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Basic Structure (1)

• Scattering model
– Density fluctuations

– ISR as a Bragg technique

• The Radar Equation
– Hard and “soft” targets

• Detectability of the scatter
– Original ideas

– What really happens

• The plasma wave spectrum
– Relationship to plasma parameters

• Pulsed radar concepts
– Range resolution

– Time/distance

– Frequency/velocity



Basic structure (2)

• Doppler measurement
– Intuitive approach

– IQ technique

• Autocorrelation functions
– Overspread targets– Overspread targets

– Why single pulses are needed

– Why single pulses are no good

• Constraining Factors
– How far to calculate the ACF?

– Correlation times vs scale heights

• Clutter







































































Dependence on Plasma Parameters

To see how incoherent scatter spectrum depends on the plasma parameters, play with the widget at:

http://madrigal.haystack.mit.edu/madrigal/ISR/spectrum/



































A note about bistatic radars

• For a bistatic radar, 
the receiver is 
sensitive to plasma 
waves in the mirror 
directiondirection

• This is most important 
for velocity (vector) 
calculations…

• ..but actually it affects 
other parameters too 
(think temperature 
anisotropy)



Overspread Target



Computing the ACF

In the correlator:

Ri,j = ∑(XiXj + YiYj)

I = ∑(X Y -Y X )Ii,j = ∑(XiYj-YiXj)

For lag 0:  i = j (imaginary part identically zero)

For lag 1: j-i=1, and so on…













The plasma autocorrelation function, rxx(τ)

is the Fourier transform of the ion line power spectral density. Using the plasma 

dispersion relation, we can compute model autocorrelation functions for different 

combinations of Ne, Te and Ti

An estimate of the target rxx at lag time nτ0 can be computed from the time 

series of complex amplitude samples, s(t), output from the receiver: 

r (nτ ) = s (t) s*(t + nτ )rxx(nτ0) = s (t) s*(t + nτ0)

Intuitively, it may appear natural to continue sampling at a given range for so long 

that the ACF has decayed almost to zero. To see if that helps at all, let us first look 

at how the different plasma parameters influence the ACF at different lag times :





Partial derivatives of the plasma 
dispersion function:

∂rxx(τ) / ∂Ne

∂rxx(τ) / ∂Ti

∂rxx(τ) / ∂(Te/Ti)

∂rxx(τ) / ∂mi

∂rxx(τ) / ∂νin

are shown in terms of τ/τ0 , where τ0 , the plasma correlation time, is the time to 

the first zero crossing of the ACF of a undamped ion-acoustic wave with wavelength

= Λ = ½ λradar

NOTE: ∂rxx(τ) / ∂Ti and ∂rxx(τ) / ∂mi are almost linearly dependent...



ACF estimate extent and errors

The next figure (from Vallinkoski 1989) shows how the errors of the different plasma 

parameters behave as functions of lag extent when measurement data are fitted to 

a five-parameter plasma model.

Comparing this to the previous figure , we see that as the lag extent is increased to 

the point where the partial derivative of a given parameter goes through a complete 

cycle, the error in that parameter suddenly drops dramatically. 

If one is satisfied with slightly less than ultimate accuracy, extending the 

measurement to τ/τ0 = 2.5 should be sufficient. By about τ/τ0 = 3.5, all errors have 

settled down to their asymptotic value.







Possible values for 

UHF experiment

Constraining factors for an incoherent scatter radar experiment

Time of flight for

radar pulse

Pulse length giving

resolution equal to

the scale-height.

ionospheric

correlation time,

τ1 for UHF

ionospheric

correlation time,

τ1 for VHF

UHF experiment

Some constraining factors for incoherent scatter experiments, shown as 

functions of height for typical ionospheric conditions.

Minimum pulse 

length obtainable 

from transmitter
















