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Foreword

To Frédéric (Frédo) Poupaud, who inspired my mind and soul.

… They are going to look for the highest dune so they can
see all the Sahara. They walk a long time. Outka says: ‘I see
a high dune’, and they go to it and climb up to the top. Then
Mimouna says: ‘I see a dune over there. It’s much higher and
we can see all the way to In Salah from it.’ So they go to it
and it is much higher. But when they go to the top, Aicha
says: ‘Look! There’s the highest dune of all. We can see to
Tamanrasset.’ …

(Paul Bowles, The Sheltering Sky, 1911)

The project for this book started in the beginning of the year 2005, when I looked
through some of my photographs taken in various parts of the world over the
last ten years or so. In fact, I have been interested and active in photography for
some decades and my pleasure in it has even increased exponentially since the
rise of digital imaging1. It then happened that I started to look at some of my
images in mathematical terms, more precisely, I started to see partial differential
equations ‘behind’ certain images. For example, a waterfall is modeled by the
Saint-Venant approximation of the Euler or Navier–Stokes equations, flows of
and in sand dunes obey the laws of the granular material inelastic Boltzmann
equation, patterns in animal skins are described by an instability phenomenon
in reaction-diffusion equations … All this has been clear to me for a long time,
but all of a sudden the idea came up to use photography as a vehicle to transport
and convey ‘my’ mathematics.

So the generic connection between my two favorite subjects, applied partial
differential equations and photography was found …

Actually, this is precisely what this book is all about. Topics in applied partial
differential equations are described mathematically in non-specialistic terms
to make the book accessible to a large audience – hopefully also getting young
researchers interested in the subject – and these topics are illustrated by (as
I like to think) beautiful photographs, taken by myself in the last few years
(there are two exemptions, which were taken by Andrea Baczynski). All the

1 see my image galleries at www.pbase.com/markowich
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images were acquired using digital cameras, among them a Nikon D100, Nikon
D2x, Nikon D200, Kodak 14nx, Hasselblad H1 with a PhaseOne P25/45 digital
backs. I always choose the RAW format for digital image acqusition, process the
images first in a RAW converter and then do the necessary post-processing in
Photoshop CS2.

The photographs are here for enjoyment but also – and more importantly
in a scientific context – they shall convey a message: applied mathematics,
particularly partial differential equation modeling, is useful for a wide range
of problems and applications originating from the nature which surrounds us,
from socio-economics and from technological applications.

So much about the photographs, but what can be said about the math? Ac-
tually, the choice of the topics Chapter 1 to Chapter 11 was mainly decided
by my own research background and expertise, ‘completeness’ was never in-
tended nor can it be achieved. The depth and style of the mathematical pre-
sentation is supposed to be such that everybody with a solid knowledge of
multi-dimensional calculus can understand the text. In particular, students and
researchers interested in modeling with partial differential equations are a clear
target group of this book. But also, analytically or numerically oriented re-
searchers in partial differential equations who are interested in new applications
will hopefully get something out. Then, of course, the material of this book is
accessible to engineers, physicists and other scientists with a basic mathematical
education.

I have taken mathematical inspiration from many people. In particular
I want to mention my dear friend Frédéric Poupaud, who passed away in
the year 2004. Then my former students and friends Anton Arnold, Ans-
gar Jüngel, Ingo Gasser, Norbert Mauser and Christof Sparber, my colleagues
and friends Christian Schmeiser, Christian Ringhofer, Andreas Unterreiter,
Franco Brezzi, Giuseppe Toscani, Luis Caffarelli, Norayr Matevosyan, Irene
Gamba, Pierre Degond, Naoufel Ben Abdallah, Henrik Shagholian, Benoit
Perthame, Yann Brenier, Claude Bardos, David Levermore, Patrick Gerard,
Paola Pietra, Martin Burger, Lorenzo Pareschi, Shi Jin, Weizhu Bao, Kazuo
Aoki, Ester Gabetta, Claudia Lederman, Jorge Zubelli, Antonio Leitao, Heinz
Engl, Jose Carrillo, Juan-Luis Vazquez and Cedric Villani. In particular I thank
Giuseppe Toscani and Dietmar Ölz for coauthoring Chapters of this book
with me.

My special gratitude goes to my friend and Administrator of my research
grants, Renate Feikes, for friendship and many organisational miracles, to An-
drea Baczynski, for love and photographic advice and to my daughter Anna for
sitting (suffering …) through some of my talks at various conferences all over
the world.

I acknowledge funding of my research over the past five years from the
Austrian Research Fund FWF through my Wittgenstein Award 2000 (financed
by the Austrian Ministry for Education, Science and Culture), from the EC
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through various research networks (among them HYKE), from the Austrian
Academy of Sciences through the Johann Radon Institute for Computational
and Applied Mathematics and from the Austrian research funding agency FFG
through a project on mathematical image processing.

Last but not least I thank Hans Gmasz for helping me out with his expert
LATEX skills.

Vienna, June 2006
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Introduction

Differential calculus1, as introduced by Sir Isaac Newton2 and Gottfried Wilhelm
Leibniz3 in the late 17th century, opened up a wealth of new possibilities for
mathematical modeling in the natural and – later on – in the life sciences and in
technology. Partial Differential Equations (PDEs), entirely based on the concepts
of differential and integral calculus, relate one or more state variables to their
variations (differentials) with respect to certain independent variables like time,
space, velocity etc.

Just to name a few examples, PDEs were used by James Clerk Maxwell4 to
model electromagnetic fields interacting with electrical charges and currents,
by Ludwig Boltzmann5 to describe the non-equilibrium dynamics of rarified
gases, by Albert Einstein6 to phrase the laws of gravitation in the general theory
of relativity and by Erwin Schrödinger7 and Werner Heisenberg8 to formulate
quantum mechanics in mathematical-analytical terms.

The purpose of this book is to illustrate the fact that PDEs govern, or put in
more modest terms, model many aspects of the nature surrounding us, of the
technology we use on a daily basis and of our socio-economic interactions: PDEs
have a significant importance for the scientific and technological progress of our
society. Two entirely different descriptive levels are used in this book: firstly,
in the subsequent eleven Chapters different scientific and technological prob-
lems are presented, modeled and analyzed by PDE methodology and secondly,
photographic images are shown to illustrate these problems and some of their
specific features. Every Chapter contains comments on the photographs which
relate them directly to the presented mathematical models. Almost all images
have a significant direct impact on and connection to PDE modeling issues, a few
exceptions to this rule have ‘only’ an allegoric meaning. The attentive reader will
easily find out which images belong to the latter class.

It is important to understand that the main purpose of the photographs is
NOT to depict particular solutions of the partial differential equations under
considerations – although some photographs do precisely that, but only as a
by-product. Much more importantly, the photographs show concrete modeling

1 http://en.wikipedia.org/wiki/Calculus
2 http://en.wikipedia.org/wiki/Sir_Isaac_Newton
3 http://en.wikipedia.org/wiki/Gottfried_Leibniz
4 http://de.wikipedia.org/wiki/James_Clerk_Maxwell
5 http://de.wikipedia.org/wiki/Ludwig_Boltzmann
6 http://de.wikipedia.org/wiki/Albert_Einstein
7 http://de.wikipedia.org/wiki/Erwin_Schroedinger
8 http://de.wikipedia.org/wiki/Werner_Heisenberg
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issues, which can be translated into the language of partial differential equations
and further investigated by mathematical analysis and numerical computations.
The photographs should focus the reader’s attention to real-life/natural prob-
lems, appeal to his esthetic senses and connect directly to the modeling by
partial differential equations. The actual representation of their solutions usu-
ally is done through numerical computations and graphic output algorithms,
but this is NOT the purpose of this book.

Clearly, the choice of the PDE topics in Chapter 1 to Chapter 11 is personally
biased by the author’s mathematical taste, his mathematical experience and
research interests. Some of the chosen topics have been in the center of his
scientific interests and production for many years or even decades (Chapters 1,
4, 5 and 9), some are important sidelines of his research (Chapters 2, 6 and 10)
and the others are in the realm of his passive scientific interests. Completeness
of a presentation of PDEs in applications is not an issue of this book and many
important topics are not covered here (an example is the recent surge in PDE
applications in mathematical finance theory).

The texts are accessible to a broad range of mathematically interested people,
in particular readers with a basic knowledge of differential and integral calculus
in more than one dimension will be able to follow the exposition without diffi-
culty. For example the author believes that advanced undergraduate students of
mathematics, physics or engineering will enjoy the reading and profit from this
book. Also, it could provide motivations and case studies for graduate courses
in applied partial differential equations, with many loose ends which have to be
tied up by further (literature) research. In some instances references are made to
high powered mathematical techniques, which are supposed to be of interest to
themathematicallymoreadvanced readers,whohaveadirect research interest in
applications and analysis of partial differential equations. Those readers might
learn about some applications which had not crossed their minds before …

Each Chapter is self-contained to a very large extent, with its own bibliogra-
phy. So readers can follow their personal preferences, choose their own sequence
for reading the Chapters or even skip Chapters of lesser interest to them without
loosing the general context.

There is, however, a certain scientifically arguable motivation of the chosen
sequence of topics, albeit to some extent again dictated by the author’s research
background. The first Chapter is on kinetic phase space models, which give rise
to many position space based macroscopic PDE systems, like the Navier–Stokes
and Euler systems describing fluid and gas motion presented in Chapter 2, the
granular flow equations of Chapter 3, the chemotaxis equations of Chapter 4 and
the semiconductor models of Chapter 5. Chapter 6 deals with free boundaries,
Chapter 7 with reaction-diffusion equations (see also the Turing instability
discussed in Chapter 4), Chapter 8 focuses on the Monge–Kantorovich mass
transportation theories which strongly connect to the areas of kinetic theory,
fullynonlinearellipticpartialdifferential equations,diffusive theories etc.Linear
and nonlinear wave propagation is the topic of Chapter 9, with a strong interplay
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with kinetic transport theory and Chapter 10 ‘closes the loop’ dealing with
modern PDEs and variational tools of image analysis and processing. We remark
that some of the techniques discussed in Chapter 10 were used to elaborate the
images shown in this book. Finally, Chapter 11 – being somewhat isolated from
a thematic point of view but not from the mathematical background – deals with
socio-economic modeling, also based on kinetic equations.

Finally, a comment on mathematical depth (or lack of it …) in the presen-
tation of the topics is in order. There is only a thin line between mathematical
superficiality and excess of mathematical detail for a project like this. The au-
thor has done his best to stay on this line, keeping in mind that the basic idea
in writing this book has been to TOUCH on certain topics in applied PDEs
and – in the best of all cases – to arouse the reader’s interest to go deeper in
certain directions of modern PDE research. For this, historic facts are presented,
references to the scientific literature are included in all Chapters (also these are
strongly biased by the author’s scientific background and taste, no completeness
can be expected …), important open problems are pointed out and also refer-
ences to related internet sites are given. The author is fully aware of the fact that
webpages are not set up for eternity, so it may very well be that some links will
not be in operation anymore when the reader tries them out at some later point
of time, although they were checked out thoroughly at the time of writing this
book. However, it seemed too much of an omission to forsake internet-based
information in the context of this book.
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1. Kinetic Equations:
From Newton to Boltzmann

Consider a mass particle, which moves under the action of a force. Let the
positive constant m be the particle mass and F = F(x, t) the force field. Here x
in Rd is the position variable (d = 3 in physical space but there is at this point
no mathematical reason why m cannot be an arbitrary positive integer) and
t > 0 the time. The force field is a d-dimensional vector field on Rd, possibly
time dependent. By v ∈ Rd we denote the velocity variable. Then the motion
of the particle is characterized by the Newtonian phase space (i.e. Rd

x × Rd
v)

trajectories, which satisfy the system of ordinary differential equations (ODEs):

ẋ = v (1.1)

v̇ =
1
m

F(x, t) . (1.2)

Note that the first equation simply states that the particle’s velocity is the time
derivative of its position and the second equation is just Newton’s1 celebrated
second law, stating

force = mass · acceleration .

If the field F is sufficiently smooth, then by standard ODE theory we conclude
that, given an initial state(

x(t = 0), v(t = 0)
)

= (x0, v0) ∈ R2d

there exists a locally defined, unique and smooth trajectory (x(t; x0, v0),
v(t; x0, v0)). Thus, given the force and the initial position and velocity, the motion
of the mass particle is – in the framework of classical Newtonian mechanics –
completely determined. However, in many applications, there are additional
complications …

Assume at first that the intial state (x0, v0) is not known a priorily, instead
let f0 = f0(x, v) be a given probability distribution of the initial state, i.e. f0 is
non-negative, its integral over the whole phase space is 1 and, for any measurable
subset A of the phase space,∫

A

f0(x, v)dxdv = : P0(A)

1 We refer to the webpage http://scienceworld.wolfram.com/biography/Newton.html for a biogra-
phy of Isaac Newton (1642–1727).
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Fig. 1.1. Airplane departing from Rio de Janeiro’s City Airport

is the probability of finding the particle at time t = 0 in the set A. Then, instead of
calculating the evolution of the phase space trajectories we can try to compute
the location probability density f = f (x, v, t), evolving out of f0. For this we
impose the condition that f remains constant along the Newtonian trajectories:

d
dt

f
(
x(t; x0, v0) , v(t; x0, v0), t

)
= 0 .

Carrying out the differentiation with respect to time, taking into account the
Newtonian equations (1.1, 1.2) and renaming coordinates gives the so called
Liouville equation:

ft + v . gradx f +
1
m

F . gradv f = 0 , x ∈ Rd , v ∈ Rd; , t > 0 , (1.3)

subject to the initial condition

f (t = 0) = f0 . (1.4)

Note that the Liouville equation is a linear hyperbolic PDE, whose charcter-
istics are precisely the Newtonian trajectories. Thus, its solution can be written
as

f (x, v, t) = f0
(
T−t(x, v)

)
,
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where Tt denotes the Newtonian flow map, which maps a point in phase space
into the state of the Newtonian trajectory at time t. Here we assumed that the
Newtonian map is defined globally for t > 0.

Another complication arises from the fact that in the most important physical
cases there is not only one isolated particle to observe but instead a swarm
consisting of a large number of particles, which interact with each other. Two
types of interactions are distinguished, namely long range and short range
interactions. Typical long range interactions are either given by the repulsive
Coulomb force of electrodynamics, occurring in charged particle transport,
or the attractive gravitational force, e.g. occurring in the modeling of galaxy
motion. Short range interactions can be classified as particle collisions, they will
be discussed in detail later.

In the small coupling thermodynamical limit (i.e. small force, number of par-
ticles tends to infinity) long range forces typically lead to nonlocal nonlinearities
in the effective Liouville equation, when the total chaos assumption (Hartree
ansatz) is made (see [11]). In the Coulomb/gravitational case we obtain (after
appropriate scaling) the so called Vlasov–Poisson system2 (see [7]):

ft + v . gradx f − grad V . gradv f = 0 (1.5)
± ΔV = n (1.6)

n =
∫

d

fdv . (1.7)

Here f is the effective particle number density on 2d-dimensional phase
space, dependent on time t of course, V is the mean field Coulomb/gravitational
potential (the + sign in front of the Laplacian in the Poisson equation (1.6)
corresponds to the gravitational case and the − sign to the Coulomb case), and
n denotes the position space number density.

The existence and uniqueness of smooth solutions of the Vlasov–Poisson in
the 6-dimensional phase space case was a longstanding open problem, finally
answered positively in [14] and shortly afterwards in [10].

Short range interactions (so called particle collisions) typically lead to ad-
ditional terms in Liouville-type kinetic equations, which are nonlocal in the
velocity variable. In the absence of an external potential and neglecting long
range interactions, the number (or mass) phase space density of a particle
swarm undergoing collisional events, satisfies a kinetic equation posed in the
2d dimensional phase space (after the Boltzmann–Grad limit):

ft + v . gradx f = Q ( f , f ) , (1.8)

where Q ( f , f ) is the nonlocal collision operator (typically an integral operator).
Theequation (1.8)models adynamicbalancebetween the free streamingparticle
motion, represented by the left hand side of the equation, and the collisions.
2 http://relativity.livingreviews.org/open?pubNo=lrr-2002-7&page=articlesu2.html
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The classical example for a collisional model of the form (1.8) is encountered
in the kinetic theory of rarified gases.

Actually, most of the gas flows around us are rather accurately modeled by
macroscopic flow equations (the viscous Navier–Stokes or the inviscid Euler
system, see Chapter 2). However, it is nevertheless of paramount importance
to understand the underlying flow dynamics from a microscopic ‘molecular’
point of view. A main reason for this is that we need to know the physical
limits of validity of macroscopic flow equations, which are based on microscopic
dynamics.

Typical gaseous flow examples can be seen in the Images 1.1–1.6, showing an
airplane in its take-off phase (Image 1.1) and various (meteorological) clouds
(Images 1.2–1.6), among them images with a front of clouds being convected by
a strong wind towards a high mountain (Images 1.3, 1.4). Note that fluid dynamic
modeling of airplane flow and cloud dynamics may still give sufficiently accurate
results for many practical purposes (see the comments to the images below). For
somemore exotic casesof rarifiedgasflowmacroscopic equations are completely
insufficient and a microscopic model has to be employed directly.

Fig. 1.2. Altocumulus lenticularis duplicatus over the planes of Patagonia
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To understand the modeling hierarchy consider a space shuttle orbiting the
earth outside its atmospheric layer, i.e. in a vacuum. Obviously, the shuttle
moves there in ballistic motion free of interactions. Then, when the shuttle
starts its re-entry phase, interactions of the shuttle hull with the molecules
of the upper atmosphere will start to take place. Since the upper atmosphere
is highly rarified, only few interactions will occur within a given time unit.
After a short time, when the shuttle enters more deeply into the earth’s at-
mospheric layer, the effect of these gas molecule-shuttle hull collisions will
dynamically balance the free-streaming shuttle motion. Deeper down in the
atmosphere, close to the surface of the earth, the air becomes even less rar-
ified such that there will be many collisions of air particles with the shuttle
hull (and many air molecule-air molecule collisions) within a given unit of
time such that they start to dominate the shuttle motion. This re-entry pro-
cess shows a typical transition from ballistic motion (infinite mean free path
between consecutive collisions) to ballistic-collision equilibrated motion (or-
der 1 mean free path) to collision dominated motion (small mean free path).
The former regime has a very simple mathematical description (namely free
streaming phase space flow, i.e. the Liouville equation without external force),
the latter is precisely the fluid regime covered by macroscopic flow equations and
the middle regime requires a microscopic molecular-based model, as presented
below.

Let f = f (x, v, t) be the expected mass density in (position x, velocity v)
phase space of the gas at time t, i.e. the expected mass per unit volume, at time t,
in the six-dimensional phase space. Assume that the gas consists of perfectly
spherical identical molecules of diameter D. Now consider two gas molecules,
immediately after a collision event between themselves, with states (x, v) and,
resp., (x − Dn, w), where n is the unit vector along the directions connecting
the centers of the spheres. Then, immediately prior to this collision, the phase
space states of these two molecules were (x, v∗) and, resp., (x − Dn, w∗), where
the pre-collisional velocities v∗ and w∗ satisfy momentum conservation

m(v + w) = m(v∗ + w∗)

and energy conservation

m(v2 + w2) = m
(
(v∗)2 + (w∗)2

)
in the collision process. Here m denotes the mass of the gas molecules. The
pre-collisional velocities read:

v∗ = v + n .(w − v)n , w∗ = w + n .(v − w)n .

Then the celebrated Boltzmann equation, named after the Viennese Physicist
Ludwig Boltzmann 3 (1844–1906) describing the temporal evolution of the phase

3 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Boltzmann.html
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space mass density f of a single particle rarified gas with identical, perfectly
spherical, elastically colliding molecules reads:

∂
∂t

f (x, v, t) + v . gradx f (x, v, t) +
F
m

. gradv f (x, v, t)

=
∫

3

∫
S2

B(v, w, n)
[

f (x, v∗, t) f (x, w∗, t) − f (x, v, t) f (x, w, t)
]
dndw := Q ( f , f ) .

Here S2 is the unit sphere inR3 and B = B(v, w, n) stands for the collision kernel
representing the microscopic properties of the molecular collisions. Typically B
only depends on the relative post-collisional velocity V = w−v and on the angle
between the vectors n and V.

As mentioned above, the integral operator Q ( f , f ) on the right hand side is
usually referred to as collision integral. It represents the statistics of all possible
collision events leading to the post-collisional velocity v (first integrand term,
called gain term after the integrations) and of all possible outgoing collisions
(second integrand term, called loss term after the integrations). Note that the
bilinear nature of the collision integral is due to the fact that only binary molec-
ular collisions are taken into account by the Boltzmann equation. Collisions of
three and more molecules are neglected, which implies that the considered gas
has to be sufficiently rarified.

External interactions of the gas, e.g. with the hull of the re-entrant space
shuttle mentioned above, have to be modeled by appropriate boundary condi-
tions.

For a wealth of mathematical detail, including a derivation from multi-
particle physics and important mathematical properties of the Boltzmann equa-
tion we refer to the books [4] and [16].

A fascinating reading about the life of Ludwig Boltzmann, to whom the
equation is attributed, at least in the case of hard sphere molecules with
B(v, w, n) = const. |V.n|, after his celebrated paper from 1872 [3], the role
of Maxwell4 in the derivation of the Boltzmann equation and about the cultural-
scientific background of their times, is provided by [5].

For mathematical purposes it is convenient to rewrite the Boltzmann equa-
tion in terms of dimensionless quantites. Then a parameter ε, the so called
Knudsen number (= normalized particle mean free path), appears:

ε
(

ft + v . gradx f +
F
m

. gradv f
)

= Q ( f , f ) .

(for the sake of simplicity we use the same notations for the dimensionless
quantities). Note that the case ‘ε large’ corresponds to ballistic transport, ‘ε of
order 1’ represents a dynamic balance between free transport and collisional

4 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Maxwell.html
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effects and ‘ε small’ is the case of collision-dominated transport (cf. the space
shuttle example cited above!). The operator Q has 5 so-called collision invariants,
i.e. when it is multiplied by the 5-vector (1, v, |v|2) and integrated over velocity
space, then (at least formally) zero is obtained. This corresponds to the classical
physical requirements of mass, momentum und energy conservation in gas
flows, which are thus verified on a formal level. Also the Boltzmann equation
preserves positivity, i.e. solutions f with nonnegative initial data f (t = 0) will
remain nonnegative during the time evolution (as long as they exist), as required
for probability densities.

It is a trivial exercise to show that the post-collisional velocities become the
pre-collisional ones when another collision process is applied to them, i.e. the
map from (v, w) to (v∗, w∗) is an involution. This implies that each individual col-
lision process is reversible, i.e. when the post-collisional velocities are reversed
and put through a collision then the negative original pre-collisional velocities
are obtained. Boltzmann realized that this micro-reversibility does not imply
reversibility of the gas flow. On the contrary the Boltzmann equation is non-
reversible (although based on reversible binary micro-collisions!). In particular,
the Boltzmann equation dissipates the convex functional H given by

H ( f ) :=
∫

6

f log fdvdx .

This means that along a sufficiently smooth nonnegative solution f of the
Boltzmann equation the inequality

d
dt

H
(
f (t)

)
=: S ( f (t)) ≤ 0

holds, with equality iff f is a local Maxwellian function:

f (x, v, t) =
ρ(x, t)(

2πT(x, t)
)3/2 exp

(
−

|u(x, t) − v|2
2T(x, t)

)
,

where ρ, u, T are the position density, mean velocity and, resp., temperature
associated to f .

The quantity H(f ) is the (negative) physical entropy of the phase space
density f and S(f ) is its dissipation generated by the time evolution of the
Boltzmann equation. This explains also – again on a formal level – the tendency
of solutions of the Boltzmann equation to converge to (global) Maxwellians in
the large time limit and the connection to the macroscopic Euler and Navier–
Stokes equations obtained (formally!) by the limit procedure ‘ε → 0’ and by
assuming that f is a local Maxwellian.

The Boltzmann equation has been a great challenge for mathematicians
(a long list starts with David Hilbert5) but some important analytical results are
5 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Hilbert.html
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Fig. 1.3. Cumulus frac-
tus approaching the
volcano Cotopaxi in
Ecuador

Fig. 1.4. Cumulus frac-
tus approaching the
volcano Cotopaxi in
Ecuador



1 Kinetic Equations: From Newton to Boltzmann

14

Fig. 1.5. Various cumulus clouds over Torres del Paine in Chilean Patagonia
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still missing. For example, the existence of solutions, globally defined for positive
time, for all nonnegative arbitrarily large initial data with finite mass, energy,
moment of inertia and entropy has been proven only in 1989 in an important
paper of Ron DiPerna and Pierre-Louis Lions6 [9].

These solutions are obtained by a so-called renormalisation procedure of
the Boltzmann equation dealing effectively with the quadratic nature of the
collision integral. They are rather weak, so that neither their uniqueness nor
their conservation of energy is ascertained! The lack of smoothness of the
renormalized solutions of the Boltzmann equation is also a major obstacle
in the quest of the mathematically rigorous justification of its small Knudsen
number limits, although in recent years a lot of progress has been made in this
area, see [1] and consecutive papers by the same authors7.

