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Overview

> Meteor ideas (synthesized beams for statistical studies,
simulated “mono-pulse feed" for interferometric angular
measurement)

» Space Debris (statistical measurement, passive and active
orbital elements determination)

» Planetary radar
» Multi-purpose experiments

» Implications for E3D design, some ideas



Meteors

» Multi-static meteor head echo observations can be used to
determine trajectory and correct radar cross-section (a lot of
publications by the Swedish group)

» Trajectory could also be estimated using interferometric
directional information using several overlapping beams

» Synthesized beams can be used to generate wide and narrow
beams (e.g. Chau 2009)

» Both circular polarizations would give more information of the
target (e.g. Close 2008)

> A long term data-set would give a better estimate of the
global meteoroidal mass flux
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Space Debris

» There is considerable interest for surveying the space
environment (EU SSA program). This includes space debris,
space weather and near earth objects.

» E3D can contribute to all of these

» Passive (using target angular velocities) and active (tracking)
orbital element determination for space debris

» Current models predict that space debris is already in a
collisional chain reaction that will eventually make near earth
orbits unusable (several papers in the ESA Space Debris
Conference 2009 proceedings)
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Russian and US satellites collide

US and Russian
communications satellites
have collided in space in what
is thought to be the biggest
incident of its kind to date.

The US ial Tridium

spacecraft hit a defunct Russian

satellite at an altitude about

800km (500 miles) o iberia on

Tuesday, Nasa said. Tridium spacecraft provide satellite
phone services

omme

The risk to the International
Space Station and a shuttle launch planned for later this month is
said to be low.

The impact produced a cloud of debris, which will be tracked into the
future

Since the Soviets launched Sputnik in 1957, it is estimated about
6,000 satellites have been put in orbit,

Satellite operators are all too aware that the chances of a collision

are increasing.

The Americans are now follawing “
the debris path n the impact. It have the capability of doing

is hoped that mast of it will fal debris-avoidance manoeuvre if
Earth and burn up in the necessary

atmosphere. 2

The space station does

shuttle launch S Ve
Nasa spokesman

The concern is whether the debris

will spread and pose any risk to the ISS, which is orbiting the Earth

some 435km bel the course
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EISCAT Satellite Collision Survey
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EISCAT tracking test
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Planetary Radar

» The current array design cannot point low enough to allow
Lunar or planetary observations

» One idea: use dipole elements and slope array by, say 12°.
This would also increase gain at field-aligned direction

» If all directions are needed, a mound shaped positioning is
possible

12°
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Lunar Radar

» The VHF transmission frequency of =~ 200 MHz means deeper
penetration in the regolith (15-150 m, Campbell 2006).

» Lower frequency, clock is less important than with the UHF
system

» Both circular / linear receive polarizations are needed

» Phased array allows interferometric observations (e.g.
Thompson 1978)



Moon elevation 2009-2010
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Multi-purpose experiment

Ideally, the E3D system should give as much bang per euro as
possible, by simultaneously measuring:

> All regions of the ionosphere
> Meteor head echos (event rate ~ 1000/h)
» Space debris (event rate ~ 40/h)



Space Debris
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Meteor head echos

Meteor head echo MF Range vs. Time Velocity vs Time
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Plasma parameters
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Uniform IPP missing ranges
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Aperiodic IPP experiment

Range r

<> Missing measurements Transmission Tlme 't
Multi-pulse codes [Farley, 1972], Simple Difference covers [Clinger
and Ness, 1976], ATC [Uppala and Sahr, 1996, 1994], Jicamarca
[Chau et al., 2004], SMPRF [Pirttild and Lehtinen, 1999], PPATC
[Virtanen et al., 2008, 2009]



Ramped IPP timing

Ramped Spacing
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» Duty-cycle locally variable

IPP ={a,a+ k,a+2k,--- ,a+ (N — 1)k}



Ramped IPP timing
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Arithmetic Modulus Timing

3

» [Uppala and Sahr, 1996]

» Duty-cycle less variable locally

» More evenly spaced

IPP = {a,a+(k mod p),a+(2k mod p),---,a+((N—1)k mod p)}



Arithmetic Modulus Progression

Arithmetic Modulus Progression
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Radar efficiency comparison

Percentage of echos received

Ramped IPP Arithmetic Modulus
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» Ramped IPP has less oscillation of efficiency

» Arithmetic Modulus coding has bands of 100% efficiency



The Spade09 Experiment: Coding

Code #

» Ramped IPP

» Coding optimized for ionospheric work

» Random code group, 159 codes, 53 IPPs
15 ps baud length

22 bauds

v

v



Why random coding?

Measurement equation:

m=Ax+¢ (1)

Maximum likelihood solution:

xyL = (AFA) AP m (2)

» A random transmission code is rarely optimal for a single
echo, but under the asumption of target stationarity, it
approaches an optimal coding with enough repetitions.
AHA = I (Sulzer 1986)

» |n the case of incoherent scatter, our random code is 0.01%
less than optimal in terms of estimation variance.



Implications for E3D

» Planetary radar is not possible without south facing low
elevation pointings (preferably down to 65° zenith angle)



Implications for E3D

» Planetary radar is not possible without south facing low
elevation pointings (preferably down to 65° zenith angle)

» Several simultaneous beams should be possible, in order to
determine angular position of space debris, meteors, and to
enable interferometric Lunar observations



Implications for E3D

» Planetary radar is not possible without south facing low
elevation pointings (preferably down to 65° zenith angle)

» Several simultaneous beams should be possible, in order to
determine angular position of space debris, meteors, and to
enable interferometric Lunar observations

» Proper ionospheric plasma parameter estimation requires
detection of space debris and meteors, so that they can be
removed in amplitude domain, a general operating mode of
the system should optimally be able to estimate all of these.



Raw Voltage Data Compression
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Raw Voltage Data Compression
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