How to use the Madrigal database for atmospheric science

Bill Rideout
MIT Haystack Observatory
brideout@haystack.mit.edu

ISR workshop
Kangerlussuaq, Greenland
July 18, 2011
Outline

- What is Madrigal?
- How is Madrigal different from an ftp site?
- How do I use Madrigal?
 - The website
 - Script data access
- What’s coming soon with Madrigal?
What is Madrigal?

Open-source, standard-based local databases that share metadata

Madrigal is a Science database.
The Madrigal database stores data from a wide variety of upper atmosphere research instruments in the Cedar database format.

Incoherent Scatter Radar TEC via GPS MF Radar

Cedar database format

Loading programs can be written in Python, C, or Tcl

Other instrument types in Madrigal: Meteor radar, Digisonde, Fabry-Perot, Geophysical indices

Wednesday, July 13, 2011
Madrigal is open-source

The Open Madrigal Initiative

MIT Haystack Observatory, home of the Millstone Hill Incoherent Scatter Radar, has supported an on-line incoherent scatter database since 1980. This early database evolved into both the CEDAR Database at the National Center for Atmospheric Research (NCAR) and the Madrigal Database at Millstone Hill. The CEDAR and Madrigal Databases have very different user interfaces and capabilities, but use the same basic data format, and data files are easily exchanged between the two systems.

Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of instruments. Data can be accessed from the Madrigal sites at Millstone Hill, USA, EISCAT, Norway, SRI International, USA, Arecibo, Puerto Rico, Cornell University, USA, Jicamarca, Peru, The Institute of Solar-Terrestrial Physics, Russia, and Wuhan Ionospheric Observatory, the Chinese Academy of Sciences, using standard Web browsers; and directly, using APIs which are available for several popular programming languages.

The distributed Madrigal Database has been recognized by a Sun Microsystems Academic Excellence Award which included the Haystack Observatory server which hosts the Open Madrigal project.

- Millstone Hill, USA
- EISCAT, Norway
- SRI International, USA
- Arecibo, Puerto Rico
- Cornell University, USA
- Jicamarca, Peru
- ISTP, Russia
- Wuhan, China
Madrigal is open-source

The Open Madrigal Initiative

MIT Haystack Observatory, home of the Millstone Hill Incoherent Scatter Radar, has supported an on-line incoherent scatter database since 1980. This early database evolved into both the CEDAR Database at the National Center for Atmospheric Research (NCAR) and the Madrigal Database at Millstone Hill. The CEDAR and Madrigal Databases have very different user interfaces and capabilities, but use the same basic data format, and data files are easily exchanged between the two systems.

Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of instruments. Data can be accessed from the Madrigal sites at Millstone Hill, USA, EISCAT, Norway, SRI International, USA, Arecibo, Puerto Rico, Cornell University, USA, Java哪儿，Peru, The Institute of Solar-Terrestrial Physics, Russia, and Wuhan Ionospheric Observatory, the Chinese Academy of Sciences, using standard Web browsers; and directly, using APIs which are available for several popular programming languages.

The distributed Madrigal Database has been recognized by a Sun Microsystems Academic Excellence Award which included the Haystack Observatory server which hosts the Open Madrigal project.

www.openmadrigal.org
Madrigal is open-source

The Open Madrigal Initiative

MIT Haystack Observatory, home of the Millstone Hill Incoherent Scatter Radar, has supported an on-line incoherent scatter database since 1980. This early database evolved into both the CEDAR Database at the National Center for Atmospheric Research (NCAR) and the Madrigal Database at Millstone Hill. The CEDAR and Madrigal Databases have very different user interfaces and capabilities, but use the same basic data format, and data files are easily exchanged between the two systems.

Madrigal is a robust, World Wide Web based system capable of managing and serving archival and real-time data, in a variety of formats, from a wide range of instruments. Data can be accessed from the Madrigal sites at Millstone Hill, USA, EISCAT, Norway, SRI International, USA, Arecibo, Puerto Rico, Cornell University, USA, Jica, Peru, The Institute of Solar-Terrestrial Physics, Russia, and Wuhan Ionospheric Observatory, the Chinese Academy of Sciences. Using standard Web browsers; and directly, using APIs which are available for several popular programming languages.