Clearly, the gas dynamics Boltzmann equation is still in the core of mod-
ern kinetic theory. However, other applications of Boltzmann-type equations

Fig. 1.6. Stratocumulus stratiformis translucidus (background) and cumulus (foreground)

6 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Lions.html
7 check http://www.dma.ens.fr/∼golse/Publications/pubs.html for a list of references
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have arisen recently, namely in solid state physics (see Chapter 5), Bosonic and
Fermionic transport, granular flows (see Chapter 3), traffic modeling, chemo-
tactic cell motion (see Chapter 4), just to name a few.

Comment on the Image 1.1 Aircraft and in particular airfoil design and opti-
misation is a classic task for computational fluid dynamics (CFL). Typically, the
three-dimensional incompressible Navier–Stokes equations are used for accu-
rate resultswhile incompressibleEuler computations (whichdisregardboundary
layer effects) or even irrotational flow simulations (zero vorticity) give in many
cases usable quantitative results. Compressibility effects start to play a role for
transonic flows with sufficiently high Mach number. The theoretical basis for
these macroscopic gas dynamics systems is the microscopic Boltzmann equa-
tion, but the involved numerical effort, due to the high dimension of the phase
space (three velocity directions plus three spatial directions, and time!), does
usually not justify its application in industrial aircraft design. Recently however,
lattice Boltzmann equation simulations (for more details see below) have been
employed for airfoil simulations and turbulence modeling in different applica-
tions, with striking success [6].

Comments on the Images 1.2–1.6 The modeling of the formation and motion
of atmospheric clouds is often done by macroscopic fluid equations (Navier–
Stokes or Euler) incorporating the interaction of air with cloud particles like
water droplets, ice crystals or non-volatile aerosols, again on a macroscopic
basis [8]. The main difficulty lies in the phase transitions from water vapor to
water droplets and then, in certain cases, to ice particles (multi-phase flow).
Boltzmann-type kinetic models [13], [2] and an associated moment system for
particle dynamics in clouds were introduced in [13]. A somewhat related kinetic
approach for cloud, wind, smoke, aerosol and pheromone kinetics employs lat-
tice Boltzmann equation (LBM) simulation. In the language of kinetic equations,
LBM equations are discrete-velocity Boltzmann equations, posed on a discrete
grid in position space. Actually, they can be regarded as a numerical discreti-
sation of the Boltzmann equation, with an appropriate collision term, and LBM
solutions are known to converge (in a certain scaling limit and when the grids
are refined) in a suitable sense to solutions of the Navier–Stokes equations. Al-
ternatively, LBM models can be seen as cellular automata, where the collision
process under consideration defines the redistribution of density values after
each time step. They have proven great flexibility in applications of complex
flows, involving complicated geometries, incorporation of chemical reactions,
phase transitions etc.8.

Interesting applications can be found in [15], [17], [6], [12].
Another interesting application of kinetic theory occurs in cloud micro-

physics. Typically, clouds contain water drops, which increase their masses due

8 For more information we refer to
http://www.science.uva.nl/research/scs/projects/lbm_web/index.html
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Fig. 1.7. Bust of Ludwig Boltzmann

�

to collisions leading to coalescence of the colliding drops. The time evolution of
the number density f of water drops in a cloud, as function of the drop mass
m > 0 is known to be described by the so-called stochastic coalescence equation,
which has the form of a space-homogeneous (kinetic) Boltzmann-type equation,
where the drop mass m plays the role of the independent variable. The equation
reads:

∂tf (m, t) =
1
2

m∫
0

K(m − m′, m′)f (m − m′, t)f (m′, t) dm′

−

∞∫
0

K(m, m′)f (m′, t)f (m, t) dm′.

The quadratic operator on the right hand side models coalescing collisions of
drops. The function K(m, m′) denotes the non-negative cross-section. For details
on the physics we refer to [18], mathematical results can be found in [19].

Acknowledgement The author is indebted to Benedikt Bica from the Institute
for Meteorology and Geophysics of the University of Vienna for providing the
cloud classification of the Images 1.2 to 1.6.

CommentonImage1.7 The bust of Ludwig Boltzmann at his grave at the Central
Cemetery of Vienna, Austria. The entropy formula is engraved. We acknowledge
the courtesy of Andrea Baczynski9, who took this photograph.
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2. The Navier–Stokes and Euler Equations –
Fluid and Gas Dynamics

Fluid and gas dynamics have a decisive impact on our daily lives. There are the
fine droplets of water which sprinkle down in our morning shower, the waves
which we face swimming or surfing in the ocean, the river which adapts to the
topography by forming a waterfall, the turbulent air currents which often disturb
our transatlantic flight in a jet plane, the tsunami1 which can wreck an entire
region of our world, the athmospheric flows creating tornados2 and hurricanes3,
the live-giving flow of blood in our arteries and veins4… All these flows have
a great complexity from the geometrical, (bio)physical and (bio)mechanical
viewpoints and their mathematical modeling is a highly challenging task.

Clearly, the dynamics of fluids and gases is governed by the interaction
of their atoms/molecules, which theoretically can be modeled microscopically,
i.e. by individual particle dynamics, relying on a grand Hamiltonian function
depending on 3N space coordinates and 3N momentum coordinates, where N
is the number of particles in the fluid/gas. Note that the Newtonian ensemble
trajectories live in 6N dimensional phase space! For most practical purposes this
is prohibitive and it is essential to carry out the thermodynamic Boltzmann–
Grad limit, which – under certain hypothesis on the particle interactions – gives
the Boltzmann equation of gas dynamics (see Chapter 1 on kinetic equations)
for the evolution of the effective mass density function in 6-dimensional phase
space.

Under the assumption of a small particle mean free path (i.e. in the colli-
sion dominated regime) a further approximation is possible, leading to time-
dependent macroscopic equations in position space R3, referred to as Navier–
Stokes and Euler systems. These systems of nonlinear partial differential equa-
tions are absolutely central in the modeling of fluid and gas flows.

For more (precise) information on this modeling hierarchy we refer to [3].
The Navier–Stokes system5 was written down in the 19th century. It is named

after the French engineer and physicist Claude–Luis Navier6 and the Irish math-
ematician and physicist George Gabriel Stokes7.

1 http://www.tsunami.org/
2 http://www.spc.noaa.gov/faq/tornado/
3 http://www.nhc.noaa.gov/
4 http://iacs.epfl.ch/cmcs/NewResearch/vascular.php3
5 http://www.navier–stokes.net/
6 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Navier.html
7 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Stokes.html
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Fig. 2.1. Iguassu Falls, Border of Brazil-Argentina
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Fig. 2.2. Iguassu Falls, Border of Brazil-Argentina
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Under the assumption of incompressibility of the fluid the Navier–Stokes
equations, determining the fluid velocity u and the fluid pressure p, read:

∂u
∂t

+ (u · grad)u + grad p = νΔu + f

div u = 0

Here x denotes the space variable in R2 or R3 depending on whether 2 or 3
dimensional flows are to be modeled and t > 0 is the time variable. The velocity
field u = u(x, t) (vector field on R2 or, resp., R3) is in R2 or R3, resp., and the
pressure p = p(x, t) is a scalar function. f = f (x, t) is the (given) external force
field (again two and, resp. three-dimensional) acting on the fluid and ν > 0
the kinematic viscosity parameter. The functions u and p are the solutions of
the PDE system, the fluid density is assumed to be constant (say, 1) here as
consistent with the incompressibility assumption. The nonlinear Navier–Stokes
system has to be supplemented by an initial condition for the velocity field and
by boundary conditions if spatially confined fluid flows are considered (or by
decay conditions on whole space). A typical boundary condition is the so-called
no-slip condition which reads

u = 0

on the boundary of the fluid domain.
The constraint div u = 0 enforces the incompressibility of the fluid and serves

to determine the pressure p from the evolution equation for the fluid velocity u.
If ν = 0 then the so called incompressible Euler8 equations, valid for very

small viscosity flows (ideal fluids), are obtained. Note that the viscous Navier–
Stokes equations form a parabolic system while the Euler equations (inviscid
case) are hyperbolic. The Navier–Stokes and Euler equations are based on New-
ton’s celebrated second law: force equals mass times acceleration. They are
consistent with the basic physical requirements of mass, momentum and energy
conservation.

The incompressible Navier–Stokes and Euler equations allow an interesting
simple interpretation, when they are written in terms of the fluid vorticity,
defined by

ω := curl u .

Clearly, the advantage of applying the curl operator to the velocity equation
is the elimination of the pressure. In the two-dimensional case (when vorticity
can be regarded as a scalar since it points into the x3 direction when u3 is zero)
we obtain

Dω
Dt

= νΔω + curl f ,

8 http://gap-system.org/∼history/Mathematicians/Euler.html
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where Dg
Dt denotes the material derivative of the scalar function g:

Dg
Dt

= gt + u. grad g .

Thus, for two-dimensional flows, the vorticity gets convected by the velocity
field, is diffused with diffusion coefficient ν and externally produced/destroyed
by the curl of the external force. For three dimensional flows an additional
term appears in the vorticity formulation of the Navier–Stokes equations, which
corresponds to vorticity distortion.

The Navier–Stokes and Euler equations had tremendous impact on applied
mathematics in the 20th century, e.g. they have given rise to Prandtl’s9 boundary
layer theory which is at the origin of modern singular perturbation theory.
Nevertheless the analytical understanding of the Navier–Stokes equations is still
somewhat limited: In three space dimensions, with smooth, decaying (in the far
field) initial datum and force field, a global-in-time weak solution is known to
exist (Leray solution10), however it is not known whether this weak solution is
unique and the existence/uniqueness of global-in-time smooth solutions is also
unknown for three-dimensional flows with arbitrarily large smooth initial data
and forcing fields, decaying in the far field. In fact, this is precisely the content
of a Clay Institute Millennium Problem11 with an award of USD 1 000 000!!
A very deep theorem (see [2]) proves that possible singularity sets of weak
solutions of the three-dimensional Navier–Stokes equations are ‘small’ (e.g.
they cannot contain a space-time curve) but it has not been shown that they are
empty …

We remark that the theory of two dimensional incompressible flows is much
simpler, in fact smooth global 2 − d solutions exist for arbitrarily large smooth
data in the viscid and inviscid case (see [6]).

Why is it so important to know whether time-global smooth solutions of the
incompressible Navier–Stokes system exist for all smooth data? If smoothness
breaks down in finite time then – close to break-down time – the velocity field u
of the fluid becomes unbounded. Obviously, we conceive flows of viscous real
fluids as smooth with a locally finite velocity field, so breakdown of smoothness
in finite time would be highly counterintuitive. Here our natural conception of
the world surrounding us is at stake!

The theory of mathematical hydrology is a direct important consequence
of the Navier–Stokes or, resp., Euler equations. The flow of rivers in general –
and in particular in waterfalls like the famous ones of the Rio Iguassu on the
Argentinian-Brazilian border, of the Oranje river in the South African Augra-
bies National Park and others shown in the Figs. 2.1–2.6, are often modeled
by the so called Saint–Venant system, named after the French civil engineer

9 http://www.fluidmech.net/msc/prandtl.htm
10 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Leray.html
11 http://www.claymath.org/millennium/Navier–Stokes_Equations/
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Fig. 2.3. Iguassu Falls, Border of Brazil-Argentina
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Fig. 2.4. Augrabies Falls, South Africa
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Adhémar Jean Claude Barré de Saint–Venant12. The main issue is to incor-
porate the free boundary representing the height-over-bottom h = h(x, t) of
the water (measured vertically from the bottom of the river). Let Z = Z(x)
be the height of the bottom of the river measured vertically from a con-
stant 0-level below the bottom (thus describing the river bottom topogra-
phy), which in the most simple setting is assumed to have a small variation.
Note that here the space variable x in R1 or R2 denotes the horizontal di-
rection(s) und u = u(x, t) the horizontal velocity component(s), the vertical
velocity component is assumed to vanish. The dependence on the vertical co-
ordinate enters only through the free boundary h. Then, under certain assump-
tions, most notably incompressibility, vanishing viscosity, small variation of the
river bottom topography and small water height h, the Saint–Venant system
reads:

∂h
∂t

+ div (hu) = 0

∂(hu)
∂t

+ div (h u ⊗ u) + grad
(g

2
h2

)
+ gh grad Z = 0

Here g denotes the gravity constant. Note that h + Z is the local level of the
water surface, measured vertically again from the constant 0-level below the
bottom of the river. For analytical and numerical work on (even more general)
Saint–Venant systems we refer to the paper [4]. Spectacular simulations of the
breaking of a dam and of river flooding using Saint–Venant systems can be
found in Benoit Perthame’s webpage13.

Many gas flows cannot generically be considered to be incompressible, par-
ticularly at sufficiently large velocities. Then the incompressibility constraint
div u = 0 on the velocity field has to be dropped and the compressible Euler or
Navier–Stokes systems, depending on whether the viscosity is small or not, have
to be used to model the flow.

Herewestate these systemsunder the simplifyingassumptionofan isentropic
flow, i.e. the pressure p is a given function of the (nonconstant!) gas density:
p = p(ρ), where p is, say, an increasing differentiable function of ρ. Under this
constitutive assumption the compressible Navier–Stokes equations read:

ρt + div (ρu) = 0
(ρu)t + div (ρu ⊗ u) + grad p(ρ) = νΔu + (λ + ν) grad(div u) + ρf .

Here λ is the so called shear viscosity and ν + λ is non-negative.
For a comprehensive review of modern results on the compressible Navier–

Stokes equations we refer to the text [5].
For the compressible Euler equations, obtained by setting λ = 0 and ν = 0,

globally smooth solutions do not exist in general. Consider the one-dimensional
12 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Saint–Venant.html
13 http://www.dma.ens.fr/users/perthame/
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case, the so called p-system, without external force:

ρt + (ρu)x = 0

(ρu)t +
(
ρu2 + p(ρ)

)
x = 0

This is a nonlinear hyperbolic system, degenerate at the vacuum state ρ = 0.
For an extensive study of the Riemann problem we refer to [7] and for the
pioneeringproofof globalweak solutions, usingentropywaves andcompensated
compactness, to [8].

Finally, we remark that the incompressible inviscid Saint–Venant system of
hydrology has the mathematical structure of an isotropic compressible Euler
system with quadratic pressure law in 1 or, resp., 2 dimensions, where the spatial
ground fluctuations play the role of an external force field.

CommentsontheFigs. 2.1–2.4 An important assumption in the derivationof the
Saint–Venant system from the Euler or, resp., Navier–Stokes equations – apart
from the shallow water condition – is a smallness assumption on the variation
of the bottom topography, i.e. grad Z has to be small. Clearly, this restricts the
applicability of the model, in particular its use for waterfall modelling. Recently,
an extension of the Saint–Venant system was presented in [1], which eliminates
all assumptions on the bottom topography. There the curvature of the river
bottom is taken into account explicitely in the derivation from the hydrostatic
Euler system (assuming a small fluid velocity in orthogonal direction to the fluid
bottom).Weremark that extensionsof theSaint–Venantmodels togranularflows
(like debris avalanches) exist in the literature, see also [1].

Comments on the Figs. 2.5–2.6 Turbulent flows14 are charcacterized by seem-
ingly chaotic, random changes of velocities, with vortices appearing on a variety
of scales, occurring at sufficiently large Reynolds number15. Non-turbulent flows
are called laminar, represented by streamline flow, where different layers of the
fluid are not disturbed by scale interaction. Simulations of turbulent flows are
highly complicated and expensive since small and large scales in the solutions of
the Navier–Stokes equations have to be resolved contemporarily. Various simpli-
fying attempts (‘turbulence modeling’) exist, typically based on time-averaging
the Navier–Stokes equations and using (more or less) empirical closure con-
ditions for the correlations of velocity fluctuations. The flows depicted in the
Figs. 2.5 and 2.6 are highly turbulent, with apparent micro-scales.

We remark that the turbulent parts of the flows depicted in the Figs. 2.1–2.6
are two-phase flows, due to the air bubbles entrained close to the free water-air
surface interacting with the turbulent water flow.

�
Fig. 2.5. Turbulent Flow, Cascada de Agua Azul, Chiapas, Mexico

14 http://en.wikipedia.org/wiki/Turbulence
15 http://www.efunda.com/formulae/fluids/calc_reynolds.cfm
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Fig. 2.6. Turbulent
(upper part) and
laminar (lower part)
flow in Cascada de
Agua Azul, Chiapas,
Mexico, with highly
apparent transition
region
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3. Granular Material Flows
Peter A. Markowich and Giuseppe Toscani1

We cite from the webpage of the granular flows research group of the California
Institute of Technology2:

A granular material flow is a form of two-phase flow consisting of partic-
ulates and an interstitial fluid. When sheared the particulates may either
flow in a manner similar to a fluid, or resist the shearing like a solid. The
dual nature of these types of flows makes them very difficult to analyze.

Granular materials are all around us – examples include food products such as
rice, corn, and breakfast cereal flakes, building materials such as sand, gravel
and soil, chemicals such as plastics, and pharmaceutical pills.

Another important example of granular flow is the motion of sand dunes3.
James Jenkins4 of Cornell University says:

Moving sand dunes are an example of granular flow – a poorly under-
stood branch of physics,

and

…the goal is to characterize sheet flows and avalanches using partial
differential equations that model the movement of sand grains as if they
were particles in a fluid. These equations should contain within them
the way avalanches scale with viscosity, velocity of turbulent wind, grain
diameter, and gravity…

A distinguishing feature between flows of granular materials and other solid-
fluid mixtures is that in granular flows the direct interaction of particles leads
to energy dissipation which plays an important role in the flow mechanics. For
example, take a pebble and drop it onto the sand on a beach. The pebble will
immediately stick in the sand without bouncing back (as would occur in an
elastic contact). The reason for this is that a significant fraction of the energy
dissipation and momentum transfer in granular flows occurs when particles are
in contact with each other or with a boundary. Also, when the pebble is removed
from the sand, then only a part of the hole will be filled by sand again-but not
the entire hole, typically a dent will remain. The thermal fluctuations are not
strong enough to take the granular sand arrangement back into a global energy
minimizing state, instead it settles into (one of many possible) local equilibria.

1 http://www-dimat.unipv.it/toscani/
2 http://www.its.caltech.edu/∼granflow/
3 see, e.g.,http://science.nasa.gov/headlines/y2002/06dec_dunes.htm
4 http://www.tam.cornell.edu/Jim.html
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Fig. 3.1. Dune 45 in Sossus Vlei, Namibia
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Here are a few more examples of granular flows: grains such as corn or wheat
flowing from a silo; landslides of boulders and debris; rock and ice collisions in
planetary rings; transport and handling of coal or certain chemicals in indus-
trial plants; powder metallurgy; powder spray coating and lava flow in volcanic
eruptions.

A good understanding of the physics of granular flows is of paramount im-
portance in order to design efficient industrial processing and handling systems.
The significance of this is apparent when one considers the following data:

– In the chemical industry approximately one-half of the products and at least
three-quarters of the raw materials are in granular form.

– Landslides cause more than one billion dollars of property damage and at
least 25 fatalities in the United States annually (FEMA).

– In Mexico 5 million tons of corn are handled each year, 30% of which is lost
due to poor handling systems.

Even small increases in efficiency can make a significant economic impact.
So far, there still is a poor understanding of how to model granular materials

mathematically. Most of the knowledge is empirical and no general approach
for analyzing these flows exists. So what can the mathematical modeling be
based upon? Clearly, granular material flows are a special topic in the physics
of dissipative systems, consisting of dilute systems of inelastically colliding par-
ticles. As common for open systems, granular materials reveal a rich variety
of self-organized structures such as large scale clusters, vortex fields, char-
acteristic shock waves and others, which are still far from being completely
understood.

Most basically, granular flow modeling is often done with molecular dynam-
ics techniques, treating the interactions of individual grains in the material. This
technique requires a significant computational overhead and has been to a large
extent replaced by continuum models (see [1]). In recent years, granular flows
were studied in many aspects from a kinetic point of view, by means of tech-
niques borrowed from the kinetic theory of rarefied gases. The main difference
of granular models and the classical kinetic theory of ideal gases (see Chapter 1)
lies in the loss of conservation of the second moment of the solution (the energy),
which leads to new mathematical questions in kinetic flow equations and the
derived hydrodynamics (limit of validity, closure, role of the cooling state).

In a granular gas, the microscopic dynamics of grains heavily depend on the
so called restitution coefficient e which relates the normal components of the
particle velocities before and after a collision. If we assume that the grains are
identical perfect spheres (in R3) of diameter D > 0, (x, v) and (x − Dn, w) are
their states before a collision, where n ∈ S2 is the unit vector along the center of
both spheres, and x the position vector of the center of the first sphere, the post
collisional velocities (v∗, w∗) then are such that

(v∗ − w∗) · n = −e
(
(v − w) · n

)
. (3.1)
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Fig. 3.2. Dunes in Sossus Vlei, Namibia

From (3.1), and assuming the conservation of momentum, one finds the
change of velocity for the colliding particles as

v∗ = v −
1
2

(1 + e)
(
(v − w) · n

)
n , w∗ = w +

1
2

(1 + e)
(
(v − w) · n

)
n . (3.2)

For elastic collisions (e.g. atoms in an ideal gas) one has e = 1, while for
inelastic collisions e decreases with increasing degree of inelasticity.

Following the standard procedures of kinetic theory, the evolution of the
distribution function can be described by the Boltzmann–Enskog equation for
inelastic hard-spheres,

∂f
∂t

+ v · gradx f = G(ρ)Q̄ ( f , f )(x, v, t) , (3.3)

where Q̄ is the so-called granular collision operator, which describes the change
in the density function due to creation and annihilation of particles in binary
collisions:
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Q̄ ( f , f )(v) = 4σ2
∫

3

∫
S+

q · n
{
χf (v∗∗)f (w∗∗) − f (v)f (w)

}
dw dn . (3.4)

In (3.3)

ρ(x, t) =
∫

3

f (x, v, t) dv

is the position space grain density at time t, and the function G(ρ) is the statis-
tical correlation function between particles, which accounts for the increasing
collision frequency due to the excluded volume effects.

In (3.4), q = v1 − v2, and S+ is the hemisphere corresponding to q · n > 0.
The velocities (v∗∗, w∗∗) are the pre collisional velocities of the so-called inverse
collision, which results from (v, w) as post collisional velocities. The factor χ in
the gain term stems from the Jacobian of the transformation dv∗∗dw∗∗ into dvdw
and from the lengths of the collisional cylinders e|q∗∗ · n||q · n|. For a constant
restitution coefficient, χ = e−2.
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Fig. 3.3. Barchan Dune in Sossus Vlei, Namibia

Due to dissipation, a granular gas cools down. One of the main problems is
to describe this cooling in the hydrodynamic setting, by scaling limits from the
granular Enskog–Boltzmann equation.

For the following, we define the scaled mean free path of the granular material
in a density-dependent way, by the reciprocal of

G(ρ) =
1
ε
g(ρ) ,

where ε is a small positive parameter (microscopic/macroscopic ratio).
Under theassumptionof sufficientlyweak inelasticity theEnskog–Boltzmann

equation can be approximated in leading order by

∂f
∂t

+ v · gradx f = G(ρ)Q ( f , f )(x, v, t) + G(ρ)βI ( f , f )(x, v, t) , (3.5)

where Q is the classical elastic Boltzmann collision operator, and I is a dissipative
nonlinear friction operator which is based on inelastic collisions between parti-
cles. The parameter β determines the strength of the inelasticityof the particle
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collisions and is often assumed to be related to the restitution coefficient e by
the equation

β =
1 − e

2
.

Note that the operator Q has mass, momentum and energy as collision
invariants while the collision invariants of the friction operator are only mass
and momentum, not energy. From this expansion of the total collision operator,
one can derive the fluid dynamical equations assuming that β is of the same
order of magnitude as ε.

To this aim, assuming that Q is the classical elastic ideal gas Boltzmann
collision operator, we obtain∫

3

ψ(v)
(

∂f
∂t

+ v · gradx f − g(ρ)
β
ε

I ( f , f )(x, v, t)
)

dv = 0 (3.6)

since

1
ε
g(ρ)

∫
3
ψ(v)Q ( f , f )(x, v, t) dv = 0 ,

provided ψ is a collision invariant of Q, i.e. ψ = 1, v, 1
2 |v|2. It is well-known that

the system (3.6) for the moments of f , which is in general not closed, can be
closed in the usual way by assuming f to be the local Maxwellian distribution
function M:

M(x, v, t) = ρ(x, t)/(2πT(x, t))3/2 exp
(

−
|v − u(x, t)|2

2T(x, t)

)
,

where the parameter functions (unknowns) are the density ρ(x, t), mean velocity
u(x, t) and temperature T(x, t).

