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Range and Doppler spread target

Target amplitude ¢ ;

Range

Transmission €4 Measurement m;

my = ZGt_r Cr,tf%r + ft.
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Range and Doppler spread target model ¢, ;

Range

Transmission €; Measurement 1y

> Assume that target backscatter (, ¢ is band-limited.

» Linear models: B-Spline, Fourier series, ...

é\r,t = Srk(t) (3)



Range and Doppler spread target

The probability density can be written as (m € C, x € C):

planfx) x exp (s m — Ax|?) @

and assuming uniform priors, the maximum a posteriori (MAP)
estimate, i.e., the peak of p(m|x) is

xpap = (ATA)TARm (5)
and the a posteriori covariance is:

2, =o?(AfA) (6)



Range and Doppler spread target

B-Spline theory matrix
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Range and Doppler spread target

Measurement
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Figure: A simulated radar echo from a range and Doppler spread target.
The range spread is four range gates and the Doppler spread is Gaussian
with 10 kHz spectrum half-width at each range gate. SNR is 10 dB. The
transmission code is a non-uniform baud-length code optimized for-a 10



F-region ion-line overshoot

Comparison of target power estimates (dB scale)

Matched filter
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Meteor head echo

» How accurately can a meteor range and Doppler shift be
estimated?

» Range ambiguity corrected moving point model.

» In principle, better range resolution than sampling rate
possible.



Range ambiguity corrected moving point model

Model the spreading of the target when it moves down.
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Range ambiguity corrected moving point measurement

» One “point” travelling at velocity v € R, starting from range
ro € RT, following radial trajectory R = vts—! + rg. Sample
rate s. Doppler shift is w = vf/c.

» Range ambiguity function w,(R) gives contribution of target
for each measurement sample m;. True range: R € R™, range
gate r € N.

my = Z wr(vts 4 rn)er_rcrexpliwts ™) +& (7)
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Solution method

» Examine the a posteriori probability distribution, the
probability of model parameters given data:

p(D|0)p(0)
p(6|D) =
C1PY= T dop(D0)p(0)
» The probability distributions solved using Markov chain
Monte-Carlo (Hastings 1970).

» Other faster methods also possible for finding the peak of the
probability distribution.




Likelihood function p(D|6) and priors p(6)

» Measurement D = (my, ..., my) C CN

» Point-target parameters: 6§ = (0,c,n,w) CRxCxR xR

Likelihood function, the probability of data given parameters:

my — z¢(0)]?
P(D!G):H;ﬂexp{—’ 2 ) }

terR

Priors, the probability distribution of model parameters:

» Measurement noise close to known system noise power
P=kTB.

0% ~ N7(P,0.1P)

» Other parameters ¢,, v, and ry uniformly distributed.



Point-target example (EISCAT VHF)

Measurement vs. Model
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Marginal range distribution p(ry|D)

Weak echo

Probability distribution for range
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Marginal range distribution p(ry|D)

Strong echo
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Point-target trajectory (Range)
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Point-target trajectory (Doppler)

Velocity
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Point-target trajectory (Amplitude)

SNR (dB)
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Forward expanding plasma?

» The order of 1072 m forward expansion of sufficient to explain
Doppler shift.

» YORP-effect

» A ~ 350 Hz rotating meteor with irregular surface?
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Comparison of measurements

» What is optimal receiver bandwidth?
» Range spread target with known uniform Doppler shift

» Point-like target measurement equation.



Optimal receiver bandwidth

» “Wouldn't a narrow bandwidth measurement my; be better
than the wide bandwidth measurement my that you have
done, as there would be less noise?”

» No. A wideband measurement my can be used to simulate m»
(by filtering my). But usually not the other way around.

mo(t) = /ml(t — P)h(r)dr (8)



Known Doppler shift in range spread target

If we assume that each range is Doppler shifted by w and that the complex valued ¢, contains the independent
phase and amplitude for each range, the measurement equation is

my = Z ‘Et*ré‘r exp (iW(t - r)) + ft' (9)

By writing
exp(—iwr) exp(iwt) = exp(iw(t — r)), (10)

we can write the meteor head echo equation as

m; = Zet,,g exp (iwt) + &, (11)

using ¢/ = ¢, exp (—iwr). We can now divide by exp (iwt) to
get
meexp (—iwt) = Y € ,( +exp(—iwt) &,  (12)

r

which is the measurement equation of a coherent target with the exception that the measurement and the noise are
modulated by a complex sinusoid. In terms of the theory of measurements, the measurement m; exp (—iwt) is
equivalent to my in the sence that they can both be simulated from each other. If we now assume that w is known,
and we examine the estimation error covariance variance for {,, we see that it is the same as the one obtained in
section ?7.



