

The short introduction to Incoherent Scatter (IS) Theory

Anja Strømme

National Science Foundation

Incoherent?...

• Dictionary: The property of being coherent

Antonym: Incoherent

• Incoherent=Random, viz. Incoherent scatter is the process by which radiowaves are randomly scattered by electrons in the ionosphere

• Media: Incoherent=Incomprehensible

Incoherent?...

• Dictionary: The property of being coherent

• Antonym: Incoherent

• Incoherent=Random, viz. Incoherent scatter is the process by which radiowaves are randomly scattered by electrons in the ionosphere

• Media: Incoherent=Incomprehensible

Incoherent scatter is neither incoherent nor incomprehensible

First: We need an lonsophere...

The Earths Ionosphere

Now we have an ionosphere let's add the Incoherent Scatter Radar (ISR) to probe it!

Incoherent Scatter Radars of the World

Map of the north...

High latitude Incoherent Scatter Radars....

PFISR (Poker Flat Incoherent Scatter Radar) and RISR-N Internation (Resolute Bay Incoher AMISRs curre

Low-Latitude Incoherent Scatter Radars

Questions you might have now:

- Why are incoherent scatter radars (ISRs) so big? Is it a status-thing?
- Why is it called incoherent scattering?
- What do the ISR returns look like and why?
- What can ISRs measure?
- Can we get through this before lunch?

How ISRs work...

Range Electrons reflect the pulse.... Time

High power pulse

Very sensitive receiver

Only ~0.00000000000000001% of the transmitted power is returned!

Only ~0.000000000000000001% of the transmitted power is returned!

How ISRs work...

Range Electrons reflect the pulse.... Let's go back here for a while... Time

High power pulse

Very sensitive receiver

Total Cross-Section Estimate

Consider an antenna with a 1-degree beam measuring the ionospheric plasma at 300 km range and using a 300 microsecond pulse. If the electron density is 10^{12} m⁻³, the total number of electrons scattering into a given measurement is $\sim 8.8 \times 10^{23}$. This yields a total cross-section of 88 mm² – we need a big radar!

$$S_e(\mathbf{k}, \omega) = N_e \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

Incoherent scattering - the short story

Incoherent scattering - the short story

Plasma Wave Approach (cont'd)

Landau wave-particle interactions

wave

particle gains energy

wave gains energy

THE EFFECT OF LANDAU DAMPING ON THE INCOHERENT SCATTER ION LINE SPECTRUM

ION-ACOUSTIC DISPERSION EQUATION

$$\omega_{ia} = k v_{phase} = k \left(\frac{T_e + 3T_i}{m_i} \right)^{1/2}$$

Incoherent Scattering Spectrum

Plasma line

Ion line

electric susceptibility $\chi_{e,i}(\mathbf{k},\omega)$ dielectric constant function $\epsilon(\mathbf{k},\omega)$ velocity distribution function $f_{e,i}(\mathbf{v})$

Plasma Line $S_{PL}(\mathbf{k},\omega)$

Ion Line $S_{IL}\left(\mathbf{k},\omega\right)$

$$S_e(\mathbf{k},\omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_i \left| \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_i(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

electron with cloud

ion with cloud

Debye length dependence

Plasma Line $S_{PL}(\mathbf{k},\omega)$

Ion Line $S_{IL}\left(\mathbf{k},\omega\right)$

$$S_e(\mathbf{k},\omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_i \left| \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_i(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

Plasma Line $S_{PL}(\mathbf{k},\omega)$

Ion Line $S_{IL}\left(\mathbf{k},\omega\right)$

$$S_e(\mathbf{k}, \omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^2 \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_i \left| \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^2 \int d\mathbf{v} f_i(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

$$\omega_{pl}(k) \approx \omega_{pe}(1 + 3\lambda_D^2 k^2)$$

$$\omega_{pl}(k) \approx \omega_{pe}(1+3\lambda_D^2 k^2)$$
 $\omega_{ia}(k) \approx k\sqrt{\frac{T_e+3T_i}{m_i}}$

