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Overview

Coherent target:

I Polyphase coding improves the measurement

I Amplitude modulation is necessary for perfect coding

Incoherent target:

I Polyphase coding improves the measurement

I Amplitude modulation improves measurements even further

I Amplitude modulation allows one to “focus” radar power on
important lags allowing us to measure a subset of lags better
than alternating codes
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General transmission code
Defining δ(t) with t ∈ Z as

δ(t) =

{
1 when t = 0
0 otherwise

(1)

we define an arbitrary baseband radar code ε(t) of length L as

ε(t) =
L∑

k=1

ake iφk δ(t − k + 1). (2)
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Coherent (stationary) target

The measurement can be expressed as a convolution

m(t) =
∞∑

τ=−∞
ε(τ)︸︷︷︸

transmission

target︷ ︸︸ ︷
σ(t − τ) + ξ(t)︸︷︷︸

noise

= (ε ∗ σ)(t) + ξ(t) (3)

I Assuming target coherent, ie., scattering amplitude stays
constant σ(r , t) = σ(r , t + l) = σ(r), while transmission
travels through

I Use round-trip time as range index σ(t)

I Assume that target is infinite length

I This can now be solved easily in frequency domain



Maximum likelihood estimate

I For a distributed target, the so called inverse filter is the
maximum likelihood estimate hλ(t) = F−1

D {L/ε̂(ω)}
I For a point-like target, the matched filter is the maximum

likelihood estimate hm(t) = ε(−t)

Shown by eg. (Ruprecht 1989)



Matched filter in terms of the inverse filter

If we subtract the sidelobes, we can relate the matched filter hm(t)
to the inverse filter hλ(t)

(ε ∗ hm)(t)− r(t) = Lδ(t) (4)

hm(t) = hλ(t) +
1

L
(hλ ∗ r)(t), (5)

We can use this to solve the convolution equation for a matched
filter. The latter also gives some insight on perfect codes.



Filter output
After filtering, the matched filter is

mm(t) = Lσ(t) + (r ∗ σ)(t)︸ ︷︷ ︸
sidelobe term

+ (ξ ∗ hm)(t)︸ ︷︷ ︸
measurement error

. (6)

and the inverse filter is

mλ(t) = Lσ(t) + (ξ ∗ hλ)(t)︸ ︷︷ ︸
measurement error

. (7)

Total noise power is

Bmat =
∞∑

t=−∞
|(ξ ∗ hm)(t)|2 = LSNR−1 (8)

Binv =
∞∑

t=−∞
|(ξ ∗ hλ)(t)|2 ≥ LSNR−1 (9)



Stochastic target

For a spread stochastic target Eσ(t)σ(t ′) = x(t)δ(t − t ′), the
target estimation variance is:

Var x̂mat(t) =
1

N

[
x(t)2 +

2Bmat x(t)

L2
+

2S(t)x(t)

L2
+

Bmat
2

L4
+

S(t)2

L4
+

2Bmat S(t)

L4

]
(10)

and the inverse filter has variance:

Var x̂inv(t) =
1

N

[
x(t)2 +

2Binv x(t)

L2
+

Binv
2

L4

]
(11)



Code optimality

I There are many things that one can take into account.

I One is to minimize the total noise power Binv (Lehtinen &
Damtie 2004).

I In the case of a stochastic target, this is also the only
code-dependent term.



Optimization searches

I Codes were searched using a method similar to simulated
annealing

I Different restrictions were applied to the code amplitudes

I Code better than the best binary phase codes can be found
this way

I It turns out that amplitude modulation allows nearly perfect
finite length codes

We use the following parametrization for an arbitrary baseband
radar code ε(t) of length L as:

ε(t) =
L∑

k=1

ake iφk δ(t − k + 1). (12)

where ak ∈ [amin, amax] constrained to some interval.



Binary phase code L=9
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Polyphase ak = 1 code L=9
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ak ∈ [0.95, 1.05] code L=9
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ak ∈ [0.80, 1.20] code L=9
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ak ∈ [0.20, 1.80] code L=9
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ak ∈ [0, 2] code L=9
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Incoherent target (less stationary)

I Measurements are lagged products of measured receiver
voltage

I Lagged product transmissions are usually groups of codes,
which we will index as εc(t)

I Under certain assumptions, lagged product measurements can
be stated as a convolution equation involving target ACF and
lagged product envelope:

m(t)m(t + τ) ≡ mτ (t) (13)

εc(t)εc(t + τ) ≡ εcτ (t) (14)

mτ (t) = (εcτ ∗ στ )(t) + ξτ (t) (15)



Noise term

The normalized measurement “noise power” of a certain lag is:

FM
D {εcτ (t)} = ε̂cτ (ω) (16)

Pτ ≈
∫ 2π

0

Nc(Nb − τ)∑Nc
c=1 |ε̂cτ (ω)|2

dω (17)

For alternating codes Pτ = 1 for all τ . But when amplitude
modulation is used, this is not the lower limit, because in some
cases, more radar power can be used on certain lags, even though
the average transmission power is the same.



Code length

I Polyphase code groups have better theorethical properties
than binary phase code groups

I Amplitude modulation improves them further
I As code length is increased, the modulation becomes less

important
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Code group length

I As code group size is increased, the noise performance gets
better
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Amplitude and phase modulated code group

I Total power of one pulse is set to be constant (in our
considerations similar to constant amplitude pulse of same
length)

I Amplitude modulation makes it possible to use more radar
power on important lags

I A subset of lags can be extracted with lower noise power than
with alternating codes



35−baud code group with 4 codes
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Simulation results...

●
●

●

●

● ●

●

● ●
●

0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BPSK vs. arbitrarily modulated code group

Lag (s)

R
at

io
 o

f v
ar

ia
nc

es

●
Theoretical
Simulated



Even higher resolution...

128−baud code group with 16 codes
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4096−baud code group with 20 codes
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Conclusions

I ISR can benefit in many ways from amplitude and polyphase
modulation

I Polyphase coding allows shorter code groups while maintaining
a thermal noise figure close to theoretical minimum

I Amplitude modulation makes it possible to focus transmission
power on important lags, thus making possible better
modulations than alternating codes (for a subset of lags)



Conclusions for incoherent targets

I Amplitude and phase modulation allow better measurements
than constant amplitude binary phase coded measurements of
same transmission power

I We would like try to these ideas in reality, who would want to
collaborate?



Questions?
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