency references are derived from the GPS system.
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Fig. 1. The space debris (SD) receiver connected to the EISCAT UHF radar. The
SD receiver consists of a measurement computer and an analysis computer. The
measurement computer hosts a custom signal processing board (SD board). The
primary analog input to the SD receiver is the EISCAT second intermediate fre-
quency band (IF2). The input contains, time-multiplexed, both the standard re-
ceived signal and the transmission sample signal (TS). On the processing board,
there is an analog-to-digital converter (A/D) taking 40 megasamples per second;
a direct-digital-synthesizer chip (DDS) which provides clock signals on the board,
phase-locked to the host radar’s 10 MHz frequency reference signal; two Xilinks sig-
nal processing chips to perform signal demodulation and sampling rate reduction;
and a memory buffer for temporary storage of the complex samples. The recorder
program running on the measurement computer moves the samples over the gigibit
network link to an external hard disk, mounted on the analysis computer. Target
detection is done by the scanner program running on the analysis computer, using
the FMF-algorithm. After detection, two other software modules, the archiver and
the analyser, perform target parameter estimation.

3 The space debris receiver

To be able to use our own data processing, optimized for hard targets, we
use a special digital receiver back-end, the space debris receiver. Signal to the
space debris receiver is derived from the EISCAT analog signal path at the
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IF2 level. Figure 1 shows the main blocks of the SD receiver, connected to the
EISCAT UHF system at the Tromsø site.

EISCAT standard measurement modes normally have more than one fre-
quency channel. EISCAT standard data processing handles this situation in
the traditional way, by distributing the IF2 data to multiple hardware chan-
nels, each tuned to a particular center frequency. The end result is several
sample streams, one on each channel. Our approach in the SD receiver is
different. We sample fast enough to capture the relevant part of the analog
IF2 band into a single digital stream. We call this type of data multichannel
complex data (Lehtinen, 2002). According to the bandbass sampling theorem,
if the spread of frequencies is B MHz, one needs to take B million complex
samples per second, in the minimum. For its most common measuring modes
EISCAT uses the frequencies F13 and F14, which are 300 kHz apart, and then
we use 500 kHz sampling rate in the SD receiver. But we have also verified
that the SD receiver can handle sampling speeds up to 2.5 Msamples s−1.

In addition to the standard reception, our data processing requires that the
transmission waveform be measured. As indicated in Fig. 1, EISCAT provides
a transmission sample signal (TS) time-multiplexed into the same data path
as the reception. The multiplexer switch is controlled by the receiver protector
bit (TX bit in the figure), generated by the EISCAT radar controller micro-
processor. We routinely record the receiver protector bit into our data stream
to mark out the transmission blocks. The bit is stored into the least significant
bit of the imaginary part of the 16 + 16-bit complex integer data words. With
this arrangement, the transmission sample signal is automatically sampled
with the same sampling rate as the actual reception, though we would like to
sample it with a higher rate.

The core of the SD data acquisition system is a custom data acquisition board
(SD board), which performs signal sampling, quadrature detection and sam-
pling rate reduction. The board was originally developed for ionospheric to-
mography by the now defunct Finnish company Invers Ltd.

The analog-to-digital converter on the SD board samples at 40 MHz. The
resulting real-valued sample stream is processed by programmable logic chip,
from the Xilinx SpartanXL FPGA family, to perform quadrature detection, es-
sentially by doing Hilbert transform. The result of the transform is a complex-
valued 10 MHz sample stream, which represent the negative frequency part of
the spectral contents of the analog input. The chip then decimates the 10 MHz
stream to the final sampling rate. Typical decimation factor M is 20, which
yields 500 kHz final sampling rate. The decimation is done by adding samples
in blocks of M ; this ensures that the filtering is properly matched to the final
sampling rate (see Fig. 3 and the associated discussion in section 4).
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It may be noted that there is no separate multiplication (mixing) to baseband
in this scheme. Instead, the customary frequency component in baseband is
created by the undersampling. With the 40 MHz raw sampling rate, the ar-
rangement requires that the band-limited analog input is centered at 10 MHz.
Although it is possible to operate the SD receiver’s analog-to-digital converter
at other sampling rates, the 40 MHz is a most convenient choice. That the
two most often used EISCAT frequencies have been 10.1 MHz and 9.8 MHz,
which map as near to the zero frequency as can be hoped for in this processing
scheme, is a happy coincidence. The next version of the SD receiver should
have a complex mixer built-in.

The SD receiver board is mounted in a Power Macintosh G4 workstation,
running under the Mac OS X version of UNIX. We call the Mac G4 the mea-
surement computer. In addition, there is a dual-CPU Macintosh G5 computer
for data analysis. The Mac workstations are connected to each other via a
gigabit Ethernet link, and are also connected to the host site’s local network
(LAN). The measurement computer runs software from Invers Ltd to read
the samples from a buffer and to write them to hard disk mounted over the
gigabit link from the analysis computer. The data accumulation rate to the
disk is between 7 and 30 GBytes per hour, depending on the sampling rate.
The LAN connection is used to access the EISCAT process computer, to up-
date the time base on the G4 and G5 once every five minutes, using the ntp
protocol. This ensures that the time base stays within 20 ms from the time
kept in the EISCAT system. This is more than adequate for time stamping
space debris events.