The distributed Madrigal database has been recognized by a large number of academic institutions which included the Haystack Observatory server which hosts the Open Madrigal project.

www.openmadrigal.org
How is Madrigal different from an ftp site?
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
- How does this help a scientist?
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
- How does this help a scientist?
Cedar/Madrigal Database

- All parameters in file defined
 - http://cedarweb.hao.ucar.edu/documents/parameters_list.txt
Cedar/Madrigal Database

- All parameters in file defined
 - http://cedarweb.hao.ucar.edu/documents/parameters_list.txt
- Ranges of parameters for each instrument
Cedar/Madrigal Database

- All parameters in file defined
 - http://cedarweb.hao.ucar.edu/documents/parameters_list.txt
- Ranges of parameters for each instrument
- Data stored in one or two 16 bit ints
 - Additional increment parameters
 - Madrigal 3.0 will switch seamlessly to HDF5
Cedar/Madrigal Database

- All parameters in file defined
 - http://cedarweb.hao.ucar.edu/documents/parameters_list.txt
- Ranges of parameters for each instrument
- Data stored in one or two 16 bit ints
 - Additional increment parameters
 - Madrigal 3.0 will switch seamlessly to HDF5
- Error parameters always available
Cedar/Madrigal Database

- All parameters in file defined
 - http://cedarweb.hao.ucar.edu/documents/parameters_list.txt
- Ranges of parameters for each instrument
- Data stored in one or two 16 bit ints
 - Additional increment parameters
 - Madrigal 3.0 will switch seamlessly to HDF5
- Error parameters always available
- File format defined in
 - http://cedarweb.hao.ucar.edu/cgi-bin/cedar_file_access.pl?filename=documents/cedar_fmt.pdf
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
- How does this help a scientist?
Madrigal site
(typically a facility with scientists and a Madrigal installation)

↓

Instruments
(ground-based, typically with a set location)

↓

Experiments
(typically of limited duration, with a single contact)

↓

Experiment Files
(representation data from one analysis of the experiment)

↓

Records
(measurement over one period of time)

Data shared among all Madrigal sites
Data unique to one Madrigal site
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
- How does this help a scientist?
Madrigal Derivation Engine
Madrigal Derivation Engine

- Derived parameters appear to be in file
Madrigal Derivation Engine

- Derived parameters appear to be in file
- Engine determines all parameters that can be derived
Madrigal Derivation Engine

- Derived parameters appear to be in file
- Engine determines all parameters that can be derived
- Easy to add new derived parameters using code written in C or Fortran
Classes of derived parameters

- Space, time
 - Examples: Local time, shadow height
Classes of derived parameters

- **Space, time**
 - Examples: Local time, shadow height

- **Geophysical**
 - Examples: Kp, Dst, Imf, F10.7
Classes of derived parameters

- **Space, time**
 - Examples: Local time, shadow height

- **Geophysical**
 - Examples: Kp, Dst, Imf, F10.7

- **Magnetic**
 - Examples: Bmag, Mag conjugate lat and long, Tsyganenko magnetic equatorial plane intercept
Classes of derived parameters

- **Space, time**
 - Examples: Local time, shadow height

- **Geophysical**
 - Examples: Kp, Dst, Imf, F10.7

- **Magnetic**
 - Examples: Bmag, Mag conjugate lat and long, Tsyganenko magnetic equatorial plane intercept

- **Models**
 - Examples: MSIS, IRI
How is Madrigal different from an ftp site?

- Madrigal files have well-defined format and parameters
- Madrigal has metadata associated with data files
 - Allows faster searches of data
- Madrigal has a derivation engine
- How does this help a scientist?

