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Introduction

I Tikhonov regularization, Truncated SVD, Wiener filtering and
simple correlation can be understood as linear statistical
models with some kind of (possibly hidden) prior assumptions.

I At least the statistical meaning of Tikhonov regularization has
been reported before by several authors (e.g., Kaipio &
Somersalo, and probably Lehtinen).



Linear statistical model

Let us consider the following linear measurement model
m = Ax + ξ, and assume that x ∼ N(0,Σp) and ξ ∼ N(0,Σ).
Using the Bayes theorem, we get the following probability
distribution of x :

p(x |m) =
p(m|x)p(x)

p(m)
∝ p(m|x)p(x), (1)

or

p(x |m) ∝ exp
(
−(m − Ax)

T
Σ−1(m − Ax)− xT Σ−1

p x
)
. (2)

The maximum a posteriori estimate, or the peak of this
distribution can be obtained as:

xMAP =
(

A
T

Σ−1A + Σ−1
p

)−1
A

T
Σ−1m. (3)



Wiener filtering

Now, if we assume A is infinitely extended and that it describes a
convolution mt =

∑∞
s=−∞ at−sxt .
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Assuming also that Σp and Σ are sufficiently band-dominated
Toeplitz matrices with rows σt and σp,t , we can analyze the
problem in frequency domain (everything diagonalizes) and obtain
the MAP estimate as follows:



Wiener filtering: Convolution example 1

In Frequency domain:

x̂MAP(f ) =
(

â(f )σ̂(f )−1â(f ) + σ̂p(f )−1
)−1

â(f )σ̂(f )−1m̂(f ). (5)

This simplifies to:

x̂MAP(f ) =
â(f )m̂(f )

|â(f )|2 + σ̂(f )
σ̂p(f )

. (6)

This is also known as the Wiener filter solution. It generalizes to
multiple dimensions fairly easily (one can express a ND convolution
theory as a 1D convolution by organizing parameters suitably).



Wiener filtering: Image deconvolution using FFT

I Solution with FFT is fast (can solve 107 parameter problems
in a matter of seconds).

I But assumes stationary convolution kernel and noise, not
always very practical.



With terabytes of measurements, FFT makes this kind of
analysis possible







Wiener filtering: Convolution example 2

Now, if we assume that Σ = diag(σ2, ..., σ2) and
Σp = diag(σ2

p, ..., σ
2
p), our measurement equation simplifies into

the following form:

x̂MAP(f ) =
â(f )m̂(f )

|â(f )|2 + σ2

σ2
p

, (7)

and if we inspect two limiting cases (1) σ2/σ2
p → 0 and (2)

σ2/σ2
p � sup|â(f )|2, we see that we get two different types of

familiar filters:

1. λt = F−1
D

{
1

â(f )

}
t
. This is the so called inverse filter, or the

sidelobe-free decoding filter.

2. ht ≈ σ2

σ2
p

at , this is the so called matched filter. However, one

should be careful to note that traditionally the matched filter
doesn’t include the σ2/σ2

p term, and that when σ2/σ2
p = 0

then our estimate also vanishes to zero.



Wiener filtering: Convolution example 2
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Figure: A low noise σp/σ = 100, medium noise σp/σ = 1 and high noise
case σp/σ = 0.01. The transmission code is a 13-bit Barker code.



Wiener filtering: Conclusions

I An easy way to understand Wiener filtering is through linear
statistical inversion

I FFT is useful, although only when everything is stationary.
This is not always the case

I There is finally a statistical justification for using matched
filtering for distributed targets! Although it is only applicable
for very weak targets



Truncated SVD
Bog standard linear model EεεT = Σ = diag

(
σ2, ..., σ2

)
:

m = Ax + ε (8)

MAP solution with prior Σ−1
p

xMAP =
(

A
T

Σ−1A + Σ−1
p

)−1
A

T
Σ−1m (9)

Singular value decomposition:

A = UDV
T
, (10)

where D = diag (d1, ..., dn). Writing the prior using an eigenvalue
decomposition for symmetric matrices

Σ−1
p = V diag (s1, ..., sn) V

T
= V ΛV

T
, we get

xMAP = V (DD + Λ)−1DU
T

m = VD†U
T

m, (11)

where D† = diag
(

d1

d2
1 +s1

, ..., dn
d2

n+sn

)
.



TSVD

It is now easy to see what is the statistical interpretation for
Truncated SVD. We assume an a priori covariance matrix:

Σp = V diag
(
s−1
1 , ..., s−1

n

)
V

T
, (12)

with

si →
{

0 when di > c
∞ otherwise

(13)



TSVD: Example
A is a 100× 100 random matrix. The following is a prior covariance
Σp that corresponds to truncating 50 smallest singular values:
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Figure: A random theory matrix, with 50 % cutoff.



TSVD: Conclusions

I A better alternative to TSVD is to simply add some large
enough values to the unstable singular values. Nearly anything
should be better than setting them to infinity.



Correlation

Don’t correlate, estimate. But sometimes...



Correlation

Again, let’s start with a plain vanilla linear model:

m = Ax + ε (14)

Assuming no prior and that ε is zero mean Gaussian and
EεεT = Σ = diag

(
σ2, ..., σ2

)
, we get a MAP estimate:

xMAP =
(

A
T

A
)−1

A
T

m, (15)

now what if AT A = αI ? Then we get a very simple solution:

xMAP = α−1A
T

m, (16)

which is basically correlating the measurement with the theory.
Examples: Perfect radar transmission codes or a Fourier transform
model.



Correlation, hidden a priori assumption

Now what if A
T

A 6= I , but one still insists on correlating. Does this
have a statistical meaning? It turns out yes. Again, we use singular

value decomposition A = UDV
T

, where D = diag (d1, ..., dn). We
then assume that there is some “magic” prior Σp that turns our
maximum a posteriori solution into a correlation. Writing the prior
using an eigenvalue decomposition for symmetric matrices

Σ−1
p = V diag (s1, ..., sn) V

T
= V ΛV

T
, we get

xMAP = V (DD + Λ)−1V
T

V DU
T

m. (17)

Now, if DD + Λ = αI , then in fact xMAP = α−1A
T

m, which
means correlating and scaling the data.



Correlation, hidden a priori assumption
A priori covariance assumption, radar code deconvolution by correlation
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Correlation: Conclusions

I However, when A
T

A = αI , correlation is actually a maximum
likelihood solution. In the case of, e.g., Fourier transform
(data is modeled as a sum of sinusoids) or perfect radar
transmission codes, this is the case.

I When A
T

A ≈ αI , the solution might in some cases be a good
first order approximation of the maximum likelihood solution,
e.g., for random radar code groups or the Lomb-Scargle
periodogram (non-uniform timestep discrete Fourier
transform).



Conclusions

I Many traditional tools, such as Wiener filtering, TSVD and
correlation can be understood through the framework of linear
statistical inversion in a more general form. This helps to
understand what the numerical method actually does and
possibly to propose enhancements.
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