Data analysis is done using C and Matlab programs running on the analysis
computer. First, a scanner reads a segment (typically 300 ms) of raw data
from disk and searches through the segment for hard targets using threshold
detection within the framework of the match function method. When the
threshold is exceeded, we have a hit. The scanner saves the hit’s description
to a file and proceeds to next data segment. A second program, the event
archiver, inspects the list of hits and combines the hits that correspond to a
single target passing through the radar beam into an event. Having determined
the time boundaries of the event, the archiver copies the raw data to a separate
directory and goes on to look for more events. Finally, the analyser picks data
from the event directories and deduces and saves the event parameters.

By far the most time-consuming step in the data analysis is the scanning.
Scanning is done by a C program that makes use of the AltiVec vector proces-
sor onboard the G5, by calling routines in Apple’s DSP library (vdsp), most
especially the FFT routine.

The event archiver is also a C program, but it is not performance critical.
Most of its time goes to data copying, so the speed is mainly limited by disk
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speed. We have saved all raw data from all our test measurements so far—
somewhat less than a terabyte—but in routine measurements, only the raw
data of events will be saved.

The way to compute the final target parameters is still under development.
What the analyser now does, is basically to call the scanner to re-scan the raw
data, with maximal time and range resolution but over a narrow range interval,
and then make linear or quadratic fits to the range and Doppler-velocity time
series. The range and velocity parameters that we normally quote are taken
from these fits, for the time instant of maximum signal strength. The analyser
is a Matlab program.

The overall processing speed is such that for data taken with 2 MHz sampling
rate, it takes 40–45 minutes to scan, archive and analyse one hour of raw data,
while keeping the raw data access going on at the same time.

4 The match function method

We want to estimate the parameters of a hard target echo signal s(t) in the
presence of wide-band gaussian noise γ(t), of variance σ2. We denote by z(t)
the received signal,

z(t) = s(t) + γ(t) . (1)

We denote by x(t) the transmission sample signal (the signal TS in Fig. 1).
We ignore here the frequency translations done in the actual receiver, treating
z, s, x and γ as complex-valued (detected) signals. The frequency translations
affect both the echo signal and the transmission signal by a factor of the form
exp(iωLOt), where ωLO is some local oscillator frequency, and hence cancel
each other out in correlation products like s(t)x(t).

To find an optimal signal estimate (or at least a well-defined estimate), we
use the approach of Bayesian statistical inversion. The basic idea is to use
a parametrized model for the signal s(t) and find the most probable signal
among the model signals, given the received signal z(t).

We specify our set of model signals explicitly in section 5. Here we will make
use only of the property that the model depends linearly on one parameter,
the complex amplitude b, and in addition depends on a set of other parameters
(range, radial velocity and radial acceleration), which we collectively denote
by θ, so that

s(t) = b · χ(θ; t). (2)
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We sample the signal z(t) using sampling interval τs, and get N samples zn

during a time interval Tc, the coherent integration time.

It makes sense that after a specific measurement result z, some parameter
values (b, θ) are to be considered more likely than others, in a way that depends
on z. That is, the probability of the various imaginable values is describable by
some conditional probability density, with z in the condition. In the Bayesian
worldview, that density is called the posteriori density, and is denoted here
by Dp(b, θ|z). The inversion problem is to utilize the measurement to find
the posteriori density. The posteriori density is the most complete inference
that can be made about the parameter values, based on the measurement.
Normally, one wants to condense the inference to a few numbers, the parameter
estimates. There is no unique way to select “best” estimates, but the standard
Bayesian criterion is to use the most probable values:

(b̂, θ̂) = arg max
b,θ

Dp(b, θ|z). (3)

We now derive the posteriori density. We denote by D1(zn|sn) the conditional
probability density function of zn, given sn. This is just the probability distri-
bution of the noise γn = zn − sn,

D1(zn|sn) =
1

πσ2
e−

1
σ2 |zn−sn|2 . (4)

For white noise, the conditional joint probability density to produce a partic-
ular measured vector z, if the actual signal vector is s, is then

D(z|s) =
N−1∏
n=0

D1(zn|sn) =
1

(πσ2)N
· e−

1
σ2 ‖z−s‖2

. (5)

The density D(z|s) is called the direct theory. Given the direct theory, the
Bayesian solution to the inversion problem is

Dp(b, θ|z) = C ′(z) ·Dpr(b, θ) ·D(z|s). (6)