Since the dissipative operator I is such that ψ = 1, v are collision invariants,
substituting f = M into (3.6), leads to the following macroscopic Euler-type PDE
system

∂ρ
∂t

+ div (ρu) = 0

∂u
∂t

+ (u · grad)u +
1
ρ

grad p = 0 (3.7)

∂T
∂t

+ (u · grad)T +
2
3

Tdiv u = −
β
ε

Cg(ρ)ρT3/2

where the pressure is given by the constitutive equation p = ρT, and C is an
explicitly evaluable constant. As mentioned above, this approximation is valid
when both ε << 1, β = 1−e

2 << 1 in such a way that β
ε = λ = const.
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Fig. 3.4. Ridge of a Dune in Sossus Vlei, Namibia
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Fig. 3.5. Wind ripples in Sossus Vlei, Namibia

The obtained flow equations have the form of a compressible Euler system
with a temperature relaxation term. More precisely, the temperature T(x, t) re-
laxes according to the so-called Haff ’s law. This implies that – in the case of
vanishing bulk velocity and time-independent position density – the tempera-
ture relaxes to 0 with the algebraic rate t−2.

For details and for a collection of references on granular flows we refer to [5]
and [6].

Comments on the Images 3.1– 3.10 The formation of sand dunes involves vari-
ous complicated geophysical mechanisms: sediment transport, avalanches, wind
field driven aeolian transport of course taking into account that sand is a typical
granular material, with transport being dominated by localised inelastic colli-
sionsbetweensandgrainsandbysaltation (jumpingmovementofgrainsover the
surface), driven by turbulent wind flow. Clearly, these two types of sand grain
movement require different mathematical modeling: the former is described
by short range interactions modeled by the granular material Boltzmann-type
equation as stated in Chapter 3, the latter by convection representing the wind
field in conjunction with inelastic collisions when grains hit the sand surface
after saltation. Also, we remark that the microscopic properties (shape, size etc.)
of sand grains may vary substantially! We refer to the Ph.D. thesis [4] for various
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fluid type modeling approaches, with interesting simulations of barchan dune
evolution. Also we refer to the webpage of Dr. H. Momiji5 for more information
on dune dynamics and its mathematical modeling. For fascinating images of
sand dunes on Mars see: http://mars.jpl.nasa.gov/gallery/sanddunes/.

5 http://www.geog.ucl.ac.uk/∼hmomiji/
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Fig. 3.6. Sunset in a dune field, Sossus Vlei, Namibia

Fig. 3.7. A sand dune,
Atacama desert, Chile
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Fig. 3.8. Dunes, Death Valley, California



3 Granular Material Flows

51

Fig. 3.9. Footprints in a sand dune, Death Valley, California. Just one stable configuration, out of
many possible ones…

Fig. 3.10. Pattern of wind ripples, Death Valley California
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Fig. 3.11. A granular (pattern) equilibrium state in a Zen garden in Kyoto, Japan

�

Fig. 3.12. A stable pile of small pebbles in a Zen garden in Kyoto, Japan. For the modeling of
the growth, collapse and stability of piles of granular materials, in the context of the Monge–
Kantorovich mass transportation theory, using p-Laplace equations we refer to the survey of L. C.
Evans [2] and, for more mathematical detail, to [3]
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4. Chemotactic Cell Motion
and Biological Pattern Formation
Peter A. Markowich and Dietmar Ölz1

One of the most important principles governing the movement of biological
cells is represented by chemotaxis, which refers to cell motion in direction of the
gradient of a chemical substance. In some cases the chemical is externally pro-
duced, in others the cells themselves generate the chemical in order to facilitate
cell aggregation. In certain biological processes more than one chemical is actu-
ally responsible for the chemotactic cell motion. Typical examples of chemotaxis
occur in embryology, in immunology, tumor biology, aggregation of bacteria or
amoeba etc.

The most basic and most famous mathematical model for chemotaxis was
originally derived in 1953 by C.S. Patlak [7] and then in 1970 by E. Keller and
L.A. Segel [4]. Meanwhile, this so called Keller–Segel model has become one of
the most well analyzed systems of partial differential equations in mathematical
biology, giving many insights into cell biology as well as into the analysis of
nonlinear partial differential equations.

The main unknowns of the Keller–Segel system are the nonnegative cell
density r = r(x, t) and the chemical concentration S = S(x, t), where x denotes
the one, two or three dimensional space variable and t > 0 the time variable.
Then, based on the hypothesis that cell motion is driven by diffusion on one
hand and by the gradient of the chemical as driving force on the other hand, the
cell density satisfies the (parabolic) partial differential equation of convection-
diffusion or Fokker/Planck type:

rt = div(D0 grad r − cr grad S) (4.1)

where D0 is the positive cell diffusivity and c the positive chemotactic sensitivity.
In many realistic modeling situations, D0 and c have to be allowed to depend on
the cell density r and on the chemical concentration S. We remark that diffusion
corresponds to undirected random (Brownian) motion of the cells, while the
convection by the chemo-attractant stems from the reorientation phase of the
cell motion, in direction of the gradient of the chemical concentration. These
two phases in the cell motion have been observed very well for the slime mold
Dictyostelium discoideum.

The temporal variation of the chemical is also determined by diffusion on
one hand and, on the other hand, by its production (by external sources or by
the cells themselves) and its degradation (e.g. due to chemical reactions). This

1 http://homepage.univie.ac.at/dietmar.oelz/
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leads to the reaction-diffusion equation:

St = div(D1 grad S) + g(r, S) . (4.2)

Here D1 stands for the (positive) diffusivity of the chemical and g for its pro-
duction/degradation rate, i.e. g > 0 describes production of the chemical and
g < 0 its degradation. The Keller–Segel model is thus comprised of the coupled
parabolic system (4.1) and (4.2), supplemented by appropriate conditions for r
and S on the boundary of the modeling domain B (e.g. the Petri dish bound-
aries) and by initial conditions for r and S. The classical Keller–Segel model
refers to equations (4.1) and (4.2), with constant and positive diffusivities and
chemotactic sensitivity and with the linear production/degradation model:

g(r, S) := dr − eS , (4.3)

where d and e are positive constants. This classical Keller-Segel model, with
appropriately fitted parameters, is often sufficient to describe real chemotactic
processes with good qualitative and reasonable quantitative agreement.

In many cases, however, it is of great importance to include specific fea-
tures of individual cells, to deal with stochasticity [8] or to employ microscopic

Fig. 4.1. Giraffe fur pattern
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phase-space models replacing the macroscopic Fokker–Planck equation (4.1),
similarly to the framework of the Boltzmann equation of gas dynamics (the
macroscopic Euler or Navier–Stokes equations correspond to the Fokker–Planck
equation (4.1) in this comparison!). A presentation of the corresponding model
hierarchy, the connections of the different PDE models in the hierarchy and
a collection of references on the mathematical analysis of kinetic and macro-
scopic chemotaxis models can be found in [3]. The scaling limit of a phase space
chemotaxis model leading to the Keller–Segel model was rigorously analysed
in [1].

For what follows we consider the classical Keller–Segel model consisting of
(4.1), (4.2) and (4.3) with the additional assumption e = 0 (no degradation of
the chemical and d and D1 very large, such that the parabolic reaction diffusion
equation (4.2) can be approximated by the linear elliptic equation

−ΔS = r (4.4)

(after appropriate rescaling). We assume that (4.1) and (4.4) are posed on Rn,
n = 1, 2 or 3 and look for solutions such that r decays to 0 as |x| tends to
infinity. This nonlinear, nonlocally coupled elliptic-parabolic system of partial

Fig. 4.2. Kudu coat
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Fig. 4.3. Zebra coat pattern
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differential equations exhibits a fascinating feature, under certain conditions on
the initial datum

r(x, t = 0) = r0 , (4.5)

namely finite time blow-up of solutions. More precisely, two cases have to be
distinguished for n = 2 (two space dimensions!), where we denote the total
initial cell mass by:

M0 :=
∫

2

r0(x) dx .

These cases are:

Case A: M0 < 8πD0/c. Then a global weak solution of (4.1), (4.4), (4.5) exists.
Case B: M0 > 8πD0/c. Then solutions r of (4.1), (4.4), (4.5) blow up in finite

time, global in time solutions do not exist.

Usually, Case A is referred to as subcritical case (mass is small enough such that
finite time blow up can be avoided) and Case B (mass is too big, finite time blow
up occurs) as supercritical. There is no finite time blow up for the one dimen-
sional classical Keller–Segel model while three dimensional solutions generically
concentrate in finite time. We remark that the mechanism, which inhibits the
global existence of solutions in the supercritical case, is concentration of the
cell density, i.e. r(x, t) tends locally to a Dirac-δ distribution when t approaches
a finite blow-up time T. Beyond blow up time the solutions cannot be extended
without somewhat redefining the problem. The reason for the non-existence of
time-global solutions is that the production of the chemical by the cells generates
an attractive force field, just as for PDE models of gravitational particles. This
is totally different from the situation where the cells (presumably) destroy the
chemical (which corresponds to changing the sign of the chemotactic sensitiv-
ity c in (4.1)), analogously to the repulsive Coulomb force acting on the charged
particles in semiconductors, modeled by the semiconductor drift-diffusion sys-
tem. To better understand the mechanism of an attractive resp. repulsive force,
choose a number q > 1, multiply the Fokker–Planck equation (4.1) by qrq−1 and
integrate over Rn. Then, after integration by parts and using (4.4) we obtain,
assuming that c is constant:

d
dt

∫
r(x, t)q dx = −

∫
q(q − 1)D0|∇r|2rq−2 dx + (q − 1)c

∫
rq+1 dx .

Thus, the right hand side is nonpositive if c is nonpositive (repulsive case) and
consequently the Lq-norm of the position density r is uniformly bounded for
t > 0. Clearly, this excludes a concentration in the density r. Note that this
argument fails in the case of an attractive force c > 0!



4 Chemotactic Cell Motion and Biological Pattern Formation

61

The phenomenon of finite time blow up of solutions of the classical Keller–
Segel model has been extensively discussed in the bio-mathematical literature.
Clearly, the local pre-blow up behaviour corresponds to biologically reasonable
cell accumulation due to the chemotactic attraction and has been observed in
experiments, e.g. with the slime mold Dictyostelium discoideum. However, con-
centration of the cell density in a single point is clearly biologically unreasonable
and has to be considered a defect of the model. We remark that this defect can be
repaired rather easily, for example by taking a chemotactic sensitivity c = c(r),
whichdecays to zeroas r tends to infinity.This is referred toas “quorumsensing”.

We now turn our attention to the modeling of pattern formation in the
context of embryology. Embryology is the area of biology, which is concerned
with the formation and development of a embryos from fertilisation until birth.
Morphogenesis as a part of embryology deals with the development of patterns
and forms. One of the major problems in biology is how genetic information is
physically translated into the desired patters and forms. We typically observe
that cells move around within the embryo and finally differentiate according to
their position. But why does this happen?

Positional information is a phenomenological concept of pattern forma-
tion and differentiation introduced by Wolpert [10]. He suggested that cells are
pre-programmed to react to a chemical (“morphogen”) concentration and dif-
ferentiate accordingly. The first step however is the creation of the morphogen
concentration spatial (pre)pattern. The further morphogenesis is then a slave
process. Often, chemotaxis is considered to be a mechanism for density pre-
pattern formation. More precisely, cell differentiation occurs in regions of high
cell density [6], possibly generated by chemotactic attraction. A mathematical
study of spatial patterns and their stability in one-dimensional Keller–Segel
models with small cell diffusivity can be found in [2].

In the sequel we shall discuss (cp. [5]) a model for morphogenesis, based on
reaction-diffusion equations, as introduced by A.M. Turing2 in the year 1952 [9].
The unknowns are the concentrations of two chemical species, u > 0 and v > 0.
We assume that the modeling domain B is a subset of Rn with the dimension n
either 1, 2 or 3 and that within the set B the two concentrations satisfy the
reaction-diffusion system

ut = Δu + γf (u, v)
vt = d Δv + γg(u, v) . (4.6)

Hence both chemicals are subject to diffusion, but with different diffusion co-
efficients. Here, already after non-dimensionalisation, the diffusion coefficient
of the chemical u is set to one, whereas the diffusivity of v is represented by the
constant d. This constant represents the ratio of the diffusion coefficients before
non-dimensionalisation. Furthermore both chemicals are subject to production
and decay respectively. From non-dimensionalisation we obtain that the extent

2 http://www.turing.org.uk/turing/
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Fig. 4.4. Zebra coat pattern
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of production/decay is a multiple of a constant γ which depends on the ‘size’ of
the modeling domain B. To complete the model, we assume that we know the
concentrations of the chemicals at time t = 0

u(., t = 0) = uI and v(., t = 0) = vI (4.7)

and that, starting from the initial point in time, the two chemicals can neither
flow out of the domain B, nor is any of the two chemicals added. In mathematical
terms we express this by the homogeneous Neumann boundary conditions

ν · grad u = ν · grad v = 0 on ∂B , (4.8)

where ∂B is the boundary of the domain B and ν is the unit outward normal
vector to this boundary. Note that the formulation of production/decay using the
two functions f (u, v) and g(u, v) allows that both chemicals may influence their
ownproduction/decayaswell asproduction/decayof theotherone.Nevertheless
fromnowonweshall interpret the chemicalwith concentrationuas the activator,
i.e. it is likely to increase morphogen production, whereas we shall interpret
the chemical associated to the concentration v as the deactivator. Hence the
presence of the latter chemical is likely to reduce production or even stimulates
consumption of the morphogen.

The central idea of Turing instability is to construct systems of chemicals
with the following property: The concentrations of the chemicals are linearly
stable if they are homogeneous. Clearly, variations of concentrations necessarily
lead to diffusive effects. If the diffusion coefficients are different (i.e. d �= 1), then
diffusion shall lead to instability (“diffusion driven instability”) in the sense that
initial variations in concentrations get amplified.

This was a novel concept since in the mathematical field of partial differential
equations (PDEs) diffusion is usually considered to be a stabilising process, just
like variations in temperature in general get equilibrated and inhomogeneous
concentrations are expected to smooth out.

The mechanism which in the present case leads to instability works as fol-
lows: Imagine regions where, for whatever reason, there is a high concentration
of activators and where, as a consequence of activation, lots of inhibitors are pro-
duced. The Turing mechanism is based on the fact that the inhibitor substance
diffuses faster than the activator chemical. So in these regions the deactivators
will diffuse away quickly and will not be able to reduce the concentration of
activators.

Most notably in situations, where the size of the modeling domain is finite
and where chemicals can neither leave nor enter the domain, the inhibitors

�

Fig. 4.5. Zebra coat pattern
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Fig. 4.6. Crocodile Skin

will finally gather at remote positions with only little activator reactant. There
they will successfully inhibit the rise of the activator concentration. In total this
explains that starting from a small perturbation of a homogeneous situation
a pattern of activators and deactivators can finally emerge and stabilise.

We only remark here that the situation is different if the modeling domain is
not bounded. Then inhibitors are likely to diffuse farther and farther away from
activators, finally to infinity.

We shall analyse now the system (4.6), (4.8), (4.7) in the special case, where
the modeling domain is a bounded (one-dimensional) interval,

B = [0, L] with length L > 0 . (4.9)

Most notably we shall determine the so called Turing space, i.e. the set of param-
eter values (the functions f and g and the constants d and γ) for which Turing
instability can be observed.

We assume that (u0, v0) is a homogeneous steady state. Hence u0 and v0 are
two constants and looking at (4.6) we observe that for this combination of the
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Fig. 4.7. Australian saltwater crocodile, skin pattern

two concentrations we have zero production and zero decay,

f (u0, v0) = g(u0, v0) = 0 . (4.10)

In the sequel we shall analyse the equations (4.6) near this steady state. If we
only look at spatially homogeneous, but time-dependent solutions of (4.6) and
if we simplify this problem even more by linearisation at the steady state, then
we conclude that it is (linearly) stable at (u0, v0) if

fu + gv < 0 and fugv − fvgu > 0 . (4.11)

Note that the partial derivatives of f and g here and in the sequel are evaluated
at (u0, v0). Typically, in the theory of ordinary differential equations linear sta-
bility implies local (nonlinear) stability meaning that solutions of the nonlinear
problem (4.6), which are constant in space and which are sufficiently close to
the steady state (u0, v0), will not depart from the steady state as time increases.

The prerequisite of Turing instability is instability in the presence of spatial in-
homogeneity of the concentrations. To understand this we look at eigenfunctions
of the Laplacian such that wxx = −k2w and such that the boundary conditions
wx(0) = wx(L) = 0 are satisfied. The functions w = wk(x) are then multiples of
cos(nπx/L), where n ∈ Z and k := nπ/L. The value k is called the wave number.
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Fig. 4.8. Galapagos giant turtle

We know that linear diffusive systems as (4.6) with zero reaction nonlinear-
ities act (componentwise) on eigenvectors of the Laplacian by damping them
with a certain exponential rate λ < 0. Such solutions are then given by a product
exp(λt)wk(x). Thus after linearizing (4.6) at (u0, v0) we expect that perturba-
tions of the steady state (u −u0, v− v0) can be written as

∑
k ck exp(λ(k2)t)wk(x),

where the components of ck are the Fourier coefficients of uI − u0 and vI − v0

respectively.
If �λ(k2) < 0 then the eigenmode with wave number k is damped, but if for

some wave number k �= 0 we have �λ(k2) > 0, then the respective component
of the solution blows up as t → ∞ and we call the the system (4.6) (linearly)
unstable at (u0, v0).

In fact, we even can compute explicitly the largest values λ(k2), which is called
dispersion relation. Doing so it turns out that we only have instability if

a > 0 and a2 − 4db > 0

where a := dfu + gv and b := fugv − fvgu. Most notably the first inequality implies
that the diffusion coefficient satisfies d > 1. Furthermore it turns out that λ(k2)
has positive real part only for those wave numbers k which satisfy

γ
a −

√
a2 − 4db
2d

< k2 < γ
a +

√
a2 − 4db
2d

,
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The above k-interval is called the unstable range. The associated wavelengths
will increase in amplitude during the evolution of the system, whereas other
wavelengths are damped. Bear in mind that in biological applications γ is a mul-
tiple of L2!

Exemplary choices for the reaction terms, which exhibit Turing instability,
are

f (u, v) = a − bu +
u2

v
and g(u, v) = u2 − v [15] ,

and

f (u, v) = a − u − h(u, v) and g(u, v) = α(b − v) − h(u, v) ,

with h(u, v) :=
ρuv

1 + u + Ku2
, [16] ,

where a, b, α, ρ and K are positive parameters which have to be chosen appro-
priately to satisfy the above conditions.

In animal tissue, these unstable modes are interpreted to characterise the
patterns, which are amplified during the development of the embryo and which
therefore develop spatial inhomogeneity in departing from the homogeneous
stationary state. Since k may only adopt discrete values, there is only a finite
number of amplified wavelengths.

Unbounded domains B correspond to relevant models in situations where
the size of the embryo is much larger than the pattern to be formed and where
therefore the boundaries cannot play a major role in isolating specific wave-
lengths. The analysis is somewhat simpler in this case. In general there is no
finite band of amplified modes but one specific wave-number which is associated
to the largest eigenvalue. Its pattern will finally emerge.

If the domain B is growing as a function in time, let us say during the growth
of the embryo, then the value γ increases and at certain bifurcation points,
either dominant modes turn into damped ones, i.e. they fall out of the unstable
range, or higher wave-numbers turn from stable to unstable. This process is
called mode selection and is a possible explanation for the complex evolution of
patterns during morphogenesis.

Comments on the Images 4.1–4.8 Various modeling approaches for pattern for-
mation in animal coats, with simulation results, can be found in the Ph.D. the-
sis [11]. Also Turing’s reaction-diffusion model is presented there. For a wealth
of information on Turing models for morphogenesis we refer to the webpage3.

For a cellular automata model, based on Turing’s reaction-diffusion model,
describing the morphogenesis of zebra coat patterns, we refer to [12].

For images of an artistic interpretation of patterns on human bodies we refer
to the webpage4.
3 http://www.math.wm.edu/∼shij/
4 http://www.pbase.com/gpfoto/bianco_nero
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A study on the formation of crocodile skin, discussing the origin of the
pigmentation pattern, can be found in [13].

Is has been conjectured in the biological literature that the formation of
tortoise shells is based on a chemotactic process, responsible for the lateral
growth of the ribs, which then undergo ossification. We refer to [14].

The Images 4.1–4.5 were shot in South Africa and Namibia, 4.6 in the Mex-
ican province Chiapas, 4.7 in northern Queensland (Australia) and 4.8 on the
Galapagos Islands (Ecuador).

References

[1] B. Perthame, F. Chalub, P.A. Markowich and C. Schmeiser, Kinetic models
for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142(1-2),
pp. 123–141, 2004

[2] Y. Dolak and C. Schmeiser, The Keller–Segel model with logistic sensitivity
function and small diffusivity, to appear in SIAM J. Appl. Math., 2005

[3] P.A. Markowich, D. Oelz, C. Schmeiser, F. Chalub, Y. Dolak-Struss and
A. Soreff, Model hierarchies for cell aggregation by chemotaxis, to appear
in M3AS, 2006

[4] E. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an
instability, J. Theoret. Biol., 26, pp. 399–415, 1970

[5] J.D. Murray, Mathematical Biology, Volume 19 of Biomathematics, second
edition, Springer, 1993

[6] K.J. Painter, Chemotaxis as a mechanism for Morphogenesis, PhD thesis,
University of Oxford, 1997

[7] C.S. Patlak, Random walk with persistence and external bias, Bull. Math.
Biophys., 15, pp. 311–338, 1953

[8] A. Stevens, The derivation of chemotaxis equations as limit dynamics of
moderately interacting stochastic many-particle systems, SIAM of Appl.
Math, 61(1), pp. 183–212, 2000

[9] A.M. Turing, The chemical basis of morphogenesis, Philosophical Transac-
tions of the Royal Society (B), 237, pp. 37–72, 1952

[10] L. Wolpert, Positional information and the spatial pattern of cellular differ-
entiation, J. theor. Biol., 25, pp. 1–47, 1969

[11] M.Walter, IntegrationofComplexShapesandnaturalPatterns, Ph.D. thesis,
Department of Computer Science, University of British Columbia, Canada,
1998

[12] C.P. Gravan and R. Lahoz-Beltra, Evolving Morphogenetic Fields in the
Zebra Skin Pattern Based on Turing’s Morphogen Hypothesis, Int. J. Appl.
Math. Comput. Sci., Vol. 14, No. 3, pp. 351–361, 2004

[13] L. Alibardi, Immunocytochemistry and Keratinization in the Epidermis of
Crocodilians, Zoological Studies 42 (2), pp. 346–356, 2003



References

71

[14] J. Cebra-Thomas et al., How the Turtle Forms its Shell: A Paracrine Hypoth-
esis of Carapace Formation, Journal of Experimental Zoology (Mod Dev
Evol), 304B, pp. 558–569, 2005

[15] A. Gierer and H. Meinhardt, A theory of biological pattern formation,
Kybernetik 12, pp. 30–39, 1972

[16] D. Thomas, Artificial enzyme membranes, transport, memory, and oscil-
latory phenomena, in: D. Thomas and J.-P. Kernevez (eds.): Analysis and
Control of Immobilized Enzyme Systems, Berlin Heidelberg New York:
Springer, pp. 115–150, 1975



73

5. Semiconductor Modeling

In pedestrian solid state physics terms semiconductors (e.g. silicon, germanium,
gallium arsenide …) are materials whose electrical conductivity properties lie
between those of a conductor (i.e. a metal) and those of an insulator (e.g.
glass). This is precisely what allows to control the electrical properties of the
material by systematic and appropriate modification from the outside. This
modification is usually done by implanting impurity atoms into the semicon-
ductor, which – once inserted into the semiconductor crystal lattice – become
ionised by either donating a conduction band electron (creating an additional
free negative charge) or absorbing a valence band electron (creating an ad-
ditional free positive charge, a so called hole). The implantation process is
called doping of the semiconductor. Typically, a semiconductor has a conduc-
tion band density of 1011 free electrons per cm3, by doping this number can
be raised to 1020!!! The doping process, typically carried out through diffu-
sion processes in high tech clean rooms of the chip production companies
and laboratories, controls the electrical properties of semiconductor devices.
More precisely, the position densities of the dopants, for electron donors and
for electron acceptors, determine the electrical functioning of the produced
device.

For the subsequent mathematical discussion we denote by C = C(x) the
signed dopant position density, i.e. the difference of the donor and acceptor den-
sities. Here x denotes the position variable as element of the (three-dimensional)
domain D representing the semiconductor device.

The main use of industrially produced semiconductor devices is in VLSI (=
Very Large Scale Integration) structures, where millions of devices are fabricated
on a single semiconductor chip with a specific usage, i.e. a processor or a RAM
modul of a modern computer or a CCD or CMOS imaging sensor in a digital
camera. The Images 5.1 to 5.6 show a motherboard with two processor slots,
an ATA controller chip, a Celeron Processor1, a RAM modul array and chips on
a graphics card.

