Introduction to heating experiments

Antti Kero

Sodankylä Geophysical Observatory / University of Oulu

antti.kero@sgo.fi

Luxembourg effect (1934)

Luxembourg

vastaano

Luxembourg

Lähetin

Beromünster

EISCAT site at Tromso, Norway

Heating facilities since 1970

Intensity of the EISCAT heater beams

$$I_0 = \frac{PG}{4\pi r^2} = \frac{ERP}{4\pi r^2}$$

Some active HF heating effects

Outline

Intro

- History: Luxembourg effect
- Facilities around the world
- Two types of heating

Collisional heating

- Radio wave propagation theory
- Modeling the electron temperature
- Effects on incoherent scattering
- Coherent scattering: PMSE/PMWE, API

Wave excitation

- Plasma waves in principle
- Artificial aurora
- VLF/ULF waves

Summary

Appleton equation

$$n^{2} = 1 - \frac{X}{1 - iZ - \frac{(Y\sin\theta)^{2}}{2(1 - X - iZ)^{2}} \pm \sqrt{\frac{(Y\sin\theta)^{4}}{4(1 - X - iZ)^{2}} + (Y\cos\theta)^{2}}}$$
$$X = \frac{\omega_{pe}^{2}}{\omega^{2}} = \frac{N_{e}e^{2}}{\varepsilon_{o}m_{e}\omega^{2}}, \quad Y = \frac{\omega_{ge}}{\omega} = \frac{eB}{m_{e}\omega}, \quad Z = \frac{v_{en}}{\omega}$$

For detailed discussion, see K.G. Budden:

Radio Waves in the Ionosphere (1961)

Appleton equation

Consider a radio wave propagating in medium described by a complex refractive index $n = \Re(n) + i\Im(n)$. Apply it to the plane wave equation along path *r*

$$E(r,t) = E_0 \exp\left(i\omega(t - \frac{n}{c}r)\right)$$
$$= E_0 \exp\left(i\omega(t - \frac{\Re(n) + i\Im(n)}{c}r)\right)$$
$$= E_0 \exp\left(i\omega\left(t - \frac{\Re(n)}{c}r\right)\right) \exp\left(\frac{\omega\Im(n)}{c}r\right)$$

Consider a radio wave propagating in medium described by a complex refractive index $n = \Re(n) + i\Im(n)$. Apply it to the plane wave equation along path *r*

$$E(r,t) = E_0 \exp\left(i\omega(t - \frac{n}{c}r)\right)$$

= $E_0 \exp\left(i\omega(t - \frac{\Re(n) + i\Im(n)}{c}r)\right)$
= $E_0 \exp\left(i\omega\left(t - \frac{\Re(n)}{c}r\right)\right) \exp\left(\frac{\omega\Im(n)}{c}r\right)$
 E'_0
$$E(r) = E'_0 \exp\left(\frac{\omega\Im(n)}{c}r\right) \xrightarrow{I \propto E^2} I(r) = I_0 \exp\left(\frac{2\omega\Im(n)}{c}r\right)$$

Physical interpretation of the absorption via collisions

Electric field of the radio wave makes electrons as charged particles oscillate. A part of electron energy associated to the oscillation motion is transformed into random kinetic motion in collisions.

Physical interpretation of the absorption via collisions

ZZA

However, when the electron kinetic energy grows above certain level it can excite neutrals and therefore lose energy.

Energy transfer from the wave to the electron gas

Intensity of the point source radio wave along path r is

$$I(r) = I_0 \exp\left(\frac{2\omega}{c} \int_0^r \mathfrak{I}(n) dr\right) = \frac{PG}{4\pi r^2} \exp\left(\frac{2\omega}{c} \int_0^r \mathfrak{I}(n) dr\right)$$

and absorbed power per volume element is

$$Q(r) = -\frac{dI(r)}{dr} = -\frac{2\omega\Im(n_r)}{c}I(r)$$

Electron energy loss

Electron energy loss processes included in our model

- Vibrational and rotational excitation of O₂ and N₂ (Pavlov, 1998)
- Excitations of atomic oxygen (Stubbe and Varnum, 1972)

Loss rate *L* is the energy, lost by electrons, per volume and time unit.