Here C ′(z) is normalization factor. The new factor, Dpr(b, θ), is called the
prior density. The prior density is a weight that can be used if it is known a
priori— before making the measurement—that some particular signals s(b, θ)
tend to occur more frequently than some others. Using non-trivial Dpr might
actually make sense when measuring space debris, to throw out detections
with highly unlikely parameters. But so far we have used constant prior. For
constant prior, it follows from Eq. (6) and Eq. (5) that the posteriori density
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is of the form

Dp(b, θ|z) = C(z) · e−
1

σ2 ‖z−b·χ(θ)‖2

, (7)

where the constant C(z) is determined by the normalization requirement∫
Dp db dθ = 1. It follows that finding the most probable parameters amounts

to minimizing the least-squares norm,

(b̂, θ̂) = arg min
b,θ

‖z − b · χ(θ)‖ . (8)

That we should arrive at this most basic technique of parameter estimation,
least-squares fitting, is perhaps not surprising. But what we have gained by
walking through the Bayesian route is that not only do we have a method
for acquiring the parameter estimates, but we have the explicit expression
Eq. (7) for the posteriori density. In the future, we intend to make use of the
posteriori density in error analysis. Due to the highly non-linear dependence
of the model functions χ on the parameters-to-be-fitted, error estimation is
not trivial.

A straightforward approach to the minimization problem expressed in Eq. (8)
is to discretize the parameter space and perform an exhaustive search. We now
show that the search space dimension can be reduced by one by making use
of the property that the amplitude b enters the problem linearly. Our result
can be confirmed analytically, but will be reasoned here from basic vector
geometry. Referring to Fig. 2, the set M of model vectors bχ(θ) consists of
1-dimensional rays Cχ through the origin of N -dimensional complex vector
space CN . The rays are generated by the set of vectors χ(θ). According to
Eq. (8), we need to find the shortest distance between the measured point
z and M. The figure suggests the following strategy. First find the ray Cχ̂

that is as parallel as possible with the vector z. Then the point in M that is
nearest to z is the orthogonal projection ŝ of z onto Cχ̂, and is computed in
the standard way as

ŝ =
〈z, χ̂〉
‖χ̂‖2

χ̂ . (9)

So the real problem is to find the maximally parallel ray χ̂. With z fixed, a
sufficient measure of parallelism of a ray Cχ and the vector z is the length of
the orthogonal projection of z onto χ; the longer the projection is, the more
parallel (or antiparallel) z and Cχ are. This measure of parallelism is the match
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Fig. 2. Geometric interpretation of the MF-method. The required best estimate of
the signal is the point ŝ in the set M of model functions that is nearest to the mea-
sured signal z. The “conically-shaped” set M consists of rays, Cχ = {aχ : a ∈ C},
generated by a set of basic model signals χ(θ). The match function value MF(θ) is
defined as the length of the orthogonal projection of z onto the ray Cχ(θ). Maximiz-
ing MF(θ) gives the ray Cχ̂ that lies as near to the point z as is possible in M. The
estimate ŝ is the orthogonal projection of z onto Cχ̂.

function 3 MF,

MF(θ) =
|〈z, χ(θ)〉|
‖χ(θ)‖

. (10)

The MF is a function of the model parameter θ, but does not depend on the
scale of χ: χ and aχ give the same value of the MF. We maximize the MF to
get the maximally parallel model vector χ̂ = χ(θ̂),

θ̂ = arg max
θ

MF(θ) . (11)

How the maximum, Eq. (11), is computed in practice will be discussed in
section 6.

3 Intuitively, the more parallel two signal vectors (functions) are, the more they
look alike, which is one reason for our nomenclature. A more serious reason is that
MF also stands for matched filter. With velocity and acceleration fixed to zero,
〈z, χ(R)〉 can equally well be computed by filtering z with the filter h(t) = x(t)
which is matched to the transmitted waveform x(t). The MF is a generalization of
this concept to more general pattern matching.
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The energy 4 of a correctly sampled complex-valued band-limited signal y(t)
is

Wy =
∫
|y(t)|2dt = τs

∑
|yn|2 = τs‖y‖2 . (12)

From Eq. (9)–(12), the energy Wŝ of the signal estimate ŝ is

Wŝ

τs

= ‖ŝ‖2 =
|〈z, χ̂〉|2

‖χ̂‖2
= [MF(θ̂)]2 = max MF2. (13)

We use Wŝ as the estimator of Ws, the energy of the signal s. We make no
“background subtraction”, even though this means that, as will be discussed
at the end of this section, the estimator will be biased.

In summary, the MF-method of parameter estimation has two steps:

• Get the parameters θ by locating the position of MF maximum, Eq. (11).
• Get the signal energy as the square of the value of the MF maximum,

Eq. (13).