Wednesday, July 13, 2011
Example data search problem

- Find out how well the a model compares with measured data depending on geophysical conditions.
Ftp site approach
Ftp site approach

- Download all the ftp data to your local computer
Ftp site approach

- Download all the ftp data to your local computer
- Write software to convert the format
Ftp site approach

- Download all the ftp data to your local computer
- Write software to convert the format
- Get geophysical data from other sources
Ftp site approach

- Download all the ftp data to your local computer
- Write software to convert the format
- Get geophysical data from other sources

- If you want to compare to models
 - Compile model code (if you’re lucky)
 - Write more format conversion code
Ftp site approach

- Download all the ftp data to your local computer
- Write software to convert the format
- Get geophysical data from other sources
- If you want to compare to models
 - Compile model code (if you’re lucky)
 - Write more format conversion code
- Write analysis code
Madrigal approach
Madrigal approach

- Use script globalIsprint.py - done
Madrigal approach

- Use script globalIsprint.py - done
- Use global search web interface - done
How can the Madrigal database be accessed?

Web services API
- From anywhere on internet
- Python API
- Matlab API
- IDL API
- Other could be written
Live demo of Madrigal web page

- Start at any Madrigal server (e.g., http://isr.sri.com/madrigal)
Remote Access to Madrigal Data
Remote Access to Madrigal Data

- Built on web services
Remote Access to Madrigal Data

- Built on web services
- Like the web, available from anywhere on any platform
Remote Access to Madrigal Data

- Built on web services
- Like the web, available from anywhere on any platform
- Read only API
Remote Access to Madrigal Data

- Built on web services
- Like the web, available from anywhere on any platform
- Read only API
- Complete Python, Matlab, and IDL APIs written
Remote Access to Madrigal Data

- Built on web services
- Like the web, available from anywhere on any platform
- Read only API
- Complete Python, Matlab, and IDL APIs written
- More APIs available on request or via contribution
Madrigal Web Services
Madrigal Web Services

- Simple delimited output via CGI scripts
Madrigal Web Services

- Simple delimited output via CGI scripts
- Not based on SOAP or XmlRpc since no support in languages such as Matlab
Madrigal Web Services

- Simple delimited output via CGI scripts
- Not based on SOAP or XmlRpc since no support in languages such as Matlab
- CGI arguments and output fully documented at http://www.haystack.edu/madrigal/remoteAPIs.html
create the main object to get all needed info from Madrigal
madrigalUrl = "http://www.haystack.mit.edu/madrigal"
testData = madrigalWeb.madrigalWeb.MadrigalData(madrigalUrl)

get all MLH experiments in 1998
expList = testData.getExperiments(30, 1998, 1, 1, 0, 0, 0, 1998, 12, 31, 23, 59, 59)

for exp in expList:
 # print out all experiments
 print exp

print list of all files in first experiment
fileList = testData.getExperimentFiles(expList[0].id)
for thisfile in fileList:
 print thisfile
Python Remote API

- Can run on any platform with python (PC, Unix, Mac, etc)
- Fully documented with examples
- See http://madrigal.haystack.edu/madrigal/remotePythonAPI.html for documentation, more examples, and source
Live Python API demo

- See demoMadrigalWebServices.py at http://www.haystack.mit.edu/cgi-bin/madrigal_viewcvs.cgi/madroot/source/madpy/madrigalWeb/examples/
Matlab Remote API

- **Methods**
 - `getInstrumentsWeb`
 - `getExperimentsWeb`
 - `getExperimentFilesWeb`
 - `getParametersWeb`
 - `isprintWeb`
 - `madDownloadFile`
 - `madCalculatorWeb`
 - `globalIsprint`

- Methods match Madrigal model
Simple Matlab example

```matlab
filename = '/usr/local/madroot/experiments
    /2003/tro/05jun03/NCAR_2003-06-05_tau2pl_60_uhf.bin';

eiscat_cgi_url = 'http://www.eiscat.se/madrigal/cgi-bin/';

% download the following parameters from the above file: ut, gdalt, ti
parms = 'ut,gdalt,ti';

filterStr = 'filter=gdalt,200,600 filter=ti,0,5000';

% returns a three dimensional array of double with the dimensions:
%   [Number of rows, number of parameters requested, number of records]
% If error or no data returned, will return error explanation string instead.
data = isprintWeb(eiscat_cgi_url, filename, parms, filterStr);
```
Simple Matlab example, continued