Electrons in a thermal equilibrium

If all the absorbed energy is transferred to electron thermal energy, then the equilibrium between gain and loss is

The electron temperature is calculated in *dr* layers:

• Calculate the intensity below

$$I = \frac{PG}{4\pi r^2} \exp\left(\frac{2\omega}{c} \int_0^r \Im(n) dr\right)$$

- Find T_e which obeys the energy balance Q=L
- recalculate the refractive index in this T_e

The modelled heating effect

electron/neutral temperature ratio

EISCAT VHF & HEATER

Modelled heating effect in the D region

Heating effect on IS spectrum

Heating signature in the IS signal (2006)

Model vs. data for the 2006 experiments

Model vs. data for the 2006 experiments

[K]

[K]

Kero et al., Ann Geophys, 2008

PMSE & PMWE

PMSE at 85 km

PMWE at 63 km

Kavanagh et al., GRL, 2006

Artificial Periodic Irregularities (API)

API modulation schemes

Technical implementation

Sodankylä lon Chemistry model (SIC)

Detailed 1-D time dependend chemistry

- 63 ions (27 negative) & 13 neutrals
- 20-150 km in 1 km resolution
- several hundred reactions
- vertical transport

Input

- MSIS
- solar flux
- proton and electron precipitation
- cosmic rays

Modelling the API

API "brightness", data vs. model

Data, 9th December 2011

Model

Other parameters ...

Vertical velocity (m/s)

Time (UT)

API vs. PMSE/PMWE in the mesosphere

	ΑΡΙ	PMSE/PMWE
Production	 standing wave negative ion prod. (dust charging?) 	 turbulence dust/ice charging (negative ions?)
Loss	 detachment (dust de-charging) (diffusion) 	 diffusion dust de-charging (detachment)
Heating	Forms the irregularities in the first place	Makes the echo <i>weaker</i> (+ builds the overshoot)
Lambda	55.3 m	0.32/1.34/5.35 m

Outline

Intro

- History: Luxembourg effect
- Facilities around the world
- Two types of heating

Collisional heating

- Radio wave propagation theory
- Modeling the electron temperature
- Effects on incoherent scattering
- Coherent scattering: PMSE/PMWE, API

Wave excitation

- Plasma waves in principle
- Artificial aurora
- VLF/ULF waves

Summary

Plasma Waves from Linearized Equations

Ref: Swanson, Plasma Waves, 1989 Goedbloed and Poedts, Magnetohydrodynamics, 2004

$\partial \tilde{n}$	Electrons	
$\frac{\partial v_e}{\partial t} + n_e \nabla \cdot \tilde{\mathbf{u}}_e = 0$		
$\frac{\partial \tilde{\mathbf{u}}_{e}}{\partial t} + \nabla \tilde{p}_{e} + \frac{e}{m_{e}} (\tilde{\mathbf{E}} + \tilde{\mathbf{u}}_{e} \times \mathbf{B})$	$= -\boldsymbol{v}_e(\tilde{\mathbf{u}}_e - \tilde{\mathbf{u}}_i)$	
$\tilde{p}_e = \lambda_e k T_e \tilde{n}_e$		
$\frac{\partial \tilde{n}_i}{\partial t} + n_i \nabla \cdot \tilde{\mathbf{u}}_i = 0$	lons	
$\frac{\partial \tilde{\mathbf{u}}_i}{\partial t} + \nabla \tilde{p}_i - \frac{e}{m_i} (\tilde{\mathbf{E}} + \tilde{\mathbf{u}}_e \times \mathbf{B}) =$	$= -\boldsymbol{v}_i(\tilde{\mathbf{u}}_i - \tilde{\mathbf{u}}_e)$	
$\tilde{p}_i = \lambda_i k T_i \tilde{n}_i$		I I I
$\frac{\partial \tilde{\mathbf{B}}}{\partial t} + \nabla \times \tilde{\mathbf{E}} = 0, \nabla \cdot \tilde{\mathbf{B}} = 0$		Fields
$\frac{\partial \tilde{\mathbf{E}}}{\partial t} - c^2 \nabla \times \tilde{\mathbf{B}} = \frac{e}{\varepsilon_0} n_e (\tilde{\mathbf{u}}_e - \tilde{\mathbf{u}}_i)$), $\nabla \cdot \tilde{\mathbf{E}} = -\frac{2}{\varepsilon}$	$\frac{e}{10}(\tilde{n}_e-\tilde{n}_i)$
$\tilde{n}_e(\mathbf{r},t) = \tilde{n}_e \exp[i(\mathbf{k}\cdot\mathbf{r} - \omega t)]$	$\nabla \rightarrow -\mathbf{k}, \dot{a}$	$\partial / \partial t \rightarrow -i\omega$