A noise-free MF is useful for theoretical considerations. Without noise, both
factors in the inner product in Eq. (10) are model functions. We will reserve a
separate notation, AF, and use the standard name, ambiguity function (Skol-
nik, 1981), for the noise-free match function,

AF(θ0; θ) =
|〈χ(θ0), χ(θ)〉|

‖χ(θ)‖
. (14)

In the MF-method, target detection is based on the estimated signal energy
exceeding a pre-defined threshold. We set the threshold by visual inspection
of the data high enough that there are very few false alarms. We actually need
to use a range-dependent threshold, because the lower altitudes, typically up
to about 500 km, are often affected by strong clutter from the ionosphere, and
require a higher threshold.

We set the detection threshold in terms of the ratio of signal energy to the
noise power spectral density (PSD) Gγ. Note that the PSD has dimension of

4 We consider the signals y(t) to have the dimension of voltage, and assume unit
impedance, so that |y|2 is signal power. The impedance does not matter, since only
power ratios, like |s|2/|γ|2, are used when comparing to the physical world. We
could also do without explicitly tracking the sampling interval, except that we do
not want to change the dimension of energy in the middle of a chain of equations.
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energy: W/Hz = J. We call the dimensionless ratio the energy-to-noise ratio,
and denote it by SNRN,

SNRN =
Ws

Gγ

. (15)

A special feature of the SD receiver is that the final sampling interval τs is
precisely matched to the noise-equivalent bandwidth of the receiver. Referring
to Fig. 3, the SD receiver bandwidth is determined by the boxcar-in-time finite
impulse response filter h, with the response duration equal to the sampling
interval. The filter h is implemented digitally, in connection with the sampling
rate reduction done in the SD receiver, by adding primary samples in blocks
of M , where M is the required sampling rate reduction factor. Figure 3 shows
an approximately equivalent analog system corresponding to this behaviour.
The input noise to the equivalent filter is γ(t). We assume that the noise
temperature Tsys is defined in such a way that the PSD of the complex-valued
wide-band noise can be written as

Gγ = kTsys , (16)

where k is the Boltzmann constant. During filtering, the PSD is transformed
by the squared magnitude of the filter transfer function, so that the filtered
noise γ′ has PSD

Gγ′(f) = |H(f)|2 kTsys . (17)

It then follows from the Parseval’s theorem, and the special choice of h(t),
that noise power (variance) after the filter is

Pγ′ =
∫

Gγ′(f) df =
[∫

h(t)2 dt
]

kTsys =
1

τs

kTsys . (18)

(This implies that the noise-equivalent bandwidth of the filter is equal to the
final sampling frequency 1/τs.)

The MF-method provides an estimate of the signal energy after the filter
Ws′ = τs max MF2. This, and the separately estimated noise power Pγ′ , can
now be used to estimate the incoming energy-to-noise ratio in front of the
filter. In our SD measurements, the EISCAT transmission typically consists of
two frequency channels, which appear time multiplexed (also) in the received
signal. The frequency channels have narrow bandwidth compared to the width
of the filter H. We can take the filter’s power gain |H(f)|2 to be constant
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Fig. 3. Principal filtering operation in the SD receiver. Shown here is an equivalent
analog representation, the actual finite impulse response boxcar-in-time filter with
impulse response h(t) and transfer function H(f) is implemented digitally. The
duration of the impulse response is designed to be equal to the final sampling interval
τs. The filter transforms the incoming signal s and noise γ to s′ and γ′. The incoming
white noise has power spectral density kTsys, which is transformed to Gγ′ . The noise
samples γ′

n are uncorrelated and have variance σ′2.

across a frequency channel. In the filtering, the signal energy Wch in a channel
transforms approximately as

W ′
ch = |H(fch)|2 Wch = κch|H(fch)|2 Ws , (19)

where fch is the channel’s center frequency. We also introduced in Eq. (19) the
factor κch = Wch/Ws to specify how large a part of the total energy (reception
energy, and presumably also transmission energy) goes into the given channel.
The filter’s effect to the total signal energy is therefore an attenuation by a
factor K,

Ws′ =

[∑
ch

κch|H(fch)|2
]
Ws = K ·Ws . (20)

Both Eq. (20) and Eq. (18) implicitly contain an unknown, but common, gain
and unit-conversion factor. That factor cancels out from the ratio SNRN, so
that we can write

Ws

kTsys

=
Ws′/K

τs Pγ′
=

1

K

max MF2

Pγ′
. (21)

We treat the system temperature as a known radar parameter (110 K for the
Tromsø UHF radar), and use Eq. (21) to find the incoming signal energy Ws

in physical units. We use that estimate to find a lower limit, RCSmin, for the
target’s radar cross section (RCS). From the standard radar equation it follows

RCS =
(4π)3 kTsys ·R4 ·Ws

G(φ)2 · λ2 · Px · DTc

, (22)
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where R is the target range, λ is the radar wavelength, Px is the transmission
power, and D is the transmission duty cycle such that DTc is the actual length
of transmission during the integration Tc. The factor G(φ) is the antenna power
gain in the direction of the target within the radar beam, ie: at an angle φ offset
from the known direction of the antenna optical axes. In the EISCAT systems,
it is normally not possible to find the offset angle, and we give RCSmin, which
we get from Eq. (22) by setting φ = 0, as a way of cataloguing the observed
signal strength.

