RADAR?

Thomas Ulich Sodankylä Geophysical Observatory Finland Radio Detection And Ranging

RADAR

Nature's done it already

Hans Christian Ørsted

On 21st April 1820, Ørsted discovered a direct relationship between electricity and magnetism, which prompted much research into electrodynamics.

(14 August 1777 - 9 March 1851)

André-Marie Ampère

Inspired by Ørsteds discovery, Ampère developed a mathematical theory describing electromagnetic phenomena and predicting many new ones.

(20th January 1775 - 10th June 1836)

James Clerk Maxwell

The Maxwell Equations showed that electricity and magnetism are two aspects of the same force.

(13 June 1831 – 5 November 1879)

Heinrich Rudolf Hertz

Hertz proved that electricity can be transmitted by electromagnetic waves.

Heinrich Rudolf Hertz

Guglielmo Marconi

Inventor of the radio telegraph system; first transatlantic radio transmission on 12 December 1901 at 820 kHz.

Ionised Layer

Oliver Heaviside

(18 May 1850 - 3 February 1925)

In 1902, Heaviside and Kennelly independently predicted an ionised layer in the upper atmosphere that would reflect radio

waves.

Arthur E Kennelly

(17 December 1861 - 18 June 1939)

Edward Appleton

Appleton and his colleagues were one of two teams to prove the existence of a reflecting layer at a height of about 100 km (E layer), soon followed by the discovery of the F layer at around 250 km.

(6 September 1892 – 21 April 1965)

Ionosonde

Gregory Breit Merle Tuve

G Breit and M A Tuve, A radio method of estimating the height of the conducting layer, Nature, 116, p. 357, 1925.

(14 July 1899 - 11 September 1981)

(27 June 1901 - 20 May 1982)

Regular Ionograms

Radio Research Station Slough, Buckinghamshire 27th December 1933, 10:30–11:00 UTC and 11:30–12:00 UTC.

Th.Ulich, Sodankylä, Finland, 2012-08-27

Sodankylä Ionosonde

Detecting Aircraft

Denge, Dungeness, Kent, UK

Robert Watson-Watt

Daventry Experiment on 26 Feb. 1935; patent for RADAR on 2 Apr.; by June detecting aircraft at 27 km.

(13 April 1892 - 5 December 1973)

Chain Home

Ventrior, Isle of Wight Multi-freq 12 m, 200 km range CHlow 1.5 m

Christian Hülsmeyer

Invented RADAR but no-one noticed.

<section-header><section-header><section-header><complex-block><complex-block><complex-block>

Freya

German radar op. 1938. Portable(ish). ▶ 120-130 MHz (2.5-2.3 m). ▶ PRF 500 Hz, 3 µs pulses. Rotates 360°, 160 km range. Countermeasures: Moonshine: re-emit amplified pulses (8 a/c = 100 bombers). Jamming: 9 a/c create a 200-mile (320 km) gap.

September 1939

More or less rudimentary but operational radars:

Britain, France, Germany, Hungary, Italy, Japan, the Netherlands, Russia, Switzerland, and the USA.

Cavity Magnetron

- Invented at U Birmingham, UK, by John Randall and Henry Boot.
- By mid-1940 cavity magnetron developed into a small, light-weight transmitter (3 GHz at 15kW).
 10x improvement over other radar.

Status after WWII

- RADAR had evolved from prototypes to a multitude of different systems.
- Microwave signal generation had become practical.
- Advances in aerials, transmitters, receivers, displays etc. led to wide-spread use in communications and radar applications.

... fast forward ...

Does the Future of Incoherent Scatter look like this?

EISCAT_3D

Welcome aboard!

KAIRA Kilpisjärvi Atmospheric Imaging Receiver Array => Juha Vierinen's talk on Thurday! blog: kaira.sgo.fi

30-300 GHz / 10-1 mm	EHF	microwave radio relays	0	
3–30 GHz / 10–1 cm	SHF	satellite comm & nav, wireless LAN	weather radars	
0.3-3 GHz / 1-0.1 m	UHF	cell phones, TV, microwave ovens	EISCAT UHF, ESR, AMISR	
30-300 MHz / 10-1 m	VHF	FM radio, TV, HAM	EISCAT VHF, JRO, MST radars, meteor radars	
3-30 MHz / 100-10 m	HF	shortwave radio	Ionosondes, SuperDARN	
0.3–3 MHz / 1–0.1 km	MF	AM radio	Ionosondes	
30–300 kHz / 10–1 km	LF	radio beacons, submarine comm	AARDDVARK	
3–30 kHz / 100–10 km	VLF	navigation	AARDDVARK	
0.3–3 kHz / 1–0.1 Mm	ULF	audio signals on analogue telephone		
30-300 Hz / 10-1 Mm	SLF	electric grids		
3-30 Hz / 100-10 Mm	ELF	metal detectors	Earth-iono. waveguide, Schumann resonance	