Point-target ambiguity corrected estimation variance

Let us examine the sub-baud resolution estimation accuracy for a point-target with known backscatter amplitude
o, but high-resolution range ry.

Assuming that the impulse response of the system is a boxcar. Also, let us assume that the target location is
known to be between two range gates r and r + 1. Let us denote true range rp € R in range gate scale, we thus
know that the target is rp = r + R, where R € [0, 1].

The using a range ambiguity resulting from a boxcar impulse
response, the measurement equation can be written as

m; = O'R(Gt+]_ - Gt) -+ O€t + fta (13)

where ¢, is the transmission code and &; is a normal complex
random variable. Reorganising the terms, we get a linear form:

my — o€y = oR(€rp1 — €:) + &;. (14)

The variance for the range parameter R is:

1
var R = . 15
02y . |err1 — €f? (15)

The result is quite interesting. The variance is inverse square proportional to the sum of absolute baseband
changes within a code. Thus, a code with the a largest possible number of bauds is optimal. In addition to this, 7
phase changes are the most optimal. This that a binary phase code, with the largest possible number of phase
changes is the most optimal code for sub-baud resolution.

This in conflict with code optimality for spread target (above baud-length range resolution). What if we combine

these two?



Transmission code optimality
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» Radar transmission bandwidth is limited.

» How do you optimize sub-baud range resolution?
» This can be determined by looking at the code-dependent

estimation covariance ¥ ,(¢;) (A(et)TA(et))_l.

» Coding with non-uniform baud-lengths
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We present a novel approach for timing radar transmission envelopes in order to
improve target range and Doppler resolution. This is achieved by using non-uniform baud
lengths. With this method, it is possible to significantly increase sub-baud
range-resolution of radar measurements while maintaining a narrow bandwidth. We first
derive target estimation accuracy in terms of a covariance matrix for arbitrary targets
when estimating backscatter in amplitude domain. We define target optimality and
discuss different search strategies that can be used to find well performing transmission
envelopes. We give several examples and compare the results to conventional uniform

baud length transmission codes.

1. Introduction

We have previously described a method for es-
timating range and Doppler spread radar targets
in amplitude domain at sub baud-length range-
resolution using linear statical inversion [Vierinen
et al., 2007b]. However, we did not use codes op-
timized for the targets that we analyzed. Also, we
only briefly discussed code optimality. In this pa-
per we will focus on optimal transmission codes for
a target range resolution that is smaller than the
minimum allowed baud-length. We will introduce so
called fractional baud-length codes that are optimal
for range and possibly Doppler spread targets, with
a better resolution than the minimum allowed radar
transmission envelope baud-length.

In radar systems, there is a limit to the smallest
baud length, which arises from available bandwidth

form baud-length radar transmission code with baud
lengths that are integer multiples of 1 us. The reason
is that the uniform baud-length will cause a singular
or near-singular covariance matrix when analyzing
experiments with sub-baud range-resolution.

In this paper, we first derive the target param-
eter estimation covariance for range and Doppler
spread radar targets when estimating target parame-
ters in amplitude domain. Then we define transmis-
sion code optimality for a given target. After this,
we then present two search strategies which can be
used to find optimal transmission codes: an exhaus-
tive search algorithm, and an optimization search al-
gorithm. As an example, we study code optimality
in the case of a range spread coherent target, and a
range and Doppler spread target.




Fractional baud-length code

Baud lengths timed very accurately, but no baud is not shorter
than the minimum allowed length.

Uniform baud-length code Fractional baud-length code
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Error covariance matrix

Uniform baud-length code has close to singular covariance.
Fractional baud-length code has smaller variance and very low

off-diagonal elements.

Covariance, 13-bit Barker code
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Simulated measurement

SNR & -2 dB. Target range extent 20 samples. Code length 130

samples, with 10 sample bauds.
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Simulation Errors

Errors, 13-bit Barker code Errors, 11-bit Fractional code
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Conclusions

» Heating related strong range and Doppler spread echos can be
analyzed in amplitude domain on a single echo basis if they
are narrow enough (in range and Doppler spread)

» Meteor head echo parameters can be determined very
accurately even for low-bandwidth transmissions. Range
resolution only limited by SNR, accuracy of impulse response
and system clock. Typically < 10 m for strong echos and
< 100 m for weak echos.

» Fractional baud-length coding improves sub-baud range
resolution estimation accuracy. At EISCAT 15 m range
resolution possible.

» Future work will focus on amplitude domain inversion of
overspread weak incoherent backscatter.
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