- See http://madrigal.haystack.edu/madrigal/remoteMatlabAPI.html for complete documentation and more examples
Live Matlab API demo

- See demoMadrigalWebServices.m at http://www.haystack.mit.edu/cgi-bin/madrigal_viewcvs.cgi/madroot/source/madmatlab/
IDL Remote API

- Methods
 - madGetAllInstruments
 - madGetExperiments
 - madGetExperimentFiles
 - madGetExperimentFileParameters
 - madSimplePrint
 - madPrint
 - madDownloadFile
 - madCalculator
 - madGlobalPrint
- Methods again match Madrigal model
- Just added in July 2010
Madrigal application globallsprint.*

- Installed with all three remote API’s.
- More robust than global search web UI.
 - Data stored locally
 - Error messages on local terminal
- Documented under Documentation-> Command line interface and in API doc.
globallsprint example

- Poker Flat
- March 10-20, 2007
- Alternating code (File kindat 5951)
- Kp above 4
- Alt between 240 and 260 and
- Ne > 2e11
Example command line (python version)

./globalIsprint.py \
--url=http://isr.sri.com/madrigal \
--parms=year,month,day,hour,min,sec,elm,azm,gdalt,gdat,glon,kp,ne,te,ti \
--output=demo.txt \
--user_fullname="Bill Rideout" \
--user_email=brideout@haystack.mit.edu \
--user_affiliation=MIT \
--startDate=02/01/2007 --endDate=02/28/2007 \
--inst="Poker*" \
--kindat=5951 \
--filter=ap3,15, \
--filter=gdalt,240,260 \
--filter=ne,2e11, \
--filter=te,1000, \
--verbose
What’s coming soon for Madrigal?

- NSF funded development
 - Release 2.6
 - Release 3.0
- Open source development with Jicamarca
NSF funded development for next release

- Transition of CEDAR database to Madrigal platform
 - Ability of Madrigal to automatically import data from other Madrigal sites
 - Importing of existing non-Madrigal data into Madrigal

- Ability to extend Madrigal with external hard drives
Next release development, continued

- Work with Jicamarca to integrate new UI into Madrigal
- Export HDF5 format
- FTP like interface added?
- Users can register interest in experiment
- Experiment PI, analyst now shared metadata
- IDL API added to Matlab, python
Following release (Madrigal 3.0)

- Conversion of CEDAR format to CEDAR HDF5/NetCDF4 format
 - Parameter definitions/data model unchanged
 - Each file will be self-describing
 - No more scale factors, integer storage
 - No more duplicate parameters with different ranges
 - Madrigal derivation engine will interface with it
Madrigal 3.0 continued

- Conversion of CEDAR format to CEDAR HDF5/NetCDF4 format
 - Conversion will be automatic using script
 - To create new CEDAR format
 - Create file old way, run convert script
 - Using python API, change one line of code

- Community standard
 - Interface to download latest standard, request new parameters
Open source development with Jicamarca

- Project is one of 3 based on Oct 2010 meeting
- Development of
 - New simple web UI
 - Export HDF5 format
- Modern open source project
 - Shared access to source control (Subversion)
- Millstone responsible for final testing, release, support
Extending/contributing to Madrigal

- Madrigal is completely open source
- See www.openmadrigal.org for CVS
- All new code is Python or C. Imported derivation methods sometimes in Fortran.

I appreciate all contributions
 - Suggestions and ideas
 - Finding bugs
 - Code
Madrigal hands-on exercises

- Fully described on wiki at http://www.haystack.mit.edu/cgi-bin/asg_science/science.cgi/Using_Madrigal_practically_and_productively
- Web practice
- Script practice using python, Matlab, or IDL