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Abstract
The analysis of incoherent scatter measurements is mostly
done by finding a maximum of the posterior distribution of
the plasma parameters. In this study we have used the
Markov chain Monte-Carlo method to study the full distribu-
tion of the plasma parameters. As an example, we show
how the method can be applied to D and E-layer measure-
ments. We have shown that examining the full distribution
of the estimated parameters yields more information than
the traditional method and makes the inversion more sta-
ble.

1. Introduction

INCOHERENT scatter radar measurements are inherently
of stochastic nature. The target itself is assumed to be

a random process with a given autocorrelation over some
time interval [4]. It is the autocorrelation function that is es-
timated and fitted to physical theory. Traditionally this has
been done by finding the maximum of the a posteriori dis-
tribution (eg., GUISDAP). In this case, we do not get the full
posteriori distribution of parameters, which would be use-
ful in cases where the distribution is wide or multimodal. In
this poster, we present initial results that utilize the Markov
chain Monte-Carlo [3] method to study the full posterior dis-
tribution. We show several different case studies involving
D- and E-region of the ionosphere.

2. Theory
The Bayes theorem is the basis of statistical inversion. It
allows us to study the probability distribution of physical pa-
rameters θ of a physical theory, additionally allowing us to
impose information about the parameters using an a priori
distribution p(θ). Here D denotes measurement. It is this
density that we solve using MCMC.

p(θ|D) =
p(D|θ) p(θ)

p(D)
, (1)

∝ p(D|θ) p(θ). (2)

The measured autocorrelation functions are described in
terms of a physical theory of incoherent scatter [1, 2]. Prob-
ability is defined by assuming measurement errors to be in-
dependent and normal distributed. The parameter vector
contains all plasma parameters and several calibration re-
lated constants θ = {C, a,Ne, Ti, Te/Ti, νi, v, φ, σ2, r}. These
are: scaling constant, DC offset, electron density, ion tem-
perature, electron-ion temperature ratio, ion-neutral colli-
sion frequency, bulk velocity and ion species concentra-
tions, measurement variance and target range. Figure 1.
shows a D-region ACF measurement and the maximum a
posteriori model.
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Figure 1: An example MAP model and measurements of
a D-region experiment.

All parameters can be freely distributed. In some cases
we have used MSIS, IRI and SIC-models to obtain prior in-
formation about the parameters. This has been done by
setting the priori distribution of a certain parameter to be a
Gaussian distribution with a sufficiently large variance and
the mean given by the experimental ionosphere model (eg.
MSIS).

3. Marginal distributions
MCMC gives us a set of points from the joint probability dis-
tribution of all parameters, but this has a too large dimen-
sionality to be visualized as is. Thus, it is useful to study
marginal distributions of one or two parameters. This can
be easily estimated using a histogram. Fig. 2. depicts es-
timates of marginal distributions of the velocity and temper-
ature parameters of a certain range. From this distribution,
one can also extract a confidence interval for some param-
eter range, which is useful for determining the quality of a
measurement of a parameter.
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Figure 2: Marginal distributions of the velocity and neutral
temperature parameters in a D-region experiment.

4. Example: D-region velocities
On 24/11/2006, we conducted D-region measurements
during PMWE conditions. We used this data for studying
ionospheric heating, but we also noticed that the velocities
could be determined nicely from the data. Fig. 3. shows
the radial velocities during a 20 minute interval. Here we
used the width of the marginal distribution of the velocity to
avoid plotting too noisy data.
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Figure 3: D-region radial velocities during PMWE with
EISCAT VHF on 24.11.2006. For purely visualization pur-
poses, velocities considered too noisy have been removed
and replaced with white. This results in a more “smooth”
colormap of the velocities albeit with missing values.

It has been proposed that the theory for weakly ionized
plasma does not apply to PMWE, which is thought to be

turbulent scattering. Unrealistically large Ne in the PMWE
region supports this. In determining the bulk velocity of the
medium this is not that critical, as another interpretation is
that we are simply fitting a Lorentzian velocity spectrum to
the region.

5. Example: E-region ion composition
E-region measurements were conducted with a new code
pair experiment called SIPPI-E. In this case, we used three
ion masses and examined the posterior distributions of their
concentrations at a single range gate using a 2s integration
time. The estimated marginal distributions are shown in Fig.
4. The distributions are extremely wide, which means that
there is a large uncertainty in determining these parame-
ters.
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Figure 4: The marginal probability densities of ion compo-
sition concentrations in F-region.

To narrow down these distributions one would need an inde-
pendent temperature measurement. Another way would be
to combine measurements from neighboring range gates
and time instances, assuming that the concentration pa-
rameters are a fairly smooth function of time and range.

6. Conclusions
Statistical inversion offers a consistent and robust frame-
work for comparing measurements to models. Often one
is confronted with a problem that cannot be solved using
a linear model (in a stochastic sense) and one needs to
examine the possibly complex shaped posterior distribution
by some means. The maxima of a distribution can often
be found using gradient-type methods, but the shape of the
distribution is often also important – one might have sev-
eral nearly equally large peaks in the distribution and the
widths of the peaks may vary. MCMC makes it possible to
study the posteriori distribution numerically, albeit with an
increase in computer processing needs.
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