For the boxcar impulse response h shown in Fig. 3, the modulus of the fil-
ter transfer function is |H(f)| = | sin πfτs

πfτs
|. For a standard dual-frequency SD

measurement, with f1 = −100 kHz, f2 = +200 kHz, τs = 2000 ns, and
κ1 = κ2 = 0.5, the overall energy attenuation factor K in Eq. (20) becomes
0.72. For small (spherical) targets the radar cross section, and therefore the
received power, varies proportionally to the sixth power of the target diame-
ter, so a 30% underestimate of received power results in 5% underestimate of
the size. Considering other problems that we have in determining the target’s
radar cross section, we have so far ignored the filter effect and used K=1.
The problems include: not knowing the efficiency of the coherent integration,
not knowing the position of the target within the radar beam, and neither
knowing accurately the radar’s total transmitted power, nor how the power is
actually divided into the frequency channels 5 .

For the rest of this paper, whenever we refer to “signal s” and “noise γ”, we
mean the filtered signal s′ and filtered noise γ′ of Fig. 3, and we will drop the
primes from the notation from now on.

The energy estimate Wŝ defined in Eq. (13) is a biased estimate. That is, the
expectation value E Wŝ over repeated measurements of a given signal s, with
different noise, is not equal to Ws, the actual signal energy. Instead, E Wŝ is
considerably larger than Ws (about 10Pγ typically). This is seen qualitatively
by considering the case when there is no signal present, and thus an unbiased
estimate would have zero energy. Because MF2 is non-negative, max MF2 will
in any case have expectation value that is larger than zero. But the expectation
value will in fact also be larger than the noise power. Taking, for example, the
model signal χ having the form of a Doppler-shifted transmission (see Eq. (38))

[χ(ω)]n = xneiωτsn , (23)

where the xns are the transmission samples and ω is the Doppler-shift. The
square of the match function MF(ω) = |〈γ+0,χ(ω)〉|

‖χ‖ becomes:

5 In principle, one should be able to use the measured transmission samples and
the known filter gain |H(f)|2 to determine the factors κch.
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[MF(ω)]2 =
|∑ γnxn exp iωτsn|2∑ |xn|2

(24)

=

∑
nn′ γnγn′xnxn′ exp[iωτs(n− n′)]∑ |xn|2

. (25)

With the SD receiver’s filtering arrangement, the final noise samples are un-
correlated,

E(γnγn′) = δn,n′ · σ2, (26)

so we get from Eq. (25)

E[MF(ω)2] = σ2, for all ω . (27)

This implies that in a typical trial, as a function of ω, MF(ω)2 varies around σ2,
often taking values that are larger than σ2. The expectation value of maxω MF2

over multiple trials will thus be larger than σ2.

A positive bias in the signal energy estimate in Eq. (22) increases the value
of RCSmin, moving it nearer to the actual RCS value. For the weakest signals,
RCSmin can conceivably even become larger than the actual RCS.

5 Signal model

We model the radar echo s(t) by assuming that it behaves as if an optical
wave were reflected from a mirror moving with constant radial acceleration
a0. Denoting the delayed time (the time instant of transmission of a short
“marker” that is received at time t) by t′ with reference to Fig. 4, we express
the echo in terms of the transmission sample signal x(t) as

s(t) = bx(t′) . (28)

For the short integration time Tc, a few hundred milliseconds, we neglect all
effects due to target structure and internal motions, as well as signal distor-
tions due to the ionosphere, and take the amplitude b to be a complex-valued
constant. It should be kept in mind that there are undoubtedly situations
where this assumption fails.

For any given target radial motion r(t), the delayed time is determined by the
relation

t− t′ =
2 r( t′+t

2
)

c
, (29)

18



0

range

time

r = R0 + v0t +
1

2
a0t

2

t
′

t
t
′ + t

2

Fig. 4. Transmitted wave reflected from a point-like target which is moving with
constant radial acceleration a0. The parabola shows the radial component of the tar-
get’s position vector in the coordinate frame of a stationary radar antenna, during
the few hundred milliseconds of a coherent integration. The full three-dimensional
velocity vector is typically very nearly constant in that frame during the integra-
tion time. The integration starts at time 0 with the transmission of the first pulse
belonging to the integration. At the start of the integration, the target range is R0

and the radial velocity is v0. Note that the diagram is not drawn to scale.

which expresses the time-of-flight in terms of travel distance and propagation
speed. With constant radial acceleration, the radial motion is

r = r(R0, v0, a0; t) = R0 + v0t +
1

2
a0t

2 . (30)

For such motion, Eq. (29) is quadratic in t′. The solution of the equation for
the propagation time, with appropriate choice of the sign of the square root,
is

t− t′ =
2c

a0

1 +
v0

c
+

a0

c
t−

[
1 +

2v0

c
+

(
v0

c

)2

+
2a0

c
(t− R0

c
)