- 12 Unknowns
 - 4 Electron Variables
 - 4 Ion Variables
 - 2 Electric Fields
 - 2 Magnetic Fields
- Dispersion Equation
 - 12th Order in ω
 - 8th order in k
- Solutions

٠

- 6 Branches
- 2 Propagation Directions
- Cutoffs $(k^2 \rightarrow 0, \lambda^2 \rightarrow \infty)$
- Resonances $(k^2 \rightarrow \infty, \lambda^2 \rightarrow 0)$
- MHD
 - $k^2 \rightarrow 0, \omega^2 \rightarrow 0$
 - Finite Phase Velocity (ω/k)
- High Frequency
 - $k^2 \rightarrow \infty, \omega^2 \rightarrow \infty$
 - Finite Phase Velocity (ω/k)

Waves in a Fluid Plasma for Oblique Propagation

Plasma Wave Mode Characteristic Branches for **Typical Ionospheric Parameters** Stringer (1963) Diagram $\Omega_e = (2\pi) \ 1.43 \ 10^6 \ Rad \ / s$ $\omega_{pe} = 2 \ \Omega_{e} Rad / s = (2\pi) \ 2.86 \ 10^{6} Rad / s$ $\omega_{IIH} = (2\pi) \ 3.2 \ 10^6 \ Rad \ / \ s$ $\omega_{LH} = (2\pi) 7460 \ Rad / s$ $\Omega_i = (2\pi) 48.7 Rad / s$ $n_e = 1.01 \ 10^{11} m^{-3}$ $T_e = 2500K$ $T_{i} = 800K$ $V_{A} = 8.75 \ 10^{5} \, m \, / \, s$ $c_{s} = 1590 \ m / s$ $\rho_{e} = 0.022 \ m$ $\rho_i = 3.64 \ m$ $\theta = \pi / 4$

(Brändström et al., Geophys. Res. Lett., 1999)

Heating effect on the conductivities

$$\mathbf{j} = \sigma_P \mathbf{E}_{\perp} - \sigma_H \frac{\mathbf{E} \times \mathbf{B}}{B} + \sigma_{\parallel} \mathbf{E}_{\parallel}$$

$$\sigma_P = \frac{ne}{B} \left(\frac{k_i}{1+k_i^2} + \frac{k_e}{1+k_e^2} \right)$$

$$\sigma_H = \frac{ne}{B} \left(-\frac{k_i^2}{1+k_i^2} + \frac{k_e^2}{1+k_e^2} \right)$$

$$\sigma_{\parallel} = \frac{ne}{B}(k_i + k_e)$$

$$k_i = \frac{\omega_i}{\nu_{in}} \qquad k_e = \frac{\omega_e}{\nu_{en}}$$

Heating effect on the conductivities: generation of ULF/VLF waves

Heating effect on the conductivities: propagation path of VLF waves

Heating effect on the conductivities: propagation path of VLF waves

Outline

Intro

- History: Luxembourg effect
- Facilities around the world
- Two types of heating

Collisional heating

- Radio wave propagation theory
- Modeling the electron temperature
- Effects on incoherent scattering
- Coherent scattering: PMSE/PMWE, API

Wave excitation

- Plasma waves in principle
- Artificial aurora
- VLF/ULF waves

Summary