Туре	Frequency	λ [m]	Power [kW]	Aperture [λ]	Height
MF Radar	MF-HF	150-50	0.01-1	1–10	M, LT, I
Ionosonde	HF	300-10	0.01–5	0.5-1	Т, І
Coherent scatter rad	HF-VHF	30-1	0.1–1	5-50	T, I
Meteor radar	HF-VHF	10-6	0.1–10	2-10	M, LT
MST radar	VHF	6-7	1–100	5-50	M, S, T
Incoherent scatter rad	VHF-UHF	6-0.25	500-2000	100-300	M, LT, I
ST radar	UHF	6-0.1	1–500	10-500	S, T

T: Troposhere; S: Stratosphere; M: Mesosphere; (L)T: (lower) Thermosphere; I: Ionosphere

Туре	Frequency	λ [m]	Power [kW]	Aperture $[\lambda]$	Height
MF Radar					M, LT, I
Ionosonde	What	300-10 VOU CO	0.01-5 In obset	0.5-1 rve is	т, і
Coherent scatter rad	Havfur	nction c	of frequ	ency	T, I
Meteor radar	H(wave	elength)), power	and	M, LT
MST radar		aper	ture!		M, S, T
Incoherent scatter rad		6-0.25			M, LT, I
ST radar	UHF	6-0.1	1-500	10-500	S, T

Far-Field Condition

 Far-field of antenna: electromagnetic waves can be approxmated by plane waves.

Senergy distribution is well defined.

Solution Most atmospheric radars are designed to operate in the far-field, farther away than D_a^2/λ .

 \odot EISCAT UHF: $(32m)^2 / 0.32m = 3200m$

MU radar: $(103m)^2 / 6.45m = 1600m$

Also the type of antenna plays an important role. It is optimised to yield maximum gain.

Radiation Patterns

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

Received power

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

Received power is equal to - transmitted power ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

- transmitted power times
- transmitter gain ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \left(\frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A\right)$$

- transmitted power times
- transmitter gain times
- spread factor at transmitter ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

- transmitted power times
- transmitter gain times
- spread factor at transmitter times
- any losses in the system ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \frac{\sigma}{4\pi R^2} \cdot \frac{1}{4\pi R^2} \cdot A$$

- transmitted power times
- transmitter gain times
- spread factor at transmitter times
- any losses in the system times
- backscatter cross section ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \left(\frac{1}{4\pi R^2} \cdot A\right)$$

- transmitted power times
- transmitter gain times
- spread factor times
- any losses in the system times
- backscatter cross section times
- spread factor at point target ...

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

- transmitted power times
- transmitter gain times
- spread factor times
- any losses in the system times
- backscatter cross section times
- spread factor at point target times
- receiver aperture.

Hard vs Soft Target aka Point vs Volume Target

$$P_r = P_t \cdot \frac{4\pi A}{\lambda^2} \cdot \frac{1}{4\pi R^2} \cdot \frac{1}{L} \cdot \sigma \cdot \frac{1}{4\pi R^2} \cdot A$$

Received power is equal to

- transmitted power times
- transmitter gain times
- spread factor times
- any losses in the system times
- backscatter cross section times
- spread factor at point target times
- receiver aperture.

Integration over beamfilling scatter volume results in cancellation of the target spread factor.

IPP: Inter-pulse period PRF: Pulse repetition freq Duty cycle: τ /IPP

P: peak power Avg power = P x duty cycle

→ time

Th.Ulich, Sodankylä, Finland, 2012–08–27

IPP=1/PRF

 τ : pulse

length

IPP: Inter-pulse period PRF: Pulse repetition freq Duty cycle: τ /IPP

P: peak power Avg power = P x duty cycle

Max. unambigous range = $c \cdot IPP/2$

→ time

Target

IPP: Inter-pulse period PRF: Pulse repetition freq Duty cycle: τ /IPP

P: peak power Avg power = P x duty cycle

→ time

Pulse coding

IPP: Inter-pulse period PRF: Pulse repetition freq Duty cycle: τ /IPP

P: peak power Avg power = P x duty cycle

Range resolution: Δr=c·τ/2 1μs ⇔ 150m → time

Pulse length	Range resolution
1 ns	15 cm
10 ns	1.5 m
100 ns	15 m
$1 \ \mu s$	150 m
10 μ s	1.5 km
100 µs	15 km
1 ms	150 km

Doppler Radar

Return from moving target:

 $cos(2\pi f_o(t+2R/c)) = cos(2\pi (f_o+f_D)t)$ where R = vt, $f_D = 2f_ov/c = 2v/\lambda_o$

Resolving Doppler

Tx signal: cos