] 1
2

 . (31)

Equation (31) can be simplified by expanding the square root into a power
series. Care must be exercised regarding which terms can be dropped from the
expansion. With parameter values that are typical at EISCAT UHF when the
antenna is pointed almost vertically,

R0≈ 106 m ,

v0≈ 103 ms−1 ,

a0≈ 102 ms−2 ,

ω1≈ 6 · 109 Hz ,

all terms following the “1” inside the square brackets in Eq. (31) are small
compared to unity. Terms can be neglected when the requirement that the
corresponding phase angle φX = ω1

2c
a0

X, where ω1 is the radar transmission
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frequency, stays small during the whole integration time, is met. Taking the
first three lowest-order terms of the power-series expansion of [1 + (. . .)]

1
2 ,

and then disregarding the individual terms which are essentially zero—say all
terms for which φX stays smaller than 0.1 rad when the integration time is
less than a second—we are left with

t− t′≈ 2

c

[
R0 + v0t +

1

2
a0t

2 − (v0 + a0t)
R0

c

]
(32)

=
2

c

[
R0 + v0(t−

R0

c
) +

1

2
a0(t−

R0

c
)2

]
(33)

=
2

c
r(R0, v0, a0; t−

R0

c
) . (34)

The term −R0

c
is an obvious first order correction to the time instant of pulse

reflection; the non-trivial aspect is that this correction is already sufficient. To
a good approximation, we can express the model functions χ(R, v, a; t), used
in the MF computation in Eq. (10), in terms of the transmission sample signal
x(t) as

χ(R, v, a; t) = x(t− 2

c
r(R, v, a; t− R

c
)) . (35)

Note that nothing has been assumed about the transmission in this derivation
so far. In principle, as long as the transmission can be accurately measured via
the transmission sample signal, we do not even need to know what transmission
has been used; the MF machinery incorporates the transmission transparently.
In principle, this is fine for automated piggy-back measurements, where one
does not have any control of the transmission EISCAT might be using at any
given time.

The reality, of course, is rather different. A basic problem is that the radar’s
noise environment is often poorly approximated by our assumption that it
consists only of stationary gaussian noise. Distortions occur in practice; for
example the ionosphere becomes visible as time- and range-dependent clutter
in the data. More or less ad hoc, manual, experiment-specific solutions are
used to counter these problems. Also, we do not presently handle the case that
the antenna pointing may change during a measurement, even though many
EISCAT measurements use cyclical antenna pointing schemes. In practice we
need to know beforehand, and even select, the EISCAT measurements we use
in the SD work.
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6 Computational aspects

In this section we describe how we evaluate the MF in practice. We first
derive an approximation for the signal model of Eq. (35). Assume that the
transmission can be described by

x(t) = ε(t)eiω1t , (36)

where ω1 is the carrier frequency, and the transmission envelope ε(t) is a slowly
varying function, describing, say, a binary phase modulation, as is often the
case in EISCAT. This description is normally adequate for a single-frequency
transmission. We ignore the correction, R/c, to the pulse reflection time in
Eq. (35), and use the special form Eq. (36) to write the model function as

χ(t) = ε(t− 2

c
r(t)) eiω1[t− 2

c
r(t)] . (37)

Inside the slowly varying transmission envelope, we can assume that r(t) stays
constant, r(t) = R, during the integration time. Then, from Eq. (37) and
Eq. (36),

χ(t) = ε(t− 2R

c
) eiω1(t− 2

c
R) ei[(−ω1

2
c
v)t +(−ω1

a
c
)t2 ]

= x(t− 2R

c
) ei(ωDt+αDt2) , (38)

where ωD = −ω1
2v
c

and αD = −ω1
a
c

are the Doppler-frequency and the rate
of change of the Doppler-frequency, the “Doppler-drift”, respectively. The ap-
proximation, Eq. (38), is often used in the literature, usually without the drift
term, and is described by stating that the received signal is a delayed-in-time,
Doppler-shifted replica of the transmission. With this model, the match func-
tion definition in Eq. (10) can be expanded, for continuous-time signals, as

MF(R, v, a) =
|
∫ Tc
0 z(t)x(t− 2R

c
)e−i(ωDt+αDt2) dt|√

Wx

, (39)

where Wx =
∫
|x(t)|2dt is the energy of the transmission sample signal.

For signal vectors, we need to take into account that the transmission samples
are only available at times nτs. This already forces us to discretize the range
variable. With

Rj = j
cτs

2
, (40)
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the match function becomes

MF(Rj, v, a) =
|∑N−1

n=0 znxn−je
−i(ωdn+αdn2)|

‖x‖
, (41)

where the normalized Doppler-shift and Doppler-drift are

ωd =−ω1τs
2v

c
, (42)

αd =−ω1τs
aτs

c
. (43)

At the points

vk = k
2πc

ω1Tc

(44)

Eq. (41) can be written as

MF(Rj, vk, a) =
|∑N−1

n=0 (znxn−je
−iαdn2

)e−i 2πkn
N |

‖x‖
, (45)

which shows that at these points the MF can be evaluated using an FFT. The
denominator ‖x‖ is the square root of transmission sample energy, and is (of
course) independent of R, v and a.