The most important semiconductor device, making up at least 95% of the
overall semiconductor device production, is the transistor, more specifically the
MOS (Metal-Oxide-Semiconductor) transistor, which acts as a switch, allowing
current to flow between its source and drain contacts when the voltage between
the gate and the base contact is turned on. It represents a ‘bit’ having the state 1
when current flows and 0 when no current flows. It is the main ‘logical’ device
in VLSI chipsets.

1 http://www.intel.com/products/processor/celeron/index.htm
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Fig. 5.1. Dual Processor Motherboard (main circuit board controller)
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Silicon transistors were invented in the USA, more precisely at Bell Labs
in the year 1947, by J. Bardeen2, W. A Shockley3 and W. Brattain4. The first
transistor had a dimension of about one centimetre, today’s MOS transistors
feature a gate length of less than 100 nanometres! Consequently, the integrated
circuit was invented in the year 1958, by J. Kilby5 at Texas Instruments, putting
together a few devices on one chip. Today’s world would be entirely different
without semiconductor devices …

Themathematical modeling and simulationof semiconductor structures acts
on different levels:

1. Modeling of the doping process (= fabrication of the device/chip) by nonlin-
ear diffusion equations. The main goal is to better understand and control
the doping process. We refer to the book [6].

2. Modeling of the electrical functioning of individual semiconductor devices.
Here the doping profile is taken as input function and the current flow
in the device is modeled exploiting insights into the solid state physics of
semiconductors. A wealth of information on this subject can be found in the
books of the Springer Series on Computational Microelectronics6, edited by
Siegfried Selberherr7. In particular we refer to [4] and [5].

3. VLSI circuit modeling. The functioning of a whole chip is modeled by using
the individual device model result as input. Typically very large systems
of ordinary differential equations are obtained which have to be solved
numerically in a fast way. We refer to [2].

In the sequel we shall focus on the second level, that means on mathematical
semiconductor modeling. Clearly, the basis for this is quantum particle physics
and, in a semiclassical framework, solid state physics. There is a semiconduc-
tor modeling hierarchy, based on different scales and accuracy levels of the
description. Roughly speaking, it looks like this:

Quantum Mechanical Modeling relies on the Schrödinger equation and vari-
ousequivalent formulations (Heisenberg formalism,Wigner transport equation,
quantum hydrodynamics). There are (somewhat exotic) semiconductor devices
whose performance is entirely based on quantistic phenomena, e.g. resonant
tunnelling diodes. In many other devices, however, spurious quantistic effects
occur. In both cases, classical mechanics or even a semiclassical framework do
not suffice.

Semiclassical Modeling relies on the Boltzmann equation of solid state
physics. This is a phase-space based integro-differential equation, describing the

2 http://nobelprize.org/physics/laureates/1956/bardeen-bio.html
3 http://nobelprize.org/physics/laureates/1956/shockley-bio.html
4 http://nobelprize.org/physics/laureates/1956/brattain-bio.html
5 http://nobelprize.org/physics/laureates/2000/kilby-autobio.html
6 http://www.springer.com/sgw/cda/frontpage/0,11855,1-40109-69-1187595-0,00.html
7 http://info.tuwien.ac.at/histu/pers/12152.html



5 Semiconductor Modeling

77

dynamic balance of ballistic particle motion and particle collisions (predomi-
nantly collisions of electrons/holes with the crystal lattice of the semiconductor,
quantized as phonons). Obviously, there is a structural similarity to the gas dy-
namics Boltzmann equation of Chapter 1, the main difference lying in the form
of the collision operator, which in the solid state physics case is predominantly
inelastic and allows only Fermi-Dirac distribution as Fermion equilibria.

Macroscopic Modeling is based on various scaling limits of solutions of the
semiclassical Boltzmann equation. There are so called hydrodynamic semicon-
ductor models, similar to the compressible Euler/Navier–Stokes system of fluid
dynamics, energy transport equations and drift-diffusion systems.

For a review of these models, their interrelation and mathematical properties
we refer to [5] and to the references therein.

Here we want to give some details on the oldest and still most important
semiconductor device model, namely on the drift-diffusion-Poisson (DDP) sys-
tem.

Phenomenologically speaking, the main factors for current flow in semicon-
ductors are diffusion of conduction electrons and holes as well as convection of
charged particles by the electric field in the device. Now let n = n(x, t) denote
the density of (negatively charged) conduction electrons in the doped semicon-
ductor at position x and time t, p = p(x, t) the density of (positively charged)
holes, V = V(x, t) the electrical potential and Jn (Jp) the electron (hole) current
density vector fields. Clearly, the functions n and p are nonnegative. Then, after
appropriate non-dimensionalisation and scaling, the electron and hole current
densities in the DD model read:

Jn = Dn grad n − μn n grad V
Jp = −(Dp grad p + μp p grad V) .

Here Dn and Dp denote the (positive) electron and, resp., hole diffusion coeffi-
cients and μn and μp the (positive) electron and hole mobilities. Note that the
first terms in the current densities are the diffusion currents and the second
terms the drift currents, generated by the electrical field E = − grad V. The total
current density is

J = Jn + Jp .

Continuity equations for both carrier types are assumed to hold:

nt = div Jn + R
pt = − div Jp + R ,

where R denotes the so called recombination-generation rate, which accounts
for instantaneous generation/annihilation of electron-hole carrier pairs and acts
as a reaction term in the continuity equations. In most applications it is modeled
as a function of the position densities n and p.
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Fig. 5.2. PCI Bus mastering ATA Controller Chip (disk drive)
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Fig. 5.3. Intel Celeron Processor (downside)

A ‘closed’ system of partial differential equations is obtained by coupling the
current relations/continuity equations to the Poisson equation for the electric
potential:

λ2ΔV = n − p − C(x) .

This equation is a direct consequence of the Maxwell field equations, when
magnetic and relativistic effects are neglected. Its right hand side represents the
(negative and scaled) space charge density. The parameter λ, whose square mul-
tiplies the Laplace operator in the Poisson equation, is the scaled Debye length of
the doped semiconductor device, determining the radius of electrical influence
of an impurity ion in the semiconductor crystal. In many real life applications
it is a small parameter. It is often assumed that diffusivities and mobilities are
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proportional (Einstein relations), such that they may be taken equal after scal-
ing. Then, inserting the current relations into the continuity equations gives the
system of three nonlinearly coupled partial differential equations for the three
unknown functions n, p and V:

nt = div
(
Dn(grad n − n grad V)

)
+ R(n, p)

pt = div
(
Dp(grad p + p grad V)

)
+ R(n, p)

λ2ΔV = n − p − C(x) .

The equations for the densities n and p are parabolic (assuming for a moment
that V is known) and the equation for the potential is elliptic. Note that the
potential V depends linearly but in a nonlocal way on the densities n and p and

Fig. 5.4. Intel Celeron Processor (upside)
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that the doping profile C, which determines the electrical characteristics of the
device under consideration, only enters in the Poisson equation for the potential.

We remark that this Poisson equation models the repulsive electrical inter-
action between equally charged particles. A corresponding attractive (gravita-
tional) model is obtained by reversing the sign of ΔV in the Poisson equation,
as used, for example, in the modeling of biological cell motion by chemotaxis in
Chapter 4.

Equilibrium states (i.e. stationary states with vanishing current densities) are
Maxwell distributed:

ne = δ2 exp(Ve) , pe = δ2 exp(−Ve) ,

where δ is a positive device-dependent parameter. Note that, by basic solid state
physics, the recombination-generation rate R vanishes in equilibrium where
nepe = δ4 holds. The equilibrium Poisson equation then becomes semilinear:

λ2ΔVe = δ2 exp(Ve) − δ2 exp(−Ve) − C(x) , x ∈ D

Fig. 5.5. RAM (Random Access Memory) Array
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Fig. 5.6. Chipset on Graphics Card

which is a version of the so-called (repulsive) mean-field equation. Clearly,
the drift-diffusion-Poisson (DDP) system has to be supplemented by initial
conditions for the position densities n and p and by boundary conditions for n,
p and V. The boundary of the semiconductor domain D usually splits into two
parts, namely the contact segments (Ohmic, Schottky or Metal-Oxide contacts),
where Dirichlet data for n, p and V are prescribed, and into insulating or artificial
boundaries, where zero outflow current densities and zero outward electric field
are prescribed resulting in homogeneous Neumann conditions for n, p and V.
Contact voltages determine the Dirichlet condition for the potential V and
Ohmic contacts are assumed to be in thermal equilibrium and to have locally
vanishing space charge density. All in all, mixed Dirichlet–Neumann boundary
conditions for the three unknown functions are prescribed.

Usually, equilibrium data for n and p are given at t = 0 (which requires the
solution of the mean-field equation) and the device is driven out of equilibrium
by applying contact voltages.

The mathematical analysis of the DDP system is in a rather healthy state, we
refer to the references [4] and [5] for classical results and to the author’s publi-
cation list8 for more recent work, most of which focuses on various extensions
of the DDP system. Under appropriate assumptions on the data there is exis-
tence and uniqueness of transient solutions, existence of stationary states with
uniqueness for small contact voltages (close to equilibrium) and convergence

8 http://homepage.univie.ac.at/peter.markowich/publications.html



5 Semiconductor Modeling

84

of close-to-equilibrium transient solutions to the unique thermal equilibrium
state (determined by the mean field equation) in the large-time limit. (if, say,
contact voltages are turned off after some time). These qualitative results are
complemented by a series of quantitative results of singular perturbation type,
more specifically in the limit λ tending to zero. Note that, typically, at inter-
faces between positively and negatively doped device subdomains (so called
pn-junctions), the doping profile has a very large gradient and, in fact, is very
well approximated by a discontinuous function. When λ is set to zero in the
Poisson equation, then the global charge-neutrality equation

0 = n − p − C(x) , x ∈ D

results, which implies that at least one of the limiting densities n or p has to
be discontinuous (it turns out that both are!). Elliptic and parabolic regularity
theory implies, however, that – for λ small but nonzero – the functions n, p
and V are continuous in the interior of D! This is a well-known phenomenon in
singular perturbation theory, which indicates that there is a very thin layer (of
width O(λ) roughly speaking) around pn-junctions, within which the densities n
and p have a very large gradient in orthogonal direction to the junction. Clearly,
this interior layer structure of the solutions has to be well taken into account
when numerical discretisation schemes are devised and it renders the design of
discretisation schemes and grids highly nontrivial. We refer to the webpage of
Paola Pietra9 for references on this subject.

Recent mathematical/numerical efforts have gone into inverse and optimisa-
tion problems concerned with the DDP system. In particular the identification
of the doping profile from current-voltage or from capacitance measurements
for the sake of quality control in device manufacture and the design of doping
profiles according to certain optimality criteria is of great practical importance
(see the author’s publication list8 and the webpage of Martin Burger10 for more
information).

Comments on the Images 5.1–5.6 The Images 5.1–5.6 show chipsets of modern
computers. Each of them consists of a huge number (many millions) of semicon-
ductor devices, typically MOS-transistors. The continuous and rapid advance
of computer technology relies on an interplay of numerical simulations and
engineering insights used for the design of prototypes of new semiconductor
technology, which then becomes absorbed into new mainstream chipsets. At the
very basis of this is the modeling of individual semiconductor devices (typically
MOS technology) using the drift-diffusion-Poisson system, energy transport
and hydrodynamical models. Simulation runs of the semiconductor Boltzmann
equation are often used to provide benchmarks for the macroscopic param-
eters like diffusivities and charge carrier mobilities. The input for the device

9 http://www.imati.cnr.it/∼pietra
10 http://www.indmath.uni-linz.ac.at/people/burger
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model PDE systems, the so called doping profile, is obtained from process mod-
eling (nonlinear diffusion), and device model results are then assembled into
models for integrated circuits (large ODE systems). As discussed in detail the
drift-diffusion-Poisson system consists of two parabolic differential equations of
Fokker–Planck type for the position densities of (negatively charged) electrons
and (positively charged) holes, coupled nonlinearly to a Poisson equation for the
electrical potential. An important extension of the drift-diffusion equations is
given by energy transport systems, which take into account convection driven by
particle temperatures. The temperatures satisfy nonlinear transport equations,
too, which are coupled to the drift-diffusion equations for the particle densities.
We refer to [1] for detail. Further modeling detail is provided by hydrodynamic
semiconductor systems [3], which are – for each carrier species – compress-
ible Euler equations (with position density, particle velocity and temperature as
unknowns) with convective forcing provided by the electric field and with mo-
mentum and energy relaxation due to the dominant inelastic collisions with the
semiconductor crystal lattice (phonons). All the above mentioned charge carrier
transport models are based and can be derived from the semiclassical semicon-
ductor Boltzmann equation. This is a phase space model, posed in position-wave
vector space, balancing charge carrier transport in semiconductor crystals (tak-
ing into account the crystal’s energy band structure) with dominantly inelastic
collisions (typically elastic particle-particle collisions are a second order effect
in semiconductors). Fully quantistic models like the quantum-drift-diffusion
system [3], the quantum hydrodynamics system and quantum Boltzmann equa-
tions are able to model spurious quantistic effects in current device technology
as well as quantum semiconductor devices like tunnelling diodes11. Due to their
high complexity these models were not and are still not (yet in 2006) used for
general design-oriented simulations of semiconductor devices as they occur in
the chipsets depicted in the Images 5.1–5.6.
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6. Free Boundary Problems
and Phase Transitions

Initial and initial-boundary value problems for systems of partial differential
equations (PDEs) have functions or, more generally, distributions in the scalar
case and vector fields of functions or distributions in the vector-valued case as
solutions. Usually, the d-dimensional domain, on which the PDEs are posed,
is given and the problem formulation is based on a fixed geometry. Obviously,
there have to be compatibilities between the differential operator, particularly
its differential order and certain geometric properties, and the side (initial-
boundary) conditions and the geometry of the domain on which the problem is
posed in order to guarantee well-posedness of the problem under consideration.
In particular, for a given differential operator the number of initial-boundary
conditions and the geometry of the domain boundary are crucial for solvability,
uniqueness and continuous dependence on data.

Free boundary problems for PDEs have a totally different feature, namely that
geometric information is an inherent part of the solution. Typically, the solution
of a free boundary problem consists of one or more functions or distributions
ANDaset (the socalled freeboundary, subsetofRd), onwhichcertain conditions

Fig. 6.1. Layered iceberg, Lago Argentino
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on the unknown function(s) are prescribed. If we assume for a moment that the
free boundary is fixed, then, typically, the problem would be over-determined.
So, in fact, the additional conditions are needed to determine the free boundary
itself.

Regularity (smoothness) is an important issue in PDE theory. Usually, a cer-
tain degree of regularity (differentiability in the classical or weak sense) of the
solutions of initial-boundary value problems is necessary to prove their unique-
ness, their continuous dependence on the data, to carry out certain scaling
limits, as done in singular perturbation theory, and to devise efficient numerical
discretisation techniques. For free boundary problems the situation is definitely
more complex. Not only the regularity of the unknown functions is important,
but also the regularity of the unknown set, the free boundary. Typical questions,
which arise, are: does the free boundary have empty topological interior? What
are its measure theoretical properties? Is it a (finite union of) smooth manifolds?
What is the optimal regularity of the free boundary? In many cases the study
of the optimal regularity of the free boundary is of paramount importance for
understanding the solution of the free boundary problem under consideration,
to prove uniqueness, stability etc.

Obviously, the mathematical literature of free boundary problems is vast, at
this point we refer to the book [4] for a review of basic analytical tools and for
further references.

To start a more concrete discussion, we consider the maybe best-studied free
boundary problem, the so called obstacle problem for the Laplace operator. Let
us consider the classical Dirichlet functional

D(v) :=
1
2

∫
G

| grad v|2dx , (6.1)

where G is a bounded domain in Rd with a sufficiently smooth boundary ∂G.
Also, let us fix the boundary values of v and, for the moment, the considered
class of functions

Y :=
{
v ∈ H1(G) | v = ψ on ∂G

}
, (6.2)

where ψ is a prescribed function in the Sobolev space H1(G), which consists of
those square integrable functions, defined almost everywhere in G with values
in R, which also have a square integrable distributional gradient.

It is an easy exercise to show that the minimum u of the functional D over the
set of functions Y is the unique harmonic function on G assuming the boundary
values ψ, i.e. u uniquely solves the boundary value problem:

Δu = 0 in G (6.3)
u = ψ on ∂G . (6.4)

The obstacle problem is obtained by a modification of this minimizing pro-
cedure. Let φ ∈ H1(G) be another given function, the so called obstacle, and look
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Fig. 6.2. An iceberg with a central spire, Lago Argentino
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for a mimimizer of the energy functional D, which is in Y AND which nowhere
(in the almost everywhere sense) in G stays below the obstacle φ. More formally,
consider the convex set of functions:

X := Y ∩ {v | v ≥ φ} (6.5)

and find:

u := argminv∈XD(v) . (6.6)

Clearly, the obstacle φ cannot stay above the function ψ on the boundary of
G, i.e. we assume:

φ ≤ ψ on ∂G . (6.7)

In the two 2-dimensional case the solution of the obstacle problem can be
seen as the (small amplitude) displacement of an elastic membrane, fixed at the
boundary, minimizing its total energy under the constraint of having to stay
above a solid obstacle.

It is actually easy to show that the obstacle problem (6.6) has a unique
solution (minimizer) u ∈ X, all the technical mathematical analysis goes into
the investigation of the regularity properties of its solution u and of the free
boundary defined below.

We define the non-coincidence set N as

N := {x ∈ G | u(x) > φ(x)}
and the coincidence set C

C := {x ∈ G | u(x) = φ(x)} .

Then the free boundary F is defined as that part of the topological boundary of
N, which lies in G, i.e.

F := ∂N ∩ G ,

in other words it is the interface between the sets C and N.
It is a simple exercise to derive the Euler–Lagrange equations of the minimi-

sation problem (6.6). We find, assuming sufficient regularity of the minimizer u
and of the free boundary F:

Δu = 0 in N , u = φ in C and − Δu ≥ 0 in G (6.8)
u = φ and grad u · n = grad φ · n on F , (6.9)

where n denotes a unit normal vector to F, and finally:

u = ψ on ∂G . (6.10)
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Obviously, when F is a fixed hyper-surface in G, then one of the conditions
in (6.9) is redundant and the problem 6.8–6.10 is overdetermined.

In order to illustrate the difficulties of the obstacle problem, set

w = u − φ , x ∈ G .

Then, denoting h(x) = −Δφ(x), we can rewrite the Euler–Lagrange system (6.8)–
(6.10) as

Δw = h(x)1{w>0} (6.11)
w = ψ − φ on ∂G . (6.12)

Note that the minimisation of the Dirichlet functional over the set Y defined
in (6.2) leads to a simple linear problem while the minimisation over the con-
strained set X leads to a complicated nonlinear problem, as indicated by the
right hand side of (6.11)! Assuming a smooth obstacle we conclude that the right
hand side of the semilinear Poisson equation (6.11) is bounded in G, such that
by classical interior regularity results of linear uniformly elliptic equations we
conclude that the solution w is locally in the Sobolev space W2,p for every p < ∞
(which is the space of locally p-integrable functions with locally p-integrable
weak second derivatives). By the Sobolev imbedding theorem we conclude that
w (and consequently u) is locally in the space C1,α (locally Hölder continuous
first derivatives) for every 0 < α < 1. More cannot be concluded from this simple
argument.

From the many results on optimal regularity of the solution of the obstacle
problem we cite the review [2], where optimal local regularity for u, i.e. u ∈ C1,1

is shown, if the obstacle is sufficiently smooth. Note that the optimality of this
result follows trivially from the fact that Δu jumps from 0 to Δφ on the free
boundary F! Moreover, the free boundary has locally finite (n − 1)-dimensional
Hausdorf measure and is locally a C1,α surface, for some α in the open interval
(0, 1), except at a ‘small’ set of singular points, contained in a smooth manifold.
Singularities can be excluded by assuming an exterior cone condition. Moreover,
if the free boundary is locally Lipschitz continuous, then it is locally as smooth as
the data, in particular it is locally analytic, if the data are analytic. We remark that
the proof of the optimal regularity of the free boundary requires deep insights
into elliptic theory, in particular the celebrated ‘monotonicity formula’ of Luis
Caffarelli1.

A more complex application of free boundary problems arises in the theory
of phase transitions. A historically important example of a phase transition is
the formation of ice in the polar sea, as originally investigated by the Austrian
mathematician Josef Stefan2 (1835–1893). In the year 1891 Stefan published his

1 http://www.ma.utexas.edu/users/caffarel/
2 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Stefan_Josef.html
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Fig. 6.3. Melting iceberg
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Fig. 6.4. Iceberg, the Stefan boundary hits the fixed boundary (water surface)
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seminal paper [7], investigating the ice layer formation in a water-ice phase tran-
sition. Interestingly enough, Stefan compared his data, obtained by mathemati-
cal modeling, to measurements taken in the quest of the search of a north-west
passage [11] through the northern polar sea. In his paper [7] Stefan investigated
the non-stationary transport of heat in the ice and formulated a free boundary
problem, which is now known as the classical Stefan problem and which has
given rise to the modern research area of phase transition modeling by free
boundary problems. As a basic reference we refer to [10].

Some of the photographs associated to this chapter show icebergs in lakes
of Patagonia. The evolution of their water-ice phase transition free boundary is
modeled by the 3-dimensional Stefan problem formulated below.

Therefore, consider a domain G ∈ Rd (of course d = 1, 2 or 3 for physical
reasons but there is no mathematical reason to exclude larger dimensions here),
in which the ice-water ensemble is contained. At time t > 0 assume that the
domainG is divided into2 subdomains,G1(t) containing the solidphase (ice) and
G2(t) containing the liquid phase (water). These subdomains shall be separated
by a smooth surface Γ(t), where the phase transition occurs. Γ(t) is the free
boundary, an unknown of the Stefan problem. Heat transport is modeled by the
linear heat equation:

θt = Δθ + f , x ∈ G1(t) and x ∈ G2(t) , t > 0 , (6.13)

where f is a given function describing external heat sources/sinks. Here we
assumed that the local mass density, the heat conductivity and the heat capacity
at constant volume are equal and constant 1 in both phases. More realistically,
piecewise constants can be used for modeling purposes. The parabolic PDE
(6.13) has to be supplemented by an initial condition

θ(t = 0) = θ0 in G (6.14)

and appropriate boundary conditions at the fixed boundary ∂G. Usually, the
temperature is fixed there

θ = θ1 on ∂G (6.15)

or the heat flux through the boundary is given:

grad θ .ν = f1 on ∂G , t > 0 . (6.16)

Here ν denotes the exterior unit normal to ∂G. Also, mixed Neumann–Dirichlet
boundary conditions can be prescribed, corresponding to different types of
boundary segments.

Disregarding the phase transition the problem (6.13), (6.14), (6.15) or (6.16)
is well-posed. Thus, additional conditions are needed to determine the free
boundary. The physically intuitive condition says that the temperature at the free
boundary is the constant melting temperature θm of the solid phase. Obviously
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Fig. 6.5. A glimpse on the Stefan boundary under the water surface
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Fig. 6.6. Complicated structure of the free boundary and its intersection with the fixed boundary

we can normalize θm = 0 and regard θ from now on as the difference between
the local temperature and the melting temperature:

θ = 0 at Γ(t) . (6.17)

Note that the condition (6.17) cannot suffice to determine the free boundary.
Fixing Γ(t) arbitrarily (in a non-degenerate way) leaves us with two decoupled
linear boundary value problems for the heat equation, one in each phase with
Dirichlet boundary data on the interface. Both of these problems are uniquely
solvable!

The second interface condition, derived from local energy balance [9], reads:

Lvn = [grad θ .n] , (6.18)

where n denotes the unit normal to the interface, [.] stands for the jump across
the interface and vn for the interface velocity in orthogonal direction. L is the
latent heat parameter representing the energy needed for a phase change.

When the interface is a regular surface, given by the equation H(x, t) = 0, we
have

vn = −Ht grad H · n .
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In (6.18) we assume that the vector n points into the liquid phase and that the
jump is defined by (to get the signs right …):

[g] := g|fluid − g|solid on Γ(t) . (6.19)

Note that at time t = 0 the interface Γ(t = 0) is given by the 0-level set of the
initial datum θ0.

To get more insights we consider the one dimensional single phase Stefan
problem, assuming that the temperature in the liquid phase is constant and
equal to the melting temperature. Defining u as the difference of the melting
temperature and the solid phase temperature (i.e. u = −θ > 0 in the solid phase),
we obtain the one-dimensional single phase problem, with interface x = h(t)
and fixed (Dirichlet) boundary at x = 0:

ut = uxx , 0 < x < h(t)
u(x = 0, t) = α(t) ≥ 0 , t > 0

u(h(t), t) = 0 , t > 0
u(x, t = 0) = u0(x) , 0 < x < h(t) ,

subject to the Stefan condition:

L
dh(t)

dt
= −ux(h(t), t) , t > 0 .