Ion Line $S_{IL}(\mathbf{k},\omega)$ Plasma Line $S_{PL}(\mathbf{k},\omega)$ $S_e(\mathbf{k}, \omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^2 \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_i \left| \frac{\chi_e(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \right|^2 \int d\mathbf{v} f_i(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$ $\epsilon({\bf k},\omega)={\bf 0}$ $\omega_{ia}(k) \approx k \sqrt{\frac{T_e + 3T_i}{m_i}}$ $\omega_{pl}(k) \approx \omega_{pe}(1 + 3\lambda_D^2 k^2)$ $-\omega_{pl}$ $-\omega_{il}$ ω_{il} ω_{pl}

Debye length dependence

$$(\lambda_D / \lambda_{radar})^2 > 1$$

 $\Rightarrow (k_{radar} \lambda_D)^2 > 1$
 \Rightarrow No collective interactions

no collective interactions

$$S_e(\mathbf{k},\omega) = N_e \left| 1 - \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v}) + N_i \left| \frac{\chi_e(\mathbf{k},\omega)}{\epsilon(\mathbf{k},\omega)} \right|^2 \int d\mathbf{v} f_i(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

$$S_e(\mathbf{k}, \omega) = N_e \int d\mathbf{v} f_e(\mathbf{v}) \delta(\omega - \mathbf{k} \cdot \mathbf{v})$$

Debye Length Dependencies

Parameters

Ti: 1000 K Te: 2000 K

Parameters

Ne: 10¹² m⁻³ Ti: 1000 K

Te: 2000 K

Comp: 100% O⁺

 ν_{in} : 10-6 KHz

Radar Frequency Dependencies

Parameters

Ne: 10¹² m⁻³ Ti: 1000 K

Te: 2000 K

Comp: $100\% O^+$

 $\nu_{\text{in}} : 10^{\text{-}6} \; \text{KHz}$

With the frequency of the radar chosen (which is a one time thing!), how does the spectra depend on geophysical parameters?

Ion-Neutral Collision Frequency

Parameters

Freq: 449 MHz Ne: 10¹² m⁻³

Ti: 500 K

Te: 500 K

Comp: 100% NO+

Ion Composition (O+ vs. NO+)

Parameters

Freq: 449 MHz Ne: 10¹² m⁻³ Ti: 1500 K

Te: 3000 K

 v_{in} : 10⁻⁶ KHz

Ion Temperature

Parameters

Freq: 449 MHz

Ne: 10¹² m⁻³

Te: 2*Ti

Comp: 100% O+

 $\nu_{\rm in}$: 10⁻⁶ KHz

Electron/Ion Temperature

Parameters

Freq: 449 MHz

Ne: 10¹² m⁻³

Ti: 1000 K

Comp: 100% O+

 v_{in} : 10⁻⁶ KHz

Ion Velocity

Parameters

Freq: 449 MHz

Ne: 10^{12} m^{-3}

Ti: 1000 K

Te: 2000 K

Comp: 100% O+

 v_{in} : 10⁻⁶ KHz

...or to sum up...

- •Ion (and electron) temperature (Ti and Te) to ion mass (mi) ratio from the width of the spectra
- •Electron to ion temperature ratio (Te/Ti) from "peak_to_valley" ratio
- •Electron (= ion) density from total area (corrected for temperatures)
- •Ion velocity (vi) from the Doppler shift

Spectral space as a function of altitude

Plasma Parameter Profile Raw N_e Profile

EISCAT Scientific Association

EISCAT UHF RADAR

CP, uhf, tau2pl, 29 March 2006

Sondrestrom Radar View

(Electron Density (m-3) x 1010

10

Sandractrom Padar View

And this is the level data we will work on in the MADRIGAL session...