In most of our data analysis, we have taken the radial acceleration to be a
deterministic function of range, a = a(R). We have used the acceleration that
corresponds to the target being in circular orbit and the antenna being pointed
vertically,

a(R) = g0 ·
RE

R
· ( RE

RE + R
)2 , (46)

where RE is the Earth radius 6360 km and g0 is the acceleration of gravity at
zero altitude, 9.8 m s−2. Experimentation with real data has shown that not
much sensitivity is lost in practice even if the acceleration is fixed in this way.
This is perhaps a bad sign, for we would expect the MF to be a rather sensitive
function of acceleration. For instance, inspection of the ambiguity function
a 7→ AF(R0, v0, a0; R0, v0, a) for 0.3 s integration shows that a 5 m s−2 error in
a causes the integrated signal amplitude to decrease by about 60% (Markkanen
and Postila, 2005). But no comparable decrease of the MF maximum seems to
occur when we change a(R) by 5 m s−2 in the data analysis. On the other hand,
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ignoring the acceleration altogether, taking a = 0, does reduce the detection
sensitivity significantly.

In the routine analysis, we search for the MF maximum only over the two-
parameter [Rj, vk, a(Rj)]-grid. Even then, the detection computations, using
full resolution and without any further approximations, become overwhelm-
ing. Assuming that we want to cover 1000 km in range and use 0.3 s coherent
integration, and that the sampling interval is 0.5 µs. Then the input data vec-
tor is 600 000 points long, and the FFT requires about 60× 106 floating point
operations per range gate. The 13 000 (1000/0.075) range gates require about
800 × 109 floating point operations. On a dual-processor 2 GHz G5 worksta-
tion, we get about 1 GFlops combined performance for FFTs of this length,
so we need about 800 s to handle the 0.3 s of data. A typical EISCAT UHF
phase-coded transmission uses baud length of about 20 µs or longer. For these,
we can relax the range gate separation in the detection phase somewhat, say
by a factor of 10. But this still leaves us more than two orders of magnitude
short of the required real-time speed.

7 The fast match function algorithm

In this section we describe a fast, although approximative way to evaluate the
match function, the FMF-algorithm. The algorithm was developed to compute
efficiently a reasonably good approximation of the MF maximum; the FMF
is not, in general, a good approximation of the MF over the whole parameter
space. We will make use of two special properties of our SD measuring situation
in EISCAT.

First, we note that the Doppler-velocity interval that we need to monitor
is much narrower than the interval that is actually available with the SD
receiver’s high sampling rate. For example, for the EISCAT UHF radar with
0.32 m wavelength, our benchmark 2 MHz sampling rate gives unambiguous
velocities in the interval ±(fs/2) · (λ/2) = ±160 km s−1. For near-vertical
antenna pointing, it is more than sufficient to monitor the velocity interval
±5 km s−1. Therefore (for each range gate Rj) we can downsample, decimate,
the vector w to be Fourier-transformed in the MF-formula Eq. (45),

wn = znxn−je
−iαdn2

, (47)

by as much as Mdec = 160/5 = 32. Typically we use Mdec = 15 in this case.
We form the decimated vector, w′, by adding wns in blocks of Mdec. At the
same time, we make use of the fact that within a block, the acceleration factor
e−iαdn2

is almost constant. We take it out of the decimation sum, to reduce
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both the number of multiplications and the number of complex exponentials
that need to be computed.

Second, we make use of the fact that most of the wns are zeros. The trans-
mission duty cycle in EISCAT experiments is about 10% at the UHF radar.
Therefore, about 90% of the transmission samples xn are zeros (contain no
transmission), in regularly spaced blocks. The products wn of course need
to be computed and decimated only for the non-zero xn. The (perhaps) sur-
prising step in the algorithm is to ignore the zeros even when collecting the
decimated products into the final Fourier-transform input vector, w′′; we just
concatenate the non-zero blocks. The FMF formula is

FMF(Rj, ω) =
|∑N ′′−1

n=0 w′′
n e−iωn|

‖x‖
, (48)

which for the points ωk = 2πk/N ′′ is evaluated using FFT. The vector w′′ is
typically two orders of magnitude shorter than w. In the benchmark case where
w contains 600 000 points, w′′ has length N ′′ = (1/15) · 0.1 · 600 000 = 4000.
Due to the much shorter FFT input vector, even allowing for the extra work
due to the decimation, in typical cases the FMF is 100–300 times faster than
the MF.