This models for example the growth of an ice layer located in the interval
[0, h(t)]. The Dirichlet boundary x = 0 represents the water/ice–air interface,
at which the temperature variable is prescribed to be α(t) (below freezing).
x = h(t) is the ice-water interface. In order to study the onset and evolution of
ice formation we assume h(0) = 0, i.e. no ice is present at t = 0. Also, external
heat sources are excluded and homogeneity in the x2 and x3 directions (parallel
to the water surface) is assumed in order to obtain a one-dimensional problem.
Note that the x-variable denotes the perpendicular coordinate to the water/ice
surface, pointing into the water/ice.

We remark that this problem was already stated by Stefan in his original
paper [7] and that he found an explicit solution for

α = const. The solution reads (see also [11]):

h(t) = 2μ
√

t

u(x, t) = α

μ∫
σ(x,t)

exp(−z2)dz

μ∫
0

exp(−z2)dz
, 0 < x < h(t)

where

σ(x, t) =
x

2
√

t
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Fig. 6.7. A glacier flowing into Lago Argentino from the southern ice field
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Fig. 6.8. Penitentes

and μ solves a transcendental equation:

μ exp(μ2)

μ∫
0

exp(−z2)dz =
μ
2L

.

Note that the thickness of the ice layer behaves like
√

t. Stefan found coincidence
of this theoretical result with the experimental data available to him.

There is a convenient reformulation of the Stefan problem in terms of a de-
generate parabolic equation, making use of the enthalpy formulation of heat
flow. The physical enthalpy e is related to the temperature θ by

θ = β(e) , (6.20)

where

β(e) = e +
L
2

, for e < 0

β(e) = 0 , for −
L
2

< e <
L
2

(6.21)

β(e) = e −
L
2

, for e > 0
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Fig. 6.9. Glacier in Chilean Patagonia
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Fig. 6.10. Free boundary of glacier flow, Patagonia

�

Fig. 6.11. A glacier front entering Lago Argentino
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(see [9]). Now consider the degenerate parabolic PDE for the enthalpy:

et = Δβ(e) + f , x ∈ G , t > 0 (6.22)

subject to an initial condition

e(t = 0) = e0 (6.23)

which is such that θ0 = β(e0). Note that the temperature can be calculated
uniquely from the enthalpy but not the other way around! Also we prescribe
appropriate boundary conditions of Dirichlet or Neumann type (in correspon-
dence to the boundary conditions (6.15)) on the fixed boundary ∂G:

e = e1 on ∂G , t > 0 (6.24)

where, again, e1 is such that θ1 = β(e1), or, resp.

grad e.ν = f1 on ∂G , t > 0 . (6.25)

It is a simple exercise in distributional calculus to show that a smooth solu-
tion e of (6.22)–(6.25), which is such that its 0-level set is a smooth surface in G
for t > 0, gives a smooth solution θ of the Stefan problem (6.13)–(6.18), simply
by defining the temperature θ = β(e) and the free boundary Γ(t) as the 0-level
set of e(·, t). The nice feature of the nonlinear initial-boundary value problem
for the degenerate parabolic equation (6.22) is the fact that the phase transition
boundary Γ(t) does not appear explicitely. This allows for somewhat simpler
analytical and numerical approaches.

For a collection of analytical results and references on the Stefan problem
and its variants we refer to [8].

Comments on the Images 6.1–6.8 The Images 6.1–6.7 show icebergs in Patag-
onian lakes. Clearly, the free Stefan boundary is not visible itself, since it is the
ice-water phase transition under the water surface. In Image 6.5 and in Image 6.6
we get a glimpse of it, though … What we see on the other images is – at least
in part – the intersection of the free (Stefan) boundary with the fixed boundary
(water surface). Note that about 7/8 of the mass of a typical iceberg is under
water3!

Also the air-ice interface of icebergs, which is very well visible in most of the
Images 6.1–6.7 is determined by a free boundary problem, however, of much
more complicated nature than the Stefan Problem determining the ice-water
phase transition. Clearly, various mechanisms enter in the formation of the
above-water surface of an iceberg: the formation process of the iceberg itself
(mostly through calving from a glacier) giving the initial condition, the wind
pattern, erosion by waves, ablation (through solar radiation), melting …4.

3 http://www.wordplay.com/tourism/icebergs
4 http://www.wordplay.com/tourism/icebergs
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For a mathematical model of ablation see [1], where an integro-differential
equation for the snow/ice surface is derived, based on the heat equation with
a self-consistent source term accounting for ablation through solar radiation.
We remark that in this reference the flow of melt water along the surface and
refreezing effects are neglected (the paper deals with glacier surface model-
ing), which are important in iceberg surface modeling. In reference [1] it is
argued that the derived nonlinear model, which takes into account surface
light scattering, is able to describe typical glacier surface structures like peni-
tents (resembling a procession of monks in robes), as can be seen in the Im-
age 6.8.

Comments on the Images 6.9–6.11 For most macroscopic modeling purposes
the flow of glaciers and ice fields is assumed to be slow and incompressible,
taking into account a specific relationship between the strain tensor and the
ice viscosity [6]. Assuming isothermal flow and shallow ice, a time-dependent
highly nonlinear version of the obstacle roblem, based on a quasilinear diffu-
sion equation for the local height (over ground) of the ice is obtained, known
as a classical model of glaciology (see [6] for a physical derivation and ref-
erences). The free boundary is represented by the edge of the glacier or ice
field (the obstacle is the ground level surface!). In its most simple form, as-
suming 2-dimensional flow of an ice sheet over its bed surface z = H(x), with
small variations in x and uniform in the second spatial coordinate y, the model
reads:

ht =
(

(h − H)5h3
x

5
− ub(x, t)(h − H)

)
x

+ a(x, t) on {h(x, t) > H(x)} .

The unknown h denotes the height over ground, assuming uniformity of the flow
in y, and ub the given sliding velocity in x direction. Clearly, the cross-section
of the ice sheet at time t is the set in the (x, z)-plane, where H(x) < z < h(x, t).
The flow is assumed to be driven by gravity, caused by the variation of the
weight of the ice depending on its height, and by sliding at the ice-bed inter-
face. For realistic glacier modeling large variations of the bed z = H have to be
taken into account to describe mountain slopes, e.g. by tilting the geometry. We
remark that this problem becomes particularly interesting when source terms
a = a(x, t) are present, e.g. modeling snowfall on the glacier or ablation by solar
rays. A mathematical analysis of properties of the free boundary (in one space
dimension) can be found in [3]. We refer to [5] for an excellent account of glacier
physics.
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7. Reaction-Diffusion Equations –
Homogeneous and Heterogeneous
Environments

Many physical, chemical, biological, environmental and even sociological pro-
cesses are driven by two different mechanisms: on one hand there is diffusion,
a random particle (= chemical molecule, biological cell or biological specimen)
movement microscopically described by Brownian motion1, and on the other
hand there are chemical, biological or sociological reactions representing in-
stantaneous interactions, which depend on the state variables themselves and
possibly also explicitely on the particles’ position. Typical examples are flame
propagation, movement of biological cells in plants and animals (see Chap. 4
on chemotaxis and biological pattern formation), spread of biological species
in homogeneous or in heterogeneous environments (for example in the three
dimensionally terraced rice paddies in the southern Chinese Guanxi province
depicted in the Images 7.1–7.3) etc.

For the mathematical modeling, let u = u(x, t) be the d-dimensional con-
centration vector of the interacting particle species, where x in Rn denotes the
position variable (typically n = 1, 2 or 3) and t > 0 time. Then the diffusion part
of the motion is (in a quasilinear context) described by the parabolic evolution
equation:

ut = div(D grad u) ,

where D is a positive definite symmetric diffusion matrix, which may depend
on x describing inhomogeneous diffusion, on t or/and even on the unknown
vector u itself. Note that in the vector-valued case grad u denotes the Jacobi
matrix of the vector field u. If D is a positive scalar valued function, then the
direction of the diffusive flux is parallel to the gradient of the concentration
function u, pointing in the direction of smaller values of u.

In the reaction-diffusion framework the reaction process is modeled by
a ‘local’ dynamical system of the form

ut = F(x, t, u) .

F is independent of the position variable x, if the process occurs in an un-
structured (homogeneous) environment and x-dependent if spatial structure
interacts instantaneously with the reaction. The t-dependence can be used to
account for external time dependent driving forces.

1 see, e.g., the excellent out-of-print book downloadable from
http://www.math.princeton.edu/∼nelson/books/bmotion.pdf
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Fig. 7.1. Terraced Rice Paddies in Guanxi Province, China

�

A classical example for F in the scalar case (one species only) is the so-called
Fisher logistic nonlinearity:

F = u(1 − u) .

The exact solution of the initial value problem for the so called logistic
ordinary differential equation (ODE)

ut = u(1 − u) , u(0) = u0 ≥ 0

is easily calculated:

u(t) =
u0

exp(−t) + u0
(
1 − exp(−t)

) .

Note that there are two stationary states u = 0 (total extinction of the species,
unstable) and u = 1 (total saturation, exponentially stable).

In order to describe the interaction of both types of processes, namely dif-
fusion and reaction, we can imagine that on small time intervals the diffusion
process and the reaction process happen consecutively. Then, when the lengths
of the considered time intervals tend to zero, at least on a formal level, this
time-splitting scheme turns into the so-called reaction-diffusion system

ut = div(D(x, t, u) grad u) + F(x, t, u) .

If the process occurs in a spatially confined domain G, then boundary con-
ditions have to be imposed, e.g. the Dirichlet condition

u = 0 on ∂G (zero density outside G)

or the Neumann condition

grad u · n = 0 on ∂G (no outflow through the boundary) .

Clearly, inhomogeneous boundary conditions may occur, as well as linear com-
binations of Dirichlet and Neumann conditions. Note that diffusion per se does
not change the total number of particles (unless the boundary conditions in-
terfere, as is the case, e.g., with homogeneous Dirichlet conditions) while the
reaction term describes local generation and annihilation of particles of the
considered species.

A different way of deriving reaction-diffusion equations proceeds by local
mass balance. Therefore, denote by V an arbitrary subdomain of the domain G,
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Fig. 7.2. Terraced Rice Paddies in Guanxi Province, China

�

with boundary S. Clearly, the (temporal) rate of change of the mass of the
particles in V is equal to the mass created in V plus the net flow of material into
V through S. In mathematical terms this law of local mass balance reads:

d
dt

∫
V

u(x, t)dx = −
∫
S

J(x, t)ds(x) +
∫
V

F
(
x, t, u(x, t)

)
dx ,

where ds(x) denotes the (n − 1)-dimensional surface element. The first term on
the right hand side stands for the incoming flux through the boundary S, with
flux density J, and the second term denotes the local mass production in V, with
production per unit volume F(x, t, u). The divergence theorem can be applied to
the boundary integral and we obtain:∫

V

(ut + div J − F)dx = 0 ,

such that, since V is arbitrary in G, we conclude that the integrand is zero,
assuming its continuity:

ut = −div J(x, t) + F(x, t, u) , x ∈ G, t > 0 .

Assuming a Fick-type law, connecting the flux density with the concentration
vector:

J(x, t) = −D(x, t, u) grad u(x, t)

with a symmetric, positive definite diffusion matrix D, we obtain the reaction-
diffusion equation already derived above. Note that the minus sign in the def-
inition of the flux density accounts for the equilibrating tendency of diffusion,
creating a flow from high densities to low ones.

Reaction-diffusion systems have been introduced by Fisher2 in the year
1937 [4] and at the same time by Kolmogorov3 et al. [5].

Classical examples of reaction-diffusion systems are the so called predator-
prey models, often referred to as Lotka4–Volterra5 equations, see [8]. Assuming
that there is one species of prey, whose concentration is denoted by u, and one

2 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Fisher.html
3 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Kolmogorov.html
4 http://users.pandora.be/ronald.rousseau/html/lotka.html
5 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Volterra.html
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Fig. 7.3. Terraced Rice Paddies in Guanxi Province, China
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The coefficients d1 and d2 determine the strength of diffusion of prey and
predators, resp. Obviously, the environment dependence can be accounted for
by making the coefficients x-dependent in an appropriate way.

Themathematical literatureonreaction-diffusionequations is vast.Asa stan-
dard text we reference the textbook [9].

Typical mathematical questions in the theory of reaction-diffusion equations
deal with existence of solutions, global boundedness of solutions by means
of maximum and invariant region methods, large-time asymptotics, travelling
waves and geometry and topology of attracting sets, singular limits etc.

Themaybemostbasicmathematical questionrefers to the stabilityproperties
of the reaction-diffusion system under consideration. For this, assume that, for
simplicity’s sake, D is independent of u and t, F independent of t and that
u0 = u0(x) is a stationary state of the reaction-diffusion system, i.e.

0 = div (D(x) grad u0) + F(x, u0) .

An important question concerns the behaviour of solutions of the nonlinear
system in comparism with the solutions of the linearized system, when the
linearization is performed at the stationary state u0, in direction of a function v:

vt = div (D(x) grad v) + DuF(x, u0)v .

Clearly, this is still a difficult problem in full generality (and also for many
particularly interesting cases). Thus, it seems intruiging to neglect diffusion
and to analyse the linear ODE system instead

wt = DuF(x, u0)w .

At least in the homogeneous case, where D, F and consequently u0 are inde-
pendent of x, it suffices to calculate the eigenvalues of DF(u0) to decide about
linearized, diffusionless stability. If all eigenvalues have negative real parts, then
only exponentially decaying modes of w exist, eigenvalues with positive real
parts generate exponential instabilities and more information is required if
eigenvalues with zero real part occur. In the first two cases the linearized be-
haviour carries over to the diffusionless nonlinear ODE system locally around
stationary points.

For example, take the predator-prey model formulated above. Then, neglect-
ing diffusion, a simple calculation shows the existence of two stationary states,
namely (0, 0) corresponding to extinction of both species and a state (u0, v0) with

u0 =
ae + db
ef + bc

v0 =
ac − df
ef + bc

.

Note that the predator-equilibrium value becomes negative unless ac − df > 0.
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Fig. 7.5. Fields in Chiapas, Mexico

A simple calculation shows that the extinction state is the intersection of a
1-dimensional stable manifold corresponding to the predator species and an
unstable one corresponding to the prey species. The other stationary state is
stable (in the linearized sense when diffusion is neglected and when ac−df > 0).

A very interesting phenomenon happens when diffusion is taken into account
in the stability analysis. Although, intuitively speaking, diffusion stabilizes par-
ticle flow, there are cases of reaction-diffusion vector systems (d > 1!) with
stationary points, which are exponentially stable in the diffusionless case AND
feature unstable modes if appropriate diffusion is taken into account. This so
called Turing instability (see [11]) is generated by sufficiently different diffu-
sivities for the different components of the vector u. An example is given in
Chapter 4, in the context of biological pattern formation.

For analytical results on diffusive predator-prey models in heterogeneous
environments we refer to [3].

While modeling and analysis of reaction-diffusion systems in spatially un-
structuredenvironments (i.e. thenonlinearityof F and thediffusionmatrixDare
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independent of the position variable x) is by now a classical subject, the study
of the interaction of the spatial structure with reaction and diffusion has only
started recently, particularly in biological/environmental/population dynamics
models. In this respect we cite [10]:

In the last two decades, it has become increasingly clear that the spatial
dimension and, in particular, the interplay between environmental het-
erogeneity and individual movement, is an extremely important aspect
of ecological dynamics.

In many cases when persistence of species or invasion of species into environ-
mentsareanalyzed, the standardassumptionofhomogeneityof theenvironment
is obsolete and position dependent nonlinear reaction terms and diffusion ma-
trices have to be considered. Local environmental properties very often influence
individual survival and macroscopic persistence of species. For mathematical
results on reaction-diffusion equations in periodic media we refer to the re-
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Fig. 7.6. Namibian savanna

cent papers of Henri Berestycki (and coworkers), which (among others) can be
downloaded from his webpage6.

Also, we point out the work of S.A. Levin7, in particular the review paper [6].
As an important and mathematically interesting example for the interaction

of heterogeneity and reaction-diffusion we mention homogenisation problems.
Consider a periodically fragmented environment, with a periodicity scale which
is small compared to the total characteristic dimension of the environment and
denote by the small positive parameter ε the dimensionless ratio of these two
length scales, i.e. the microscopic-macroscopic ratio.

Then it is reasonable to assume that the diffusion matrix and the reaction
nonlinearity F are periodic in the position variable, with periodicity of the
order ε. In precise terms, let

D = D(y) , F = F(y, u) ,

where D and F are periodic with respect to an n-dimensional lattice L (i.e. the
set of n-vectors with integer components) in y, define the fast scale

y =
x
ε

6 http://www.ehess.fr/centres/cams/person/berestycki/
7 http://www.eeb.princeton.edu/∼slevin/
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and consider the reaction-diffusion system

ut = div
(
D

(x
ε

)
grad u

)
+ F

(x
ε

, u
)

eitheron thewhole spaceRn oronaboundeddomainwithappropriateboundary
conditions.For the sakeof simplicity,weneglectedslowscale effects inDand inF.

Themainquestion iswhether slowscale ‘averaged’dynamics canbeextracted
from the fast scale problem without actually resolving the fast scale features. In

Fig. 7.7. Male lion
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Fig. 7.8. Eagle

other words, does the solution u converge to a limit as ε converges to zero? If
yes, how can we characterize this limit?

For ‘good’ nonlinearities we expext a homogenized reaction-diffusion equa-
tion to hold for the limit u0, of the form:

u0
t = div (D0 grad u0) + F0(u0) .

Here the ‘homogenized’ (constant coefficient) diffusion matrix D0 is obtained
in analogy to the linear case by solving a cell problem (see [7], [2]) and F0 is
obtained by computing the average of F(., u) over a lattice cell C:

F0(u) =
1
vol C

∫
C

F(y, u)d y .
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Fig. 7.9. Impala

Fig. 7.10. Predator and Prey

The theory becomes more involved, when slow scale dependence of D and/or F
is considered, too. Then double scale convergence techniques have to be applied.

Comments on the Images 7.1–7.5 The Images 7.1–7.3 show three dimensionally
terraced rice paddies8 in the Chinese province Guanxi, close to the city of Guilin.
Clearly, these are excellent examples for heterogeneous biological environments,
where heterogeneity is introduced through the topography of the hillside on
which the paddy is located and through the walls separating the paddies, which
inhibit the global spread of certain (invading or intentionally introduced) species

8 http://en.wikipedia.org/wiki/Paddy_field
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or at least change their invasion patterns. Also we remark that the paddies are
connected by irrigation, which has to be included as a convection term into
the reaction diffusion system modeling biological populations in a terraced rice

Fig. 7.11. Lagoa Rodrigo de Freitas, from Corcovado. Rio de Janeiro, Brazil

Fig. 7.12. Lagoa Rodrigo de Freitas ( foreground) and Guanabara bay, Rio de Janeiro, Brazil
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Fig. 7.13. Lagoa Rodrigo de Freitas ( foreground right side) and Sugar Loaf Mountain,
Rio de Janeiro, Brazil
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paddy field, with a downhill pointing drift vector field representing the water
flow pattern.

The Images 7.4, 7.5 show patches of fields of different crop, another classical
example of heterogeneous biological environments. An important question,
which mathematics can strive to answer is how to do the patching in an optimal
way in order to minimise the success of invasion of detrimental biological species
into agricultural systems. For more information of the distinctive features of
species invasion in heterogeneous environments (compared to homogeneous
environments) we refer to the work of Tom Robbins9.

Commentson the Images7.6–7.10 African savanna environments10 are classical
examples, where Lotka-Volterra predator-prey models can be applied. Typical
well studied examples are lion-wildebeest or lion-zebra interactions. Clearly,
savannas are highly complex ecosystems and the degree of accuracy in the
modeling of savanna population dynamics can only be increased at the cost of
enormously growing complexity. For example, when the interaction of a number
of predator species with a number of prey species is considered in a realistic
context, then large systems of reaction-diffusion equations are obtained. Typ-
ically, a number of predator species compete for the same prey species, e.g.
lions, hyenas and leopards feed on impalas, kudus, zebras, wildebeest etc. Even
more accuracy can be achieved by taking into account the social behaviour
of predators and prey species, by self-consistently coupling the predator-prey
systems with reaction-diffusion equations modeling savanna vegetation and by
incorporating seasonal/climatic changes.

The Images 7.7–7.10 were shot in national parks of South Africa and Namibia.
Note that population dynamics in national parks have to take various specific
effects into account. Often parks in Africa are fenced giving rise to zero-outflow
boundary conditions (homogeneous Neumann boundary conditions) for the
wildlife population densities satisfying predator-prey equations (idealizing a no-
penetration/escape situation, which is often unrealistic as in the case of lions es-
caping through holes in the fence of Etosha National Park in northern Namibia).
Also, in some parks culling of certain animal species is done in order to counter-
act the roaming restrictions imposed by fencing (as it was done with elephants
in South African parks) and in many cases animals are introduced into parks by
the National park biologists. These processes have to be described by annihila-
tion/generation terms in the reaction-diffusion equations. Savannas also carry
typical features of heterogeneity. Animal interactions statistics vary according
to geographical features and predator-prey encounters have different statistical
outcomes in different locations (e.g. on a waterhole compared to open savanna
grassland), animals tend to diffuse more into their preferred habitat (often veg-
etation dependent) etc., such that the encounter and diffusion coefficients in the
Lotka–Volterra systems depend strongly on position.
9 www.math.utah.edu/∼robbins/
10 http://www.blueplanetbiomes.org/savanna.htm
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Comments on the Images 7.11–7.13 The Images 7.11–7.13 show the Lagoa
(Portugese for Lagoon) Rodrigo de Freitas in the city of Rio de Janeiro in Brazil.
Obviously, the ecological management of this lagoon is of significant importance
for the economy and overall ecology of the city. The same can be said about other
lagoons in urban or semi-urban environments (think of the lagoon of the city of
Venice in Italy, for example).

The ecological balance of a lagoon is to a large extent represented by the
phytoplankton-zooplankton-nutrient-oxygen interaction, which is typically of
predator-prey type. We refer to [1], where a convection-diffusion-predator-
prey model for a prototypical shallow lagoon is presented and mathematically
analysed, in particular with respect to the existence of time-periodic solutions
(assuming period inputs), which represent long-term coexistence states.
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8. Optimal Transportation
and Monge–Ampère Equations

Assume that a construction entrepreneur faces the following problem: there is
a pile of soil, sand or rubble (deblais) which has to be moved into a hole or
fill (remblais) of equal volume. Or imagine a farmer, who has to move a pile
of grain into a silo. Of course, for simple economic reasons, in both cases,
the transportation of the materials should be carried out at the least possible
transportation cost or labor. Typically, this cost is related to the distance, which
(point) masses have to travel during the transportation process and intuitively it
is clear that the optimal transportation plan (if it exists) will depend decisively
on the geometries of the material pile and the volume to be filled by it, or more
generally, on the local mass densities of the pile and of its desired allocation, if
non-uniform mass distributions are considered.

This problem was originally formulated and analysed by the French civil
engineer Gaspard Monge1 in the year 1781 [13], initiating a profound math-
ematical theory, which connects the seemingly different areas of differential
geometry, linear programming, nonlinear partial differential equations and
probability theory. At this point we already remark that numerous other ap-
plications of the so called Monge–Kantorovich optimal mass transportation
theory (we shall see in a moment how the Nobel laureate L.V. Kantorovich2

came into this field) and its variants exist, many of them within the realm of
our daily lives and of the nature that surrounds us. Here we mention opti-
mal water distribution in irrigation channel systems, optimal urban planning
(allocation of housing, service and office locations in cities), traffic network
planning in cities, internet traffic optimisation, blood vessel branching in the
human arterial/venous system, optimal branching in the growth of trees, struc-
turing of arteries in leaves, branching of rivers systems, shape optimisation,
meteorological fluid dynamics (semigeostrophic equations) … For an overview
of these (and other) applications we refer to the survey [9] and to the refer-
ences [5], [1]. Note that all these applications have one common feature: they
deal with the transport of a supply measure (representing e.g. a mass density,
density of residential areas in a city, bit density etc.) into a demand measure
under the condition of minimizing an associated cost or work functional. In
some cases there is an additional minimisation problem involved, typically de-
termining some optimal geometry along which the transport is affected or an
optimal graph, e.g. an urban transportation system or internet nodes. The pho-
tographs associated with this Chapter illustrate some modeling applications of

1 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Monge.html
2 http://nobelprize.org/economics/laureates/1975/kantorovich-autobio.html
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Fig. 8.1. ‘Deblais’, modern Mass Transportation

the Monge–Kantorovich theory, as discussed in more detail in the comments to
the Images 8.1–8.11.

Before we discuss the mathematics of optimal mass transportation we want
to mention the excellent book [14], which to our knowledge is the most com-
plete and readable mathematical account of the Monge–Kantorovich mass trans-
portation problem and its link to the above mentioned other areas of modern
mathematics.

To start the technical discussion, let f and g be two nonnegative Radon
measures on Rn, where f represents the original mass density supported in the
deblais (denoted by X in the sequel) and g the desired mass density supported
in the remblais (denoted by Y in the sequel), after transportation (clearly, n = 3
in most applications). We assume that both f and g are bounded measures with
the same total mass. In mathematical terms the transportation is affected by
a map S : X → Y, which is one-to-one, measurable and pushes the measure f
into the measure g, i.e.

f
(
S−1(A)

)
= g(A) for all Borel sets A ⊆ Y . (8.1)

For a given mass point x ∈ X, y = S(x) denotes its location after trans-
portation. Note that for measures f , g which are uniform in the deblais X and
remblais Y resp., the condition (8.1) is – for smooth maps S – equivalent to

det |DS(x)| =
vol(Y)
vol(X)

for all x ∈ X ,
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Fig. 8.2. ‘Deblais’, old fashioned Mass Transportation

where DS(x) denotes the Jacobian of the map S = S(x). Now let c = c(x, y) be the
transportation cost (or work), given by a nonnegative measurable function c,
which maps X × Y → R

+. We can think of the value c(x, y) as the cost or work
it takes to move the mass point x in X into the point y in Y. Then the total
transportation cost (or work) is defined by:

Cc( f , g; S) :=
∫
X

c
(
x, S(x)

)
df . (8.2)

As already mentioned above, intuitively speaking, c typically is a function of
the Euclidean distance |x − y|. Actually, very important classical cases are

c(x, y) := |x − y| (8.3)

used by Monge, assuming that the transportation cost is equal to the distance of
a mass point before and after transportation, and the quadratic case

c(x, y) :=
|x − y|2

2
. (8.4)

In non-standard applications as in urban transportation network planning
or in irrigation networks other, more complicated cost functions arise.

The Monge formulation of the optimal transportation problem reads:

Oc( f , g) = inf Cc( f , g; S) , (8.5)
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where the infimum is taken over all transportation maps S, which are one-to-one
onfromX toY,measurableandpush themeasure f intog.Obviously, this is avery
difficult optimisation problem, mainly due to the highly nonlinear constraint
(8.1) on S and due to the seemingly total lack of compactness of minimizing
sequences. No derivative of S is involved in Cc, which might give coercivity!

A big step forward was taken by L.V. Kantorovich in the ’40 s (see [11], [12]).
He introduced the following relaxed version of the Monge problem: Consider
the functional

Rc( f , g, π) :=
∫

X×Y

c(x, y)π(dx, dy) , (8.6)

where π is a bounded nonnegative Borel measure on X × Y with marginals f
and g, i.e. loosly speaking ∫

X

π(dx, y) = g(y) (8.7)

∫
Y

π(x, dy) = f (x) (8.8)

and minimize Rc( f , g, π) over all those measures π:

Pc ( f , g) := min Rc ( f , g, π) . (8.9)

In fact the functional Rc is linear in π and there is enough compactness to
proof that minimizing sequences converge to a minimizer. But how are these
two problems related? First of all, we note that for all admissible transportation
maps S the measure

π(x, y) := f (x) δ
(
y − S(x)

)
(8.10)

satisfies (8.7) and (8.8). However, generally, a minimizer π of (8.9) may not be of
the form (8.10) such that it does NOT in general correspond to a transportation
map and thus to a solution of the Monge problem.

Now let us consider the case, where f and g are absolutely continuous with
respect to the Lebesgue measure onRn, represented by smooth functions (which,
sloppily, we denote by the same symbols) of compact supports X and Y, resp.,
and that the transportation cost is given by the quadratic function (8.4). In this
case the problem of constructing an optimal transportation plan was basically
resolved by Yann Brenier3 in [3] who proved a striking polar decomposition
theorem of smooth vector fields as composition of a gradient map (of a convex
scalar potential) and a Lebesgue measure preserving map. This very remarkable

3 http://math1.unice.fr/∼brenier
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theorem can be regarded as a nonlinear version of the Helmholtz decomposition
theorem, which additively decomposes a smooth vector field into a divergence
free vector field, tangential to the boundary of the domain, and a gradient
map. It turns out, by using a dual formulation by Kantorovich of the Monge
problem (which is a continuous version of linear programming) that the optimal
transportation map is the gradient of a convex potential, i.e.

Sopt(x) = grad V(x) , V convex on X . (8.11)

Since (8.1) implies (after a weak formulation using test functions), assuming
sufficient smoothness of S:

g
(
S(x)

)
det

(
DS(x)

)
= f (x), (8.12)

we conclude that V is a (weak) solution to the following Monge–Ampère equa-
tion:

g(grad V) det(D2V) = f (x), x ∈ X
grad V : X → Y (8.13)

(D2V stands for the Hessian of V). This links the Monge–Kantorovich mass
transportation theory to theareaofpartial differential equations.Weremark that
the Monge–Ampère equation is a fully nonlinear elliptic differential equation,
which has only recently been investigated in a detailed mathematical way. In
particular we refer to the work of Luis Caffarelli4 [6], [7], [8], which presents
adeep regularity theory for theMonge–Ampère equation, basically giving results
analogous to the Schauder theory for linear elliptic equations. Note that even
the interpretation of the equation (8.13) is not obvious since convex functions
in general do not have pointwise second derivatives, in full generality D2V is –
due to convexity of V – a matrix of signed measures only!

The solution of the Monge–Kantorovich optimisation problem is even more
complicated if the cost function s = s(|x − y|) is not uniformy convex, e.g. in the
original case of Monge (8.3). Here we only mention that, again under the above
assumptions on the measures f and g, the optimal transportation map exists
and satisfies:

Sopt(x) = x − a(x)grad u(x) , (8.14)

where u is again a scalar potential with |grad u(x)| = 1 and a is nonnegative. We
refer to [9] on how to recover u and the distance a from the measures f and g.

Obviously, for more complex realistic applications the cost functional has to
be adapted, in particular when there are (geometrical or other) constraints on
the transportation trajectories. Heuristically speaking, the Monge–Kantorovich
problem corresponds to the case where all possible transportation roads exist

4 http://rene.ma.utexas.edu/users/caffarel/
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Fig.8.3.RiverBedBranching,CentralAus-
tralia
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Fig. 8.4. Branching of Vessels in Lotus Leafs

Fig. 8.5. Branches of a tree, Kalahari Desert
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and do not enter in the minimisation process. In many applications, however,
the construction of the transportation roads is really part of the transportation
problem itself. For example, Buttazzo and Stepanov in [5] analyse the problem
of constructing an optimal public transportation network in a city, based on
Monge–Kantorovich mass (measure) transportation theory. They let f represent
the density of housing locations, g the density of work places and define a cost
function, which expresses the fact that an inhabitant of a city either can walk
from the point x to the point y, or, if altogether shorter, walk from x to the nearest
point in the transportation network (represented by a closed connected subset U
of the city), use the network until the closest point to y and then walk from there
to y. Then they define a Kantorovich functional in analogy to (8.6), and minimise
again over all transportation network sets U with a one-dimensional Hausdorff
measure less than or equal to a prescribed maximal network length.

Comments on the Images 8.1–8.11 The Images 8.1–8.11 show classical and
modern applications of the Monge–Kantorovich mass transportation theory.

In the Images 8.1 and 8.2 we can see piles of construction material (‘deblais’)
to be moved, most likely to a fill (‘remblais’) on the same or on a different
construction site. This is the application which G. Monge had in mind in the
1780’s, when he gave the now classical (original) Monge-formulation [7] of the
Monge–Kantorovich mass transportation problem. Clearly, the means of realiz-
ing the transportation map differ in Images 8.1 and 8.2 and the importance for
minimizing the transportation cost is quite evident, particularly in Image 8.2 …

The Images 8.3 to 8.7 feature examples of branching and irrigation flow
networks, in particular river branching in Image 8.3, leaf vessel branching in
Image 8.4 and branches of trees in the Images 8.5–8.7. These examples and
many others can be regarded as supply-demand systems, where goods (nu-
trient fluids or river water) are transported from the supply location (e.g. the
base of the leaf or an upstream location in the riverbed) to the demand lo-
cation (e.g. the leaf ’s perimeter or a downstream location in the riverbed).
It is clear that the original versions of the Monge–Kantorovich optimal mass
transportation cannot be applied directly, particularly since their solutions are
transference plans of minimal cost, which do not take possible infrastructures
and ‘infrastructure costs’ into account, i.e. there is no biasing of transportation
trajectories in the Monge–Kantorovich problem. The trajectories are simply
geodesics (straight lines in the Euclidean setting). Various generalisations, tak-
ing into account network costs by differentiating the transportation costs on
low and high capacity edges, were suggested by E.N. Gilbert [10], Q. Xia [15]
and M. Bernot, V. Caselles and J.-M. Morel [2] (among others). For a review
of the existing literature and a wealth of new results on irrigation plans (not
taking into account ‘who goes where’, only prescribing the supply and demand
measures) and traffic plans (taking into account ‘who goes where’, prescribing
a transportation plan) we refer to [2]. Most generally, traffic plans are defined
as probability measures on spaces of transport paths (connected and piece-
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Fig. 8.6. Branches of trees, Dead Vlei, Namibian Desert
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Fig. 8.7. Branches of a tree, Dead Vlei, Namibian Desert
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Fig. 8.8. Urban planning in Buenos Aires, for the living …

wise smooth curve segments). Associated transportation plans are measures
representing the mass transported THROUGH a given traffic plan, connecting
the irrigating (source) measure with the irrigated (demand) measure. The cost
functional of traffic plan is set up according to infrastructural expenses and
constraints. In analogy to the Kantorovich cost functional a minimisation over
irrigation plans connecting a given supply to a given demand measure or, resp.,
over traffic plans with a given transportation plan is carried out, leading to the
simultaneous construction of the transport paths and the transportation plan.
Note that a major difference to the Kantorovich problem lies in the fact that the
cost function generally depends on the whole transportation path and not only
on its endpoints!

The Images 8.8–8.11 depict urban areas in Buenos Aires, Quito and Rio de
Janeiro. Recently, urban planning models based on Monge–Kantorovich mass
transportation have been introduced in the literature. We cite [4], where a very
interesting model of optimal distribution of residential areas (density f ) and
service areas (density g) in an urban environment is presented, which we shall
discuss in some detail thereafter. The model is based on the propositions that
there is a transportation cost for moving between residential and service areas,
that overcrowding of residential areas is typically avoided by city dwellers and
that concentration of services is desirable for increasing efficiency. Obviously,
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Fig. 8.9. Urban plan-
ning in Buenos Aires,
for the deceased …
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Fig. 8.10. Urban planning in Quito (Ecuador), or lack of it …
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Fig. 8.11. Favela in Rio de Janeiro. No urban planning whatsoever …

many collateral issues in urban planning are neglected by the model (like the
historic growth situation of cities, formation of low income and slum areas by
uncontrolled immigration into urban areas, city topography etc.). No existing
city has yet been planned by this model (and most likely never will be) but nev-
ertheless it serves as an interesting starting point for further modeling and as
an educational tool for city planners. In the Buttazzo–Santambrogio model the
transportation cost is accounted for by a Wasserstein distance of the densities
f and g , overcrowding is avoided by penalising with an ‘unhappiness’ func-
tional of f heavily penalizing population densities f , which are not absolutely
continuous with respect to the Lebesgue measure, and service concentration
is built in by heavily penalizing non-atomic service measures g. Then, a total
cost functional is defined by summing up these three terms and minimizing
densities f and g are sought (with equal prescribed total mass). Note that a clas-
sical Monge–Kantorovich mass transportation problem appears here only as
a subproblem defining the transportation cost between residential and service
areas!

Typical minimizers ( f , g) have the form of a certain number of circular resi-
dential areas with a service pole (atom of g) in the center. The radial population
density in these ‘subcities’ decreases away from the service pole.
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9. Wave Equations

Waves occur in many aspects of our daily lives and in the nature which sur-
rounds us. Just take a stone and throw it into a resting water surface: you will
observe a surface wave, spreading in concentric circles around the impact point
on the water. Or think of the high breaking waves in the ocean which are so
highly desirable for surf champions. Less pleasantly, there are the energy waves
generated by potent seaquakes, which travel under the ocean surface with the
speed of about thousand kilometres per hour and turn into deadly tsunami
water waves close to beaches. Other examples are the sound waves, generated
by our speech, propagating in the air to the partner of our conversation, elec-
tromagnetic waves described by the Maxwell1 equations, light propagating in
spherical waves from a source and, even more fundamentally, as established by
quantum mechanics [19]2, there is a matter-wave duality which basically states
that even particles with positive mass (say, electrons) have wave-like features
(e.g. delocalisation).

So how is wave motion characterized? Webster’s dictionary gives the follow-
ing definition:

a disturbance or variation that transfers energy progressively from point
topoint in amediumand thatmay take the formof anelasticdeformation
or of a variation of pressure, electric or magnetic intensity, electric
potential, or temperature.

Clearly, this refers to the time-dependent transport of some physical quan-
tity (e.g. energy) in certain spatial directions of a medium, such that typical
characteristics of the quantity are maintained during the transport process.
We remark that the transport of, say, energy is typically affected WITHOUT
significant transport of particles of the medium.3

As maybe the most simple example, consider a (possibly) complex-valued
function w = w(x), defined on Rn, and set

u(x, t) = w(x − vt) , x ∈ Rn, t ∈ R , (9.1)

where v is a given n-dimensional parameter vector, x denotes the spatial variable
and t represents time. Obviously, this function in space-time can be interpreted
in the following way: take w = w(x) and move it with speed |v| in the direction v

|v| .

1 http://www-groups.dcs.st-and.ac.uk/∼history/Mathematicians/Maxwell.html
2 see http://www.kfunigraz.ac.at/imawww/vqm/ for a visualisation attempt
3 For enlightening animations of wave motion we refer to the webpage http://

www.kettering.edu/∼drussell/demos.html



9 Wave Equations

150

Then, at time t, the functionw(x) is transported intou(x, t).u is calleda travelling
wave with velocity v and profile w. When we set:

wk(x) = exp(ik · x) , (9.2)

where k is a given n-dimensional parameter vector, then by the above transport
process we obtain the so called plane wave:

uk(x, t) = exp
(
ik · (x − vt)

)
(9.3)

representing harmonic oscillations. The parameter vector k is called wave vector
of the plane wave uk , its j-th component kj determines the periodicity

pj =
2π
kj

of the wave profile wk in direction xj.
Note that a travelling wave of the form (9.1) solves the first (differential)

order linear transport equation

ut = −v · gradx u , (9.4)

out of which by differentiation we can easily obtain the second order linear
anisotropic wave equation:

utt =
∑

j,l

aj,luxjxl , (9.5)

where in this case aj,l = vlvj. For general wave motions, the real-valued coefficient
matrix A = (aj,l)j,l is assumed to be symmetric and non-negative definite such
that the total wave energy

E(u) =
1
2

∫
n

(
(ut)2 + (grad u)TA grad u

)
dx (9.6)

is a time-conserved quantity, with two nonnegative contributions stemming
from the kinetic and potential energies. Equations of the form (9.5) model,
for example, the motion of thin elastic chords (in one dimension), of thin
membranes (two dimensions) and of three dimensional elastic objects under the
assumption of small oscillation amplitudes (which allows to use linear models).
In these applications the solution u represents the displacement and ut the
velocity. Clearly, appropriate initial-boundary conditions have to be imposed.
Other applications include propagation of small amplitude sound waves in gases
and fluids.
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In one spatial dimension the linear wave equation reads:

utt = v2uxx , x ∈ R , t ∈ R , (9.7)

where v is a positive parameter. This equation is particularly easy to solve. We
introduce characteristic coordinates r = x − vt, s = x + vt and rewrite (9.7) as:

urs = 0 . (9.8)

The general solution of (9.8) is the sum of a function of r and a function of s
such that after back-transformation we obtain:

u(x, t) = f (x + vt) + g(x − vt) (9.9)

for the general solution of (9.7), where f and g are arbitrary smooth functions.
Thus, the general solution of the one dimensional linear wave equation is the
sum of two travelling waves, one travelling to the left and the other travelling
to the right. Consider now the one dimensional wave equation (9.7) with initial
data given by a point source with vanishing initial velocity:

u(x, t) = δ(x) , ut(x, t = 0) = 0 , x ∈ R .

Fig. 9.1. Circular Waves in a Kyoto Zen Garden
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Fig. 9.2. Ocean Wave hitting the Beach
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Fig. 9.3. Wave Breaking

Then a straightforward application of the formula (9.9) gives the solution of
the initial value problem:

u(x, t) =
1
2

δ(x + vt) +
1
2

δ(x − vt) , (9.10)

i.e. the initial delta mass is split into two equal parts, each of which is transported
along a characteristic in x, t-space. In particular this means that every point x
in R ‘feels’ the effect of the point source at only one moment in time. In two
and more dimensions the corresponding solution is not compactly supported
anymore, but it decays to zero as |x| tends to infinity, in particular as 1√|x| in

two dimensions and as 1
|x| in three dimensions. Note that in a one dimensional

world a sound emitted from a source can only be heard at one instant of time,
not ‘continuously’ (with loudness decaying with distance from the source and
with time) as in our three dimensional world!

A simple computation shows that the function

uk(x, t) = exp
(

ik ·
(

x ± v
k
|k| t

))

is a special plane wave solution of the n-dimensional wave equation

utt = v2Δu , x ∈ Rn , t ∈ R
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where v denotes again a real positive parameter. Clearly, the velocity of propa-
gation of this plane wave is ±v k

|k| . Therefore, in more than one dimension the
propagation velocities of plane wave solutions of the wave equation lie on the
sphere with radius v, but their directions depend on the wave vector. This is
a weak dispersion effect.

Quantum mechanics [19] is governed by a very particular wave equation,
named after the Nobel price winning Austrian theoretical physicist Erwin
Schrödinger4. The Schrödinger equation, in its most basic form modeling the
quantistic transport of an elementary particle (say, an electron) with positive
mass m, is a linear partial differential equation for a complex valued function u,
the so called wave function of the particle. The equation reads:

i�ut = −
�

2

2m
Δu + V(x)u , x ∈ Rn, t ∈ R (9.11)

where � is the so called normalized Planck constant5 and V(x) the real valued
electric potential field driving the motion of the electron. The wave function u
is an auxiliary quantity, the important physical observables are computed from
u by ‘post-processing’. They are quadratic in the wave function, e.g.

ρ(x, t) = |u(x, t)|2 (9.12)

is the (probabilistic) position density of the particle,

j(x, t) = �Im
(
u(x, t)grad u∗(x, t)

)
(9.13)

its current density (∗ denotes complex conjugation) and

e(x, t) =
�

2

2m
|grad u(x, t)|2 + V(x)|u(x, t)|2 (9.14)

its energy density. Note that the total mass

M :=
∫

n

ρdx

and the total energy

E :=
∫

n

edx

are time-conserved by the Schrödinger equation.

4 http://nobelprize.org/physics/laureates/1933/schrodinger-bio.html
5 http://scienceworld.wolfram.com/physics/PlancksConstant.html
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Fig. 9.4. Plane and transversal Waves

�

For many mathematical purposes it is convenient to scale the Schrödinger
equation by introducing macroscopic space-time coordinates. Denoting by ε the
microscopic/macroscopic aspect ratio, we obtain:

iεut = −
ε2

2
Δu + V(x)u , x ∈ Rn , t ∈ R . (9.15)

In many applications, e.g. in quantum effect semiconductor devices, Bose–
Einstein condensates6 etc., ε is a small parameter. In order to understand the
dispersionproperty and the transport of oscillations property of the Schrödinger
equation consider the free quantistic transport case V = 0 and prescribe an ε-
oscillatory plane wave initial wave function:

u(x, t = 0) = exp
(
ik · x

ε

)
. (9.16)

It is an easy exercise to show that the solution of the initial value problem
(9.15), (9.16) in this case is given by the function:

u(x, t) = exp
(

ik · x
ε

−
i
2
|k|2 t

ε

)
. (9.17)

Two issues are apparent:

a) The initial spatial oscillations with frequency of order of 1
ε are propagated in

spaceandoscillations in timewith frequencyof the sameorderaregenerated.
This is a typical property of linear wave equations.

b) The velocity of the wave with initial wave vector k
ε is equal to k

ε . Thus waves
with different wave vectors move with different velocity vectors and possible
wave speeds are not restricted. This is a dispersion property, much stronger
than in the case of the linear second order wave equation discussed above.

Of particular interest is the so called classical limit of the Schrödinger equa-
tion ε → 0, which corresponds to observing particle motion on larger and
larger scales. Intuitively, quantistic effects should diminish in this process and
the motion should become dominated by classical mechanics, i.e. by Newton’s
second law. This was verbalized by the German Nobel Prize winning physicist
Max Planck7, who stated in the year 1900:

Classical mechanics is the limit of quantum mechanics as � tends to zero.

6 http://www.colorado.edu/physics/2000/bec/
7 http://www.dhm.de/lemo/html/biografien/PlanckMax/
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The classical mathematical technique for carrying out the classical limit of the
Schrödinger equation is the so called WKB high frequency method8. The method
is based on the following ansatz (Madelung transform) for the wave function:

u(x, t) = a(x, t) exp
(

i
S(x, t)

ε

)
(9.18)

where a = a(x, t) is a real valued modulation and S = S(x, t) a real valued phase
variable. Obviously, the ansatz is based on the hypothesis that the phase is of
order 1

ε . After inserting (9.18) into the Schrödinger equation (9.15), separating
real and imaginary parts and neglecting terms which tend to 0 as ε tends to 0,
we obtain the following system of partial differential equations, called the WKB
system:

ρt + div(ρ grad S) = 0 (transport equation) (9.19)

St +
|grad S|2

2
+ V(x) = 0 (eikonal Hamilton–Jacobi equation) (9.20)

(see [14], [3]). It is well known that solutions of the Hamilton–Jacobi equation
(9.20) develop – in general – singularities in finite time. Even for smooth po-
tential V and for smooth initial datum S(x, t = 0) the solution S will generally
be only Lipschitz continuous in x and t, thus not more than almost everywhere
differentiable [2]. The sets of singularities of S in position-time space are called
caustics. The formal limiting procedure, which leads to the WKB system can
be justified rigorously only locally in time, more precisely before caustic onset!
After the occurrence of singularities in the phase variable S the formal proce-
dure is not correct anymore. This is due to the fact that the O(ε2)-term which
was neglected for obtaining (9.20) depends on derivatives of ρ, which become
very large at caustics. A different limit approach is called for if caustics are to
be crossed. This is achieved by introducing the so called phase space Wigner9

transform of the wave function u

W(x, ξ, t) :=
1

(2π)n

∫
n

u
(
x +

ε
2

z, t
)

u∗
(
x −

ε
2

z, t
)

exp(iξ · z)dz

(see [20], [13], [4]). Note that the quadratic observables can be easily computed
from the Wigner transform, which itself is quadratic in the wave function. For
example, the position density ρ defined in (9.12) is the zeroth order velocity
moment of W:

ρ(x, t) =
∫

n

W(x, ξ, t)dξ .

Also, the Wigner transform satisfies a first order transport equation, non-
local in the velocity variable, which can be taken to the limit ε → 0 in a rigorous
8 http://webphysics.davidson.edu/Faculty/wc/WaveHTML/node38.html
9 http://www-gap.dcs.st-and.ac.uk/∼history/Mathematicians/Wigner.html
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way under mild conditions on the initial wave function. By this limit process the
Vlasov equation of classical mechanics (see Chapter 1) is obtained:

wt + ξ · gradx w − gradx V(x) · gradξ w = 0 , x and ξ ∈ Rn , (9.21)

where the positive measure w denotes a weak limit point of the sequence W as
ε → 0. We remark that the equation (9.21) can be interpreted in the following
way: the measure w is constant along the characteristics of the linear hyper-
bolic equation (9.21), which are precisely the Newtonian trajectories of classical
mechanics:

dx
dt

= ξ ,
dξ
dt

= −gradx V(x) . (9.22)

This dynamical system is a formulation of Newton’s second law, which states
that force (here given by the field −gradx V(x)) is equal to mass (has been scaled
to 1) times acceleration d2x

dt2 . In this way the fundamental law of classical mechan-
ics is recovered from the quantistic Schrödinger equation. This limiting process,
here carried out formally, has been justified rigorously in the references [13], [4].

Many important wave phenomena are inherently nonlinear and cannot be
described by linear wave equations. A typical example is the motion of ocean
waves before and after breaking.

Here we mention the cubically nonlinear Schrödinger equation as an often
used model for nonlinear wave motion:

iεut = −
ε2

2
Δu + V(x)u + a|u|2u , x ∈ Rn , t ∈ R . (9.23)

If the real parameter a is positive, the equation is defocusing, i.e. all energy
contributions are non-negative, and if a is negative, the equation is focusing, i.e.
the energy contribution stemming from the nonlinearity (the so called inter-
action energy) is non-positive. The cubic nonlinearity models binary particle
interactions, higherorder interactionsareneglectedhere.ThecubicSchrödinger
equation has various applications, ranging from tsunami modeling to a quan-
tistic phenomenon called Bose–Einstein condensation10, represented by a tem-
perature phase transition in the nano-Kelvin range, occurring in boson gases,
leading to the formation of a ‘super-atom’. In the latter case V is typically a har-
monic (quadratic) potential representing the laser confinement of the conden-
sate, and the nonlinear Schrödinger equation is referred to as Gross–Pitaevski
equation [15], [1].