Gaining speed by the FMF-algorithm is not in doubt. But what is the price?
Decimation, the first step in the algorithm, does not cost us much informa-
tion. Basically, we are just backtracking from our initial “oversampling”. We
can backtrack at this stage, but not earlier, because the vector w is near zero
frequency, while the raw data vector z, for multi-frequency transmission, is
not. In Eq. (47), each frequency channel in z gets multiplied by the com-
plex conjugate of the corresponding transmission, so the carriers of all the
frequency channels (approximately) cancel out simultaneously. Very near the
MF maximum, also a possible phase modulation is cancelled out. So the sam-
pling requirement of w is determined by the size of the maximum anticipated
Doppler-shift only.

We now inspect the second step. What effect does the removal of periodically
repeated blocks of zeros have on the result of the Fourier-transform? We ignore
the somewhat trivial decimation step, taking Mdec = 1. We want the FMF
only in the vicinity of its maximum, so we assume that the correct range
and acceleration have already been found and the corresponding phase factors
cancelled out from the vector w, and only a Doppler term eiω0n, where ω0 is the
target’s normalized Doppler-shift, still remains. We will also ignore the noise,
so we are actually computing what might, for consistency of the nomenclature,
be called the fast ambiguity function, FAF.

We assume a single-frequency transmission, consisting of M pulses of L sam-
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ples each, transmitted using an interpulse period of P samples. Then, near
the maximum, w consists of M pulses of, say, unit amplitude and L samples,
each Doppler-shifted by ω0, with P −L zeros between each pair of pulses. The
non-zero part of w consists of M blocks, and in the mth block, the wns take
the values

w(m)
n = eiω0(n+mP ), n = 0, . . . , L− 1. (49)

For computing FAF(ω), the blocks {w(m)
n } are first concatenated and then

multiplied by e−iωn. The mth block is multiplied by

u(m)
n = e−iω(n+mL), n = 0, . . . , L− 1 . (50)

The contribution I(m) of the mth block to the sum in the denominator of
Eq. (48) is

I(m) =
L−1∑
n=0

w(m)
n · u(m)

n . (51)

The norm ‖x‖ in the denominator of Eq. (48) is the sum of ML terms, all
equal to unity, so we get from Eq. (48) and (51)–(49)

FAF(ω) =
1

ML

∣∣∣∣∣
M−1∑
m=0

I(m)

∣∣∣∣∣ (52)

=
1

ML

∣∣∣∣∣∑
m

∑
n

eiω0(n+mP )e−iω(n+mL)

∣∣∣∣∣ (53)

=
1

L

∣∣∣∣∣
L−1∑
n=0

ei(ω0−ω)n

∣∣∣∣∣ · 1

M

∣∣∣∣∣
M−1∑
m=0

ei(ω0P−ωL)m

∣∣∣∣∣ (54)

= diric(ω0 − ω,L) · diric(ω0P − ωL,M) , (55)

where we have defined the Dirichlet kernel diric by

diric(x, M) =

∣∣∣∣∣ sin xM/2

M sin x/2

∣∣∣∣∣ . (56)

The first factor in Eq. (55) represents the Doppler-velocity information avail-
able from a single pulse. The factor has an absolute maximum at the tar-
get’s Doppler-frequency ω0, while the zeros nearest to the maximum are at
ω0 ± 2π/L. The second factor in Eq. (55) results from pulse repetition. It has
maxima, all equal to unity, at the frequencies

ωn =
P

L
ω0 + n

2π

L
. (57)
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In general, none of the maxima ωn coincides with ω0. Therefore, the maxi-
mum of FAF(ω) is not situated in the expected place ω0. A velocity estimate
computed with FMF will be biased by an amount that depends on the target
velocity. This is not a serious handicap, however, at least not in target de-
tection phase, for the bias is always rather small, less than 0.2 km s−1 in the
standard measurements.

Potentially more problematic for target detection is the reduction of the FMF
maximum value compared to the MF maximum value. Some loss of the inte-
grated signal amplitude is to be expected, for the FMF is no longer the optimal
solution to the estimation problem. The amount of reduction depends on the
target Doppler-shift ω0. When ω0 is of the form 2π

P−L
n, there is no reduction.

A more useful property is that the loss in all cases has an upper bound, which
is tolerably small. To find the bound, we note that the maximum value of the
FAF occurs very near to the ωn which is nearest to ω0. Such an ωn, according
to Eq. (57), is never further away from ω0 than half the spacing 2π/L between
the ωns. Therefore, the FAF maximum value in the worst case is roughly equal
to diric(π/L, L) ≈ 2/π, or 64% of the ideal value. This result applies to the
single-frequency case. The more realistic case of multiple frequencies is more
complicated; but an upper bound still exists.

Often we can observe the target for a few seconds during its beam passage.
During that time, its velocity typically varies so much that for some integra-
tion, it is near one of the values where the FMF maximum is near the MF
maximum. This perhaps explains why we in practice seem to achieve almost
the same detection sensitivity with the FMF as with the MF. The main dif-
ference is that detection with the FMF proceeds more than a hundred times
faster.
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