We remark that the mathematical features of focusing and defocusing non-
linear Schrödinger equations are totally different. Focusing nonlinearities often
lead to finite time blow-up of solutions, depending on the space dimension, the
polynomial order of the nonlinearity and the initial datum. In this case the posi-
tion density ρ = ρ(x, t) features a concentration (i.e. formation of a Dirac mass)

10 http://www.colorado.edu/physics/2000/bec/
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at some finite blow-up time. Defocusing equations are typically better behaved,
do not exhibit blow-up and in many cases have global-in-time solutions [18].

Another important nonlinear problem is represented by the so called KdV-
equation (named after D.J. Korteweg11 and G. de Vries, [9]), modeling the one-
dimensional wave motion in shallow water, i.e. shallow water waves in a chan-
nel12. It is a quadratically nonlinear partial differential equation of third differen-
tial order for the real-valued function u = u(x, t), representing the wave profile:

ut +
(

u2

2

)
x

+ ε2uxxx = 0 , x ∈ R , t > 0 . (9.24)

Here the equation is presented already in dimensionless, scaled form, and ε
represents an aspect ratio parameter.

Of particular interest is the zero-dispersion limit of the KdV equation, ob-
tained by taking ε to 0 in the solution of (9.24), subject to appropriate initial
data. Note that setting ε to 0 in (9.24) leads to the inviscid Burgers equation13

Ut +
(

U2

2

)
x

= 0 , x ∈ R , t > 0 , (9.25)

which is the prototype for a one-dimensional hyperbolic conservation law. The
Burgers equation has straight line characteristics in time-position space, along
which the value of the initial state U(t = 0) is transported. Thus, this equation
exhibits solutions, which become discontinuous in finite time (at points of inter-
section of characteristics), unless the initial datum U(t = 0) is a nondecreasing
function of the spatial variable x. Similarly to the WKB limit of the Schrödinger
equation, the term which was neglected when passing from the KdV to the
Burgers equation, is a third order derivative of u and the formal limit procedure
breaks down at the onset of shock-type singularities of the Burgers solution.
In fact, for sufficiently smooth initial data, the KdV equation has smooth so-
lutions and, for ε small, breakdown of regularity is migitated by the onset of
fast oscillations with frequency of order 1

ε when the derivatives of u get large. In

other words, the nonlinear convection term
(

u2

2

)
x
tends to create discontinuities

in the solution and the third derivative term ε2uxxx tends to smooth the solution.
The latter wins the competition but at the prize of developing high frequency
oscillations if ε is small. This limit process was made mathematically rigorous in
a series of threedeep papers [10], [11], [12] by theAbel Prize recipientPeter Lax14

and his then Ph.D. student David Levermore15. Their mathematical methodol-
ogy was based on the fact that the KdV equation can be written as an infinite

11 http://staff.science.uva.nl/∼janwieg/korteweg/
12 http://mathworld.wolfram.com/Korteweg-deVriesEquation.html
13 http://en.wikipedia.org/wiki/Burgers’_equation
14 http://mathworld.wolfram.com/news/2005-03-18/abelprize/
15 http://www.math.umd.edu/∼lvrmr/
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dimensional integrable dynamical system, just as the one-dimensional cubically
nonlinear Schrödinger equation. Integrability implies the existence of infinitely
many invariants which lead, by so called inverse scattering, to a representation
of the solution u, which can be directly exploited for the passage to the limit
ε → 0. Actually, the same approach was applied for the classical limit of the de-
focusing cubic one-dimensional Schrödinger equation in [6]. The methodology
for carrying out dispersive limits in non-integrable nonlinear partial differential
equations is not developed well, yet. Only few results exist in the literature so far.

Many nonlinear dispersive equations have explicit travelling wave solutions
(so called solitons), of the form (9.1) with a given wave form w. A particularly
interesting feature of the KdV equation is that solitons with opposite veloci-
ties interact only over a finite time interval and then survive the interaction
practically unchanged.

Finally we mention the KP (Kadomtsev–Petviashili) equation [7] which mod-
els two dimensional shallow water waves, with one-dimensional directional mo-
tion, and only weak transverse effects. Numerical simulations were reported
in [8].

Comments on the Image 9.1 The Image 9.1 shows ritual interpretations of
circular waves in a Zen garden in Kyoto, Japan. A classical example for the
occurrence of circular waves is a water surface (say, a lake), which experiences
a point source perturbation (say, a pebble thrown into it). The mathematical
form of a circular wave is:

ψ(r, t) = A(r) exp
(
i(kr − ωt)

)
,

where the amplitude A is a function of the radial spatial variable r = |x|, ω
is the frequency and k the radial wave vector. Here we assume that the phase
of the wave is zero. For point sources, A(r) decays as 1√

r as r increases. The
image also shows a not-too-realistic attempt of the Zen artist to describe the
interaction of circular waves with each other and with plane waves. We refer
to the webpage16 for a computational simulation of circular wave interaction.
Interesting animations of circular waves can be found in the webpages17.

In three dimensions, sound waves spreading from a point source are spheri-
cal, with A(r) = const

r . They are special solutions of the linear wave equations in
three space dimensions:

ψtt = c2Δψ ,

where c = ω
k . For more information on spherical waves see the webpage18.

16 http://members.aol.com/nicholashl/waves/circular_reflection.html
17 http://www.walter-fendt.de/ph11e/interference.htm

http://members.aol.com/nicholashl/waves/circularwaves.html
18 http://scienceworld.wolfram.com/physics/SphericalWave.html



9 Wave Equations

162

Fig. 9.5. ‘Waves’ in Belem, Lisbon
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Comments on the Images 9.2–9.4 The Images 9.2–9.4 show ocean waves. The
motion of waves in oceans is obviously influenced by many factors, like bot-
tom and shore topography, wind and other surface disturbances (like ships on
the ocean), tides etc. We refer to the webpage19 and to [17] as reference on
the mathematical-physical modeling. A particularly interesting nonlinear phe-
nomenon is the breaking of ocean waves close to the beach (see Image 9.3, upper
right hand corner). To understand the basic mechanism of wave-braking, which
in mathematical terms can be considered as a folding catasthrophy of the wave’s
height function U (free air-water surface), consider the classical initial value
problem for the one-dimensional inviscid Burgers equation (9.25) as a basic
model:

Ut +
(

U2

2

)
x

= 0 , x ∈ R , t > 0

U(x, t = 0) = U0(x) , x ∈ R .

Here, external effects like wind and topography are excluded to keep the discus-
sion simple.

Bycarryingout thedifferentiation in thenonlinearityof theBurgersequation,
it becomes apparent that the solution u is constant along the characteristics,
which are straight lines in the (x, t)-plane given by:

X(t; x) = x + tU0(x) .

Here x is the starting point of the characteristic and the solution u along the
characteristic is:

U
(
X(t; x), t

)
= U0(x) , t > 0 .

Obviously, (at least two) characteristics startingatdifferentpointsxwill intersect
in finite time unless the initial datum U0 is non-decreasing. If they intersect,
they transport different initial data leading to a shock-type discontinuity in the
solution U. This singularity can be interpreted as the onset of wave breaking. The
typical approach of hyperbolic equations is to continue the solution U beyond
breaking time as a so called weak solution, which dissipates entropy and which
can be obtained as a limit of solutions of the viscous Burgers equation in the
vanishing viscosity limit [16]. Clearly, this is not the correct approach, when
wave breaking is to be modeled. Instead, a different solution concept has to be
invoked, namely so called multi-valued solutions. A good way of introducing
multi-valued solutions is to consider the Newtonian phase-space (Rx × Rv) flow,
given by:

dX
dt

= V , X(t = 0; x) = x

dV
dt

= 0 , V(t = 0; v) = v

19 http://en.wikipedia.org/wiki/Ocean_surface_wave
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and apply this flow to the Lagrangian phase-space manifold:

L0 = {(x, v) | v − U0(x) = 0}
Before the onset of shocks, the Newtonian flow maps the initial Lagrangian

manifold L0 into the graph of a function in the (x, v)-plane with v = U(x, t) being
the smooth solution of the Burgers equation. After the onset of singularities, the
image manifold Lt of L0 is not a graph of a single-valued function anymore, it
represents the multi-valued wave surface after breaking. A nice way to see this
is via kinetic theory. Consider the free streaming kinetic equation:

ft + v .gradxf = 0

f (t = 0) = δ
(
v − U0(x)

)
.

Its solution is given by

f (x, v, t) = δ(Lt) , t > 0 .

For more information on multi-valued solutions of conservation laws and
Hamilton–Jacobi equations we refer to [5].

Image 9.4 shows two fronts of (almost) plane waves propagating away from
the ship at rest. Most likely these wave fronts are caused by winds close to the
ocean surface. Between the two plane wave fronts there is a transversal wave of
even smaller amplitude.
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10. Digital Image Processing and Analysis –
PDEs and Variational Tools

Most digital photographic still cameras have CCD (Charge-Coupled-Device)
or CMOS (Complementary-Metal-Oxide-Semiconductor) image capturing sen-
sors. Typically, these semiconductor chips feature a rectangular array of devices
– so called photosites – each of which being sensitive to either red (R), green
(G) or blue (B) light. Technically, the sensitivity to only one of the RGB colors
is achieved by filtering, such that only photons of a certain frequency range
pass through the filter (corresponding to R, G or B resp.). Thus, each individual
photosite acts as a counter of photons corresponding to red, green or blue color
light. These sites are organised in a so-called RGB Bayer matrix:

………………………………
… R G R G R G R G R G …
… G B G B G B G B G B …
… R G R G R G R G R G …
… G B G B G B G B G B …
… R G R G R G R G R G …
… G B G B G B G B G B …
………………………………

Note that more ‘green’ sites (actually, half of the total number) occur in the Bayer
matrix, which accounts for the human eye’s greater sensitivity with respect to
the green color.

The Image 10.1 shows a diffractive pattern of the CCD sensor of the P25
digital back (22 million photosites, produced by PhaseOne1), to be attached
on a Hasselblad2 H1 or H2 medium format camera. This was the high end
of commercially available sensor technology until December 2005, when 39-
megapixel sensors became available!

After image capturing the Bayer matrix data are read out directly into the
image processing engine – the so called imager – of the camera (note that the
read-out method is precisely where CCD and CMOS imaging sensors differ).
Then, the procedure varies according to the chosen image format. If the user
has opted for a jpg-image, then the three colours are first interpolated by the so
called Bayer algorithm3 such that finally after interpolation full RGB data are
available at EACH pixel (corresponding to a photosite). Afterwards the imager
performs certain processing tasks, typically an estimate of the grey-balance,

1 http://www.phaseone.com
2 http://www.hasselblad.com
3 http://de.wikipedia.org/wiki/Bayer-Sensor
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Fig. 10.1. Diffraction from the CCD-sensor of Phase
One’s P25 digital back
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somecontrast enhancement, sharpening,noise-reductionanddata compression.
If the user has decided instead to acquire a so called RAW image, then the full
RGB data file is tagged with user-specified camera settings and immediately
stored into the internal memory of the camera and finally onto some sort of
memory card, which acts as ‘digital film’. The Bayer algorithm is then performed
in a software on the user’s computer called RAW converter (typically available
from the camera manufacturer) and the user thereafter has to perform the image
processing himself according to his own preferences, instead of according to the
preferencesof theprogrammerof the camera imager, as in the caseof jpg-images.
We remark that there are also digital imaging sensors used in commercially
available cameras, whose functioning is based on different concepts4, e.g. the
FOVEON5 sensor and the Fujitsu Super CCD.

A digital still image is a set of three matrices, representing the intensities of
the colours red, green and blue. In the following, we shall perform a simplifica-
tion: we shall assume that each of the three colour intensity matrices has been
interpolated onto the image domain G (say, by piecewise constant interpolation,
associating a ‘small’ square domain to each pixel, whose union fills up the whole
image) to give a pointwise almost everywhere defined function. Thus, a colour
image in the following is assumed to be represented by a three dimensional
vector field of the RGB intensities, defined a.e. on a two dimensional domain G
(typically rectangular) representing the image. Thus, we shall deal here with
image processing on the ‘continuous’ level instead of the ‘discrete’ pixel level.
Obviously, this simplification allows us to explain image processing by using
‘continuous’ vector field techniques employing partial differential equation and
variational methods. Clearly, in actual numerical computations the ‘continuous-
ly’ defined functions, obtained by mathematical image processing have to be
discretized again, but this issue will not be discussed here.

As already mentioned, there are various issues involved in image processing
and in image analysis. Typically, images have to be grey balanced, contrast
enhanced, sharpened, denoised, and maybe segmented for object recognition. In
somecases imagingartifactsdue to limitationsof theCCDorCMOStechnologies
have to be eliminated and sometimes an image size adjustment or/and a data
compression is desired.

In the following we shall concentrate on the subsequent issues:

– denoising
– de-blurring, edge detection and sharpening
– image segmentation.

For a synthetic overviev of image processing techniques we refer to the book [3].
Very often all three color channels (i.e. vector field component intensity

functions) areprocessedequally and independently, oronlya linear combination

4 http://www.photozone.de/3Technology/digital_3.htm
5 http://www.foveon.com/
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of them is processed. Here, again simplifying, we shall deal with single channel
images only, which is equivalent to treating black and white images. Thus, for
what follows, we assume to have a black and white image, represented by a real
valued intensity function u0, defined pointwise almost everywhere on the image
domain G.

In most practical applications digital images are processed in spaces of func-
tions of bounded variation, however, there have been serious recent objections
to this claim. These objections are based on the prevailing idea that natural
images have a very strong multi-scale feature such that, generally, their total
variation may become unbounded [1].

For most image processing tasks it is of paramount importance to analyse
the principal features and structures of the image under consideration. It is intu-
itively clear that these features are independent of high frequencies contained in
the intensity function u0. Thus, it seems natural to try to extract significant im-
age information by smoothing the intensity function. In particular, think of the
problem of detecting edges in images. It seems natural to think of edges as those
curves in the image domain, where the (Euclidean norm of the) gradient of the
intensity function assumes maximal values, or – as used in many applications –
where the Laplacian of the intensity function (which is the trace of its Hessian
matrix) becomes 0. Thus, edge detection requires the computation of pointwise
derivatives of the intensity function, which cannot be done without smoothing
the piecewise constant intensity obtained from digital imaging. Moreover, the
gradient of the piecewise constant function u0 is – trivially – singular at ALL pixel
edges (gradients of piecewise constant functions are singular measures concen-
trated on the partition edges)! Obviously, the ‘significant’ image specific edges
can only be distinguished from the ‘insignificant’ pixel edges by smoothing.
Thus, we deduce that image structure is, maybe somewhat counter-intuitively,
revealed by discarding detail in a coherent way. Also, currently available digital
imaging sensors are known to introduce noise into RGB images, which typically
gets worse when the nominal sensitivity (iso value) is increased. Digital high-iso
noise is patchy and ugly, much worse than the grain we all got used to (and
even got to like) in analog images. Thus, efficient and non-destructive image
denoising is of utmost importance to the photographic community.

The most basic smoothing technique is the convolution of u0 by a Gaussian
function with mean value zero and a fixed variance t > 0:

u(x, t) := (u0 ∗ Gt)(x) , (10.1)

where the 2-dimensional Gaussian reads:

Gt(x) :=
1

2πt
exp

(
−

|x|2
2t

)
. (10.2)

For carrying out the convolution in (10.1) the image has to be appropriately
extended to all ofR2, say, either by 0 outside G or periodically. Both approaches
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avoid the need of dealing with boundary conditions. Clearly, the Gaussian den-
sity (10.2) is the fundamental solution of the linear heat equation inR2, such that
the function u = u(x, t) can also be obtained by solving the linear heat equation
with initial datum u0 on the time interval [0, t] (linear scale space):

ut = Δu (10.3)
u(t = 0) = u0 . (10.4)

Thus, to the image of origin u0 this linear diffusion process associates a scale
of smoothed images {u(x, t) | t ≥ 0}. A mathematically trivial but practically
important remark is in order: As t becomes progressively larger, more and more
detail – and eventually also significant image structure – is destroyed. The reason
for this is that the solution of the heat equation tends to a constant (0 in the
whole space case) as t tends to infinity. This convergence holds uniformly on
bounded sub-domains ofR2, i.e. also on the image domain G. Thus, in practice,
only not-too-large values of t are important for image analysis.

In principle, the heat equation (10.3), (10.4) can be regarded as a (primitive)
denoising algorithm for the image u0. However, there are two main problems
involved with this. Firstly, the Laplacian generates isotropic diffusion of equal
strength in all directions, independent of the local image structure. This is not
what is desired in image de-noising: we would like to diffuse/denoise uniformly
in those image subdomains, where no edges occur. In particular, we do not want
to have too much local diffusion in direction orthogonal to edges. In short, edges
should not be smeared out too much. Secondly, the smoothing (10.3), (10.4) does
not commute with image contrast changes represented by strictly monotonically
increasing functions of the image intensity u0. It is desirable to have a smoothing
algorithm, which is such that changing the contrast of the original image first
and consecutive smoothing gives the same result as changing the contrast after
smoothing the original image (morphological invariance). Obviously, the linear
diffusive smoothing (10.3), (10.4) does not satisfy this principle, since in general
F

(
u(·, t)) is NOT the solution of the heat equation with initial datum F(u0) for

every strictly increasing function F.
The first issue was originally addressed by P. Perona and J. Malik [7] by intro-

ducing image dependent diffusivities. In particular, they considered nonlinear
diffusion equations of the form:

ut = div
(
g(|grad u|2) grad u

)
, (10.5)

where g = g(s) is a nonnegative decreasing function, which converges to 0
as s tends to infinity and g(0+) = 1. It is easy to show that (10.5) introduces
linear-like diffusive smoothing in regions where |grad u| is small while there
is a competition between diffusion in the tangential and orthogonal directions
(relative to level sets La(t) := {x ∈ G | u(x, t) = a}) in regions with edges (where
|grad u| is large). In particular, the equation (10.5) can be written as:

ut = g(p2)ull +
(
g(p2) + 2p2g′(p2)

)
unn (10.6)
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where we denoted p = |grad u|, ull the second tangential derivative and unn the
second normal derivative relative to a level curve La(t). Obviously, the ratio

R :=
g(p2)

g(p2) + 2p2g′(p2)

determines the relative strength of diffusion parallel to and across level curves.
Actually, the nonlinearity of g can also be tuned to give backward diffusion
across level curves, thus performing localized smoothing in regions without
edges AND localized edge sharpening. As a classical example, consider

g(s) :=
1

1 + λ2s
.

Then the coefficient of unn in (10.6) becomes negative when |grad u| > λ.
An efficient choice of a nonlinear smoothing algorithm is based on the idea

of diffusion ONLY in direction tangential to level curves, i.e. on the degenerate
diffusion equation:

ut = ull . (10.7)

After back transformation to the original x = (x1, x2) coordinates we obtain:

ut = |grad u| div
(

grad u
|grad u|

)
. (10.8)

Since

κ(x, t) := div
(

grad u(x, t)
|grad u(x, t)|

)

is the curvature of the level curve La(t) of the function u through the image point
x at time t, the nonlinear non-divergence form degenerate parabolic equation
(10.8) is referred to as the (mean) curvature equation. Also, the equation (10.8)
satisfies the morphological invariance condition, since, given a strictly increas-
ing nonlinear contrast change F, multiplication of (10.8) by F′(u) shows that F(u)
solves the curvature equation with initial datum F(u0), i.e. smoothing by (10.8)
and contrast changes commute. Note that the equation (10.8) can be rewritten
in an intruiging way. Clearly, the vector

o(x, t) := −
grad u(x, t)
|grad u(x, t)|

is the unit vector orthogonal to the level curve La(t) passing through the point
x at time t, pointing into the direction of steepest decay of u. Then (10.8) can be
written as first order transport equation:

ut + κ(x, t)o(x, t) · grad u = 0 . (10.9)
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By standard theory of first order PDEs, smooth solutions u are constant along
the characteristic curves, which satisfy the ODEs:

dx
dt

= κ(x, t)o(x, t) . (10.10)

Therefore, the speed of the motion is equal to the local curvature and the
direction of the velocity vector is orthogonal to the level curves, pointing into
the direction of decay of u. The smoothing effect of the curvature equation is
based on equilibrating the curvature of the level sets of the solution.

Fig. 10.2. Diffusive Smoothings (courtesy of Arjan Kuijper)

Image 10.2 shows the effect of different diffusive smoothings. From the
left to the right we can see: The original noisy image with equidistributed
noise, image smoothing by the curvature equation, by the heat equation and by
directional diffusion along the orthogonals to level curves. All diffusions were
performed up to the same final ‘time’. Clearly, the curvature equation maintains
the sharpness of the edges, while the heat equation destroys edge sharpness
completely. Isotropic diffusion can be seen very well in the latter case. It is,
however, interesting to note that the heat equation creates a somewhat uniform
background out of the equidistributed noise while the curvature flow tries to
extract information out of noise. Diffusion along the orthogonals of the level
curves (worst possibility…) creates very visible artifacts in the form of spikes
originating from the edges.

A somewhat different approach is represented by smoothing of Fatemi–
Rudin–Osher type [5]. They consider the total variation of the intensity function
as decisive for the state of an image and propose to minimize the following
functional, over the space of functions with bounded total variation:

T(u) :=
∫
G

(
|grad u| +

λ
2

(u − u0)2

)
dx , (10.11)

where λ is a positive parameter. Clearly, the second term under the integral
penalises smoothed images u which are too far away from the original image u0,
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i.e it decides the relative importance of keeping total image variation small and of
not moving away too far from the original image. The Euler–Lagrange equation
(which is a necessary condition for the minimizer) of the functional (10.11)
reads:

−div
(

grad u
|grad u|

)
+ λ(u − u0) = 0 , x ∈ G , (10.12)

subject to the homogeneous Neumann boundary condition:

grad u · γ = 0 on ∂G , (10.13)

where γ is the unit outer normal vector of ∂G.
The corresponding gradient flow (steepest descent method) is given by the

parabolic equation:

ut = div
(

grad u
|grad u|

)
− λ(u − u0) , (10.14)

again subject to homogeneous Neumann boundary conditions. For appropriate
initial data we expect the solutions of (10.14) to converge to the minimizer of
(10.11).

Fig. 10.3. Rudin–Osher–Fatemi Smoothing (courtesy of Martin Burger)

A generic modification of the Rudin–Osher–Fatemi functional is obtained
by replacing the penalizing term by a multiple of the L1 norm (instead of the
square of the L2 norm) of the difference of the original and the smoothed
image intensity functions. In Image 10.3 we show the minimizing intensities
of this modified functional for decreasing values of the penalization parameter
(from left to right), where the original image is the same as the left image in
Image 10.2. When the penalisation becomes weaker, edge sharpness decreases
slightly, the algorithm extracts less information out of the noise but – clearly –
overall smoothness of the image increases.
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Fig. 10.4. Natural image, Cerro
Torre seen from Laguna Torre in
Argentinian Patagonia
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The Perona–Malik equations, the curvature equation and the Rudin–Osher–
Fatemi equation are important examples of the class of so-called geometric
PDEs, which are typically analyzed by viscosity solution theory [4] or, resp., by
BV-solution theory.

Digital image sensors have – in most commercially available cameras – so
called anti-aliasing filters6 mounted in front of them, which remove frequency
components above the Nyquist frequency. By Nyquist’s and Shannon’s sampling
theory7 these frequencies are not correctly representable by the sensor anymore.
In practical terms, anti-aliasing filters reduce the dreaded Moirée effect8, which
occurs when an image pattern resonates with the pixel matrix or exceeds the
sensor resolution. These anti-aliasing filters also have a negative effect: they
reduce the sharpness of digital images, which then has to be restored by image
processing. Also, sharpening (or de-blurring) of images has to be performed to
eliminate/reduce camera shake, motion blur, atmospheric disturbances etc.

Contrarily to smoothing, image sharpening is an inverse problem, with the
typical instability associated with backward diffusion. Intuitively though, it
seems natural to sharpen (or de-blur) an image u0 by just running the backward
heat equation on it:

ut = −Δu , t > 0 (10.15)
u(t = 0) = u0 . (10.16)

This method actually has its merits, when the sharpening scale t is chosen
appropriately. If, however, t becomes too large, the image decomposes due to
the inherent instability of backward diffusion. Various possibilities to overcome
this instability issue arise, e.g. stabilisation of the linear backward heat equation
by nonlinearities like the curvature equation, employing Hamilton–Jacobi type
image motions or taking the generic inverse problem viewpoint with the classical
philosophy of stabilisation by penalisation.

An ‘unstabilised’ Hamilton–Jacobi-type attempt was given by L.I. Rudin and
S. Osher, called now the shock filter:

ut + sgn(Δu)|grad u| = 0 . (10.17)

An improved version, the so called edge detector PDE, reads:

ut + sgn
(
(grad u)TD2u grad u

) |grad u| = 0 . (10.18)

Note that both equations involve second order derivatives in a very non-
standard way! The Rudin–Osher PDE is related to the Hildreth–Marr edge de-
tector, which defines edges of a smoothed digital image as those subsets of the
imagedomain,where Δu changes sign,while thePDE(10.18) is related toCanny’s

6 http://en.wikipedia.org/wiki/Anti-aliasing_filter
7 http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
8 http://www.dpreview.com/learn/?/Glossary/Digital_Imaging/Moire_01.htm
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Fig. 10.5. Billboard, artificial Image (or sort of …)

edge detector (see, e.g., [6]), defining edges as sets where (grad u)TD2u grad u
changes sign. In both cases the direction of propagation is changed locally when
an edge is crossed. Although these equations are numerically stable and seem
to converge to a steady state, stabilised algorithms are preferable for practi-
cal purposes. The maybe most efficient de-blurring algorithm is stabilized BV
de-blurring, suggested by Rudin, Osher and Fatemi [5], [9]. The main idea is
similar to BV-denoising based on the functional (10.11), i.e. the total variation
of the image intensity function shall be minimised under a penalisation. In the
case of denoising the penalisation was that the denoised image should not be
too far from the original one in the L2 norm, while for de-blurring we require
that the original image shall be close to the blurred version of the restored one.
Obviously, this leaves us with the definition of the blur operator. Usually, a linear
blur is assumed, of convolution form:

B(u) = k ∗ u , (10.19)

where k = k(x) is a given nonnegative function (or measure), depending on the
specific image blur under consideration (see [3] for examples). Note that either
u has to be extended appropriately to the full space R2 or boundary conditions
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have to be imposed in order to give mathematical sense to the convolution
(10.19). Then, the de-blurred image u, obtained from the blurry original image
u0, is given by:

u = argmin

⎛
⎝∫

G

(
|grad v| +

λ
2

(k ∗ v − u0)2

)
dx

⎞
⎠ , (10.20)

where the minimisation is performed over the space of real-valued functions v
defined on G with bounded total variation. Again, the positive parameter λ
controls the relative importance of BV minimization and of the penalisation.

At this point awordof caution is inorder. In imaging science there is adistinc-
tion between natural images and artificial ones. The former class refers to digital
images of objects (trees, bushes, human faces etc.), and scenes (sceneries…)
which occur in nature, while the second class refers to digital images of man-
made structures (typically images of two-dimensional artificial structures). Fig-
ure 10.4 shows a typical natural image, namely a landscape in Argentinian
Patagonia and Figure 10.5 an artificial image. Statistical analysis of image banks
has shown that natural images have significant multi-scale features (as can be
seenclearly inFigure 10.4),muchmore thanartificial images.Recent research [1]
has led to the conjecture that – typically – natural images are ‘not of bounded
variation’. This statement has to be understood that – by the conjecture – the
total variation becomes unbounded when a sequence of digital images with in-
creasing sensor resolution of the same natural scene is taken. We expect more
insight into these questions in the near future, now that digital imaging sensor
technology has improved significantly, particularly in megapixel count and in
non-destructive low-iso noise control. Of course, a possible implication of this is
that we have to be very careful using – or even have to abandon – BV-techniques
for the processing and analysis of natural images, particularly when they were
acquired by a high resolution digital sensor.

Thedeepconnectionbetweensmoothingandsharpening isalso illustratedby
the most popular sharpening technique of the digital photography community,
referred to as ‘sharpening by unsharp masking’, as used for example in the
benchmark image processing software ‘Photoshop CS’ by ADOBE9. Let u0 be the
original digitally acquired image and denote by u(t) a smoothed version of it
(the so called unsharp mask), obtained by running the heat equation from time
0 to t, as done in Photoshop by using the convolution (10.1) with the Gaussian
(10.2), or some nonlinear smoothing algorithm. Then compute the difference

w(x, t) := u0(x) − u(x, t) . (10.21)

Clearly,w canbe regardedas an imageof the edgesofu0, since it ‘concentrates’
there while being small away from edges, at least for t not too large. Then choose

9 http://www.adobe.com
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another positive parameter σ and set:

uenhanced(x, t) := u0 + σw(x, t) . (10.22)

Actually, in Photoshop CS there is a third parameter, which decides on the
minimal contrast difference of adjacent pixels such that sharpening is actually
applied to the pixels under consideration. In practice, this technique leads to
increasing the intensity function u0 on the darker side of the edge and decreasing
it on the brighter side such that a visual impression of gain of sharpness is
achieved.

Image 10.6 of this gallery shows the edges of the landscape shown in Im-
age 10.4 and Image 10.7 the edges of Image 10.5. The great complexity of the
edge set of the natural Image 10.4, particularly in direct comparison with the
edge set of the artificial Image 10.5, is apparent.

Image segmentation is an important part of image analysis. There the main
task is to identify the different objects present in a given digital image or equiv-
alently, the issue is to find the most significant edges of the image. A main
contribution to this issue was given by D. Mumford10 and J. Shah in their cele-
brated paper [8]. To fix the basic ideas, think of functions u, which are piecewise
smooth on a Lipschitz partition of the image domain, let S denote the union of

Fig. 10.6. Edge set of natural Image 10.4

10 http://www.dam.brown.edu/people/mumford/
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the Lipschitz manifolds of their singularities (image edges), let a noisy original
image u0 be given and consider the so called Mumford–Shah functional:

M(u, S, u0) := αH1(S) + β
∫

G−S

|grad u|2dx + γ
∫
G

(u0 − B(u))2dx . (10.23)

Here B = B(u) again denotes the smoothing (blurring) operator, e.g. given by
a convolution (10.19), and H1(S) stands for the one-dimensional Hausdorf mea-
sure (‘length’) of the edge set S. α, β and γ are positive constants, responsible
for the relative importance of the three terms in the functional, which can be
identified as the edge energy, the localised image energy and the penalisation
term already used in the Rudin–Osher–Fatemi de-blurring approach. The ob-
vious candidate for the deblurred image, with associated segmentation, would
be a minimizer u (over an appropriate function space) of the functional (10.23).
Clearly, the big problem here is the singularity set S, which determines the geo-
metrical nature of the problem. Directly related to this is the fact that a precise

Fig. 10.7. Edge set of artificial Image 10.5
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mathematical definition of the function space, over which the Mumford–Shah
functional shall be minimized, is very subtle and requires deep insights into
the theory of BV-functions and thus uses high powered tools from geometri-
cal measure theory. We refer to [2] for results on the existence of a minimizer
(of an appropriately weakened version of the Mumford–Shah functional). For
a more detailed discussion and an extensive list of references, also concerning
the existence of a minimizer of the strong formulation, we refer to [3].

Comments on the Images 10.1–10.7 Digital photography has reached a phase
of maturity. Not only in the consumer market, where analog film-based pho-
tography has basically vanished, but also in the prosumer market, where 6–10
megapixel cameras (oftenDigital-Single-Lens-Reflex-Cameras, so calledDSLRs)
have reached a significant market share and in the professional market, too, with
12–16 megapixel DSLRs based on 35 mm full format or on so called DX sen-
sor technology and, on the very high end, with digital backs which attach to
medium format cameras and nowadays feature 22–39 megapixel sensors (see
the Image 10.1). Todays high end digital cameras offer a photographic quality
which was unknown in the analog days, with silky smooth imagery and the
possibility to do large high resolution prints, chemically based or even using
inkjet technology in the ‘digital darkroom’ by the photographer himself. Digital
images, however, require postprocessing by sophisticated software. Images have
to be white-balanced, contrast corrected, digital artifacts have to be eliminated,
noise reduction and sharpening have to be performed and often images have
to be compressed to jpg format for emailing and storage. All these processes
require sophisticated mathematics, which to a great extent is based on par-
tial differential equations and on variational techniques. It is clear that – with
megapixel counts growing steadily – the required need of sophistication of dig-
ital image processing goes up, too (just think of getting processing times down,
which are still a major nuisance for users of high megapixel-count cameras).
Also, most of todays commercially available image processing software is based
on linear PDE tools (heat equation) while it is well known in scientific image
processing circles that nonlinear methods (Perona–Malik equation, curvature
equation, Cahn–Hillard inpainting etc.) give highly superior results. We expect
a ‘quantum leap’ in the commercial image processing software soon, which will
shake up the typically very conservative photographic community.

There are other important applications of digital image processing than
photography, also with high demand of mathematical sophistication. Just think
of security applications based on digital reconnaissance or medical imaging. For
example, automated tumor recognition in medical scanning techniques is based
on image segmentation (often using the Mumford–Shah functional)! Note that
in medical and in security imaging not only still images but also video sequences
have to be processed and analysed.

Acknowledgement The author acknowledges support for research on image
processing by the Austrian research funding agency FFG.
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11. Socio-Economic Modeling
Peter A. Markowich and Giuseppe Toscani1

A comparative empirical and statistical analysis of social and economic phenom-
ena describing the collective behavior of human beings in different countries
and markets leads to a strikingly large number of similarities. This motivates
the basic idea that the collective behavior of a society composed of sufficiently
many individuals (agents) can be modeled using the approach of statistical me-
chanics, which was originally developed for the description of physical systems
consisting of many interacting particles. The details of the interactions between
agents then characterize the emerging statistical phenomena.

In particular the evolution of wealth in a simple market economy has been
studied extensively. A very interesting point of view in the representation of
markets is the kinetic one, which leads to Boltzmann type equations for the
evolution of the distribution of wealth [3–6, 12]. In these models, the market is
represented by a gas of physical particles, where each particle is identified with
an agent, and each trading event between two agents is considered to be a binary
particle collision event, with collisional rules determined by the properties of
the underlying market. The knowledge of the large-wealth behavior of the steady
state density is of primary importance, since it characterizes the number of rich
individuals in the society and can easily be used to determine a posteriori if the
model fits known data of real economies.

More than a hundred years ago, the Italian economist Vilfredo Pareto [11]
first quantified the large-wealth behavior of the income distribution in a society
and concluded that it obeys a power-law. More precisely if f = f (w) is the
probability density function of agents with wealth w, and w is sufficiently large,
then the fraction of individuals in the society with wealth larger than w is:

F(w) =

∞∫
w

f (w∗) dw∗ ∼ w−μ .

Pareto mistakenly believed the distribution function on the whole range of
wealth (positive real axis) to be a power law with a universal exponent μ approx-
imatively equal to 1.5.

Various statistical investigations with real data during the last ten years
revealed that the tails of the income distributions indeed follow the above men-
tioned power law behavior. The numerical value of the so called Pareto index μ
generally varies between 1 and 2.5 depending on the considered market (USA

1 http://www-dimat.unipv.it/toscani/
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∼ 1.6, Japan ∼ 1.8–2.2, [6]). It is also known from statistical studies that typi-
cally less than 20% of the population of any country own about 80% of the total
wealth of that country. The top income group obeys the above Pareto law while
the remaining low income population, in fact the majority (80% or more), follow
a different distribution, which is typically Gibbs [6] or log-normal.

Kinetic models of the time evolution of wealth distributions can be described
in terms of a Boltzmann-like equation which reads

∂f
∂t

= Q( f , f ) , (11.1)

where f = f (v, t) is the probability density of agents of wealth v ∈ R+ at time
t ≥ 0, and Q is a bilinear operator which describes the change of f due to binary
trading events among agents. We shall refer to this equation in the sequel as
kinetic Pareto–Boltzmann equation.

The involved binary tradings are described by the rules

v∗ = p1v + q1w ; w∗ = p2v + q2w , (11.2)

where (v, w) denote the (positive) moneys of two arbitrary individuals before the
trading and (v∗, w∗) the moneys after the trading. The transaction coefficients
pi, qi, i = 1, 2 are either given constants or random variables, with the obvious
constraint of non-negativity. Also, they have to be such that the transformation
from the money states before trading and after trading is non-singular. Among
all possible kinetic models of type (11.1), (11.2) the conservative models are
characterized by the property

〈p1 + p2〉 = 1 , 〈q1 + q2〉 = 1 ,

where 〈·〉 denotes the probabilistic expectation. This guarantees conservation of
the total expected wealth of the market (which is the first order moment of the
distribution function, multiplied by the total number of individuals).

In weak form the collision operator Q( f , f ) is defined by∫
+

Q( f , f )(v)φ(v) dv

=
1
2

〈∫
+

∫
+

(
φ(v∗) + φ(w∗) − φ(v) − φ(w)

)
f (v)f (w)dv dw

〉
. (11.3)

Here φ is a smooth test function with compact support in the non-negative reals.
Note that the collision operator is assumed to be of so-called Maxwellian type,

i.e. the scattering kernel does not depend on the relative wealth of collisions and
can therefore be accounted for in the computation of the statistical expectation
by choosing the probability space appropriately.
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In their pioneering paper A. Chakraborty and B.K. Chakrabarthi [3] started
out by stating that the agents taking part in trading exchange their money
according to the rule

v∗ = v + Δ(v, w) ; w∗ = w − Δ(v, w) . (11.4)

Here Δ(v, w) represents the amount of money to be exchanged, which has to be
such that the agents always keep some money in their hands after trading. The
ratio of saving to all of the money held is usually denoted by s and called the
saving rate. Taking 0 < s < 1 constant, the amount of money to be exchanged
can be modeled as

Δ(v, w) = (1 − s) [(ε − 1)v + εw] , (11.5)

where 0 ≤ ε ≤ 1 is a random fraction. This model was further developed in
B.K. Chakrabarthi’s research group by assuming that agents feature a random
saving rate [4]. Clearly, choosing a random value for s does not change the type
of collision events.

A somewhat different trading law was considered by S. Cordier, L. Pareschi
and G. Toscani in [5]. Their trading model reads

v∗ = sv + (1 − s)w + ηv ; w∗ = (1 − s)v + sw + η̃w , (11.6)

where 0 < s < 1
2 . Here η and η̃ are independent equally distributed random

variables with variance σ2 and mean zero. Provided both η and η̃ take values
in the interval [−s, s], the trade (11.6) is such that the random coefficients
pi, qi, i = 1, 2 are nonnegative. Note that this trade is conservative only in the
mean, since p1 + p2 = 1 + η �= 1, whereas 〈p1 + p2〉 = 1. The last terms in
the trading laws describe the spontaneous growth or decrease of wealth due to
random investments in the stock market and other macro-economic factors.
This mechanism corresponds to the effects of an open market economy where
typically the rich get richer and the poor get poorer.

Non-conservative models have been recently considered by F. Slanina [12],
who introduced a model with increasing total wealth based on the collision
coefficients:

p1 = s , q1 = 1 − s + ε ; p2 = 1 − s + ε , q2 = s . (11.7)

In (11.7) ε is a fixed positive constant, so that the total money put into the trade
increases, since

v∗ + w∗ = (1 + ε)(v + w) .

This type of trade intends to introduce the feature of a strong economy, which
is such that the total mean wealth is increasing in time. We remark that the
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Fig. 11.1. Angra dos Reis, Brazil: on the w = o(1)-part of the Pareto distribution

�

Fig. 11.2. Salvador de Bahia, Brazil: on the w = o(1)-part of the Pareto distribution

same effect can also be obtained by simply allowing the random variables in the
trading laws (11.6) to assume values on the whole real axis, and at the same time
discarding those trades for which one of the post-trade wealths is non-positive.

A critical analysis of the discussed collision=trading rules reveals a deep
analogy between the economic models described above and the granular ma-
terial flows modeling framework of Chapter 3. They share the property that
the steady (or, more generally, the self-similar asymptotic) states are different
from the classical Maxwell distribution of the Boltzmann equation of gas dy-
namics presented in Chap. 1. Another analogy becomes evident when looking
at the non-conservative properties of the economic and granular Boltzmann
equations, resulting from inelastic binary collision models.

Conservative exchangedynamicsbetween individuals redistribute thewealth
among people. Without conservation, the best way to extract information on the
large-time behavior of the solution relies on scaling the solution itself to keep
the average wealth constant after scaling. Nevertheless, the explicit form of the
limit distribution of the kinetic equation remains extremely difficult to recover,
and often requires the use of suitable numerical methods.

A complementary method to extract information on the steady state distri-
bution was linked in [5] to the possibility of obtaining particular asymptotics,
which mimic the characteristics of the solution of the original problem for large
times. The main result in this direction was to show that the kinetic model
converges (under appropriate assumptions) in a suitable scaling limit to a par-
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Fig. 11.3. Hongkong: in the thin w = O(1)-part of the Pareto distribution

�

tial differential equation of Fokker–Planck type for the distribution of money
among individuals. This diffusion-convection equation reads:

∂f
∂t

=
λ
2

∂2

∂v2

(
v2f

)
+

∂
∂v

(
(v − m)f

)
. (11.8)

In (11.8) m is the mean wealth,

m =
∫
+

vf (v, t) dv ,

which is time-conserved assuming that f has been scaled to be a probability
density. The same Fokker–Planck equation was obtained in [2] as the mean field
limit of a stochastic equation, as well as in [9, 14] in the context of generalized
Lotka–Volterra dynamics.

The equilibrium state of the Fokker–Planck equation can be computed ex-
plicitly and is of Pareto type, namely it is characterized by a power-law tail for
the richest individuals. By assuming for simplicity m = 1 we find:

f∞(v) =
(μ − 1)μ

Γ(μ)

exp
(
−μ−1

v

)
v1+μ (11.9)

where

μ = 1 +
2
λ

> 1 .

We remark that the tails of the Pareto steady state of the Fokker–Planck
equation are related to the coefficients s and σ2 which appear in the collision
rule (11.6), with σ2/s = λ!

Another important field in which microscopic kinetic models describing
the collective behavior and self-organization in a society [16] can be fruitfully
employed is the modeling of opinion formation (cfr. [1,13,15] and the references
therein).

In these studies, formation of opinion is described by mean field model equa-
tions. They are in general systems of ordinary differential equations or partial
differential equations of diffusive type. In [1], attention is focused on two aspects
of opinion formation, which in principle could be responsible for the formation
of coherent structures. The first one is the remarkably simple compromise pro-
cess, in which pairs of agents reach a fair compromise after exchanging opinions.
The second one is a diffusion process, which allows individual agents to change
their opinions in a random diffusive fashion. While the compromise process has
its basis in the human tendency to settle conflicts, diffusion accounts for the pos-
sibility thatpeoplemaychangeopinion throughaccess to information.Atpresent
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Fig. 11.4. Manhattan, New York: in the fat Pareto tail
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Fig. 11.5. Hongkong, China:
where the fat Pareto tail is made
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Fig. 11.6. Shanghai, China: some are left behind on the
w = o(1)-part of the Pareto distribution (courtesy of
Andrea Baczynski)
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this aspect is gaining importance due to emerging new ways of global access to
and exchange of information (among them electronic mail and web navigation).

This line of thought is at the basis of kinetic models of opinion formation
[15], based on two-body interactions involving both compromise and diffusion
properties in exchanges between individuals.

The goal of kinetic models of opinion formation is to describe the evolution
of the distribution of opinions in a society by means of microscopic interactions
between agents which exchange information. To fix ideas, we associate opinion
with a variable which varies continuously from −1 to 1, where −1 and 1 denote
the two (extreme) opposite opinions. We assume binary interactions which are
such that the bounds of the admissible opinion-interval are maintained. This
crucial rule emphasizes the difference between social interactions, where not all
interaction outcomes are permitted, and collisions of molecules in the kinetic
theory of rarefied gases.

Let I = [−1, +1] denote the interval of admissible opinions. From a micro-
scopic view point, a binary interaction is described by

v∗ = v − sP(|v|)(v − w) + ηD(|v|) ; (11.10)
w∗ = w − sP(|w|)(w − v) + η̃D(|w|) ,

where the pair (v, w), denotes the opinions of two arbitrary individuals before the
interaction and (v∗, w∗) their opinions after exchanging information between
them and with the exterior world. Opinions are not allowed to cross bound-
aries, and thus the interaction takes place only if both v∗, w∗ ∈ I. In (11.10) the
coefficient s ∈ (0, 1/2) is a given constant (the analogue of the saving rate in
(11.5), while η and η̃ are equally distributed random variables with variance σ2

and zero mean. The constant s and the variance σ2 measure the compromise
propensity and, respectively, the modification of opinion due to diffusion. Fi-
nally, the functions P(·) and D(·) describe the local relevance of the compromise
and diffusion for a given opinion.

In analogy to kinetic modeling of market economies, the binary interactions
(11.10) are used to construct a Boltzmann-like equation similar to (11.1), where
now ∫

Q( f , f )(v)φ(v) dv =

1
2

〈∫ ∫
(φ(v∗) + φ(w∗) − φ(v) − φ(w))f (v)f (w)dv dw

〉
. (11.11)

A suitable asymptotic analysis allows to obtain a Fokker–Planck equation with
variable coefficients from this Boltzmann equation [15]:

∂f
∂t

=
λ
2

∂2

∂v2

(
D(|v|)2f

)
+

∂
∂v

(
P(|v|)(v − m(t))f

)
. (11.12)
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In (11.12) m(t) is the mean opinion at time t,

m(t) =

+1∫
−1

vf (v, t) dv .

The long-time behavior of the Fokker–Planck equation is very rich, and de-
pends on the interaction dynamics of the Boltzmann equation. As for economic
interactions, the constant λ in the Fokker–Planck equation (11.12) is related to
the coefficients s and σ2 which appear in the collision rule (11.10), with σ2/s = λ.
The structure of the steady state represents the formation of opinion contingent
to the choice of the interaction dynamics. To show results in some simple case,
we fix P(|v|) = 1, which implies conservation of the average opinion, again as-
suming that f has been scaled to be a probability density and that f and D vanish
at the extreme opinions v = +1, −1. If in addition

D(|v|) = 1 − v2 ,

then the steady state distribution of opinion solves the equation

λ
2

∂
∂v

(
(1 − v2)2f

)
+ (v − m)f = 0 (11.13)

where m is a given constant (the average initial opinion). The solution of (11.13)
is easily found:

f∞(w) = cm, λ(1 + v)−2+m / (2 λ)(1 − v)−2−m / (2 λ) exp
{

−
1 − mv

λ(1 − v2)

}
. (11.14)

Here the constant cm, λ has to be fixed such that the mass of f∞ is equal to the
mass of the initial state, which is 1 by assumption, implying −1 < m < +1. Note
that the presence of the exponential assures that f∞(±1) = 0. The solution is
regular, but not symmetric unless m = 0. Hence, the initial opinion distribution
impacts on the steady state through its mean (opinion) value. In any case, the
stationary distribution has two peaks (on the right and on the left of zero) with
intensities depending on λ.

Comments on the Images 11.1 to 11.6 The Italian political economist Vilfredo
Pareto (1848–1923)2 is the originator of the so called empirical Pareto law3 which
in a simplified form states that – in any given country – less than 20% of the
populationown80%of the totalwealth.Although thiswasnotconsideredamoral
issue by Pareto himself, it is very hard not to think of morality when traveling
through third world countries and being in direct contact with the huge number

2 http://cepa.newschool.edu/het/profiles/pareto.htm
3 http://www.it-cortex.com/Pareto−law.htm
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Fig. 11.7. Opinion forming in Shanghai, China (courtesy of Andrea Baczynski)

of people, who are not part of the large-income Pareto tail. Mathematically
speaking, a more general form of the Pareto law is represented by the fact that
the large w(ealth)-tails, which correspond to the density of the rich individuals,
of the large-time asymptotic states of the kinetic Pareto–Boltzmann equation
(at least after an appropriate scaling limit) decay only algebraically as the wealth
variable w tends to infinity, leading to so-called heavy or fat tails. The precise
decay rate depends on properties of the market under consideration. Statistical
data confirm the 80–20 wealth distribution rule as a surprisingly universal
outcome, consistent with the algebraic decay law.

Also we remark that Pareto’s work on efficiency and optimality of economic
systems4 hasdeep implicationsonmathematical gametheory5,whichwas turned
into a precise mathematical theory in the first half of the 20th century, mainly by
John von Neumann6 and John Nash7. We refer to the book [17] for an excellent
introduction to mathematical game theory, mainly in the context of biological
systems.

Comments on the Images 11.7–11.10 Mathematical opinion formation models
are based on quantifying the outcome of social interactions in the society under
4 http://en.wikipedia.org/wiki/Pareto−efficiency
5 http://en.wikipedia.org/wiki/Game−theory
6 http://en.wikipedia.org/wiki/John−von−Neumann
7 http://nobelprize.org/economics/laureates/1994/nash-autobio.html
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consideration. Clearly, they have to take into account the various factors making
up the social tissue of the society, which stem from the historical, religious,
socio-economic, political etc. background. A lot of research in this direction has
been carried out in the last years, and the interested reader can find information
on the subject in the webpage of the Condensed Matter ArXiv8.

8 http://xxx.lanl.gov/find/cond-mat
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Fig. 11.8. Opinion forming on the
Zocalo, Mexico City
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Fig. 11.9. Opinion forming in Isfahan, Iran
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Fig. 11.10. Beach in Salvador de Bahia, Brazil: what is the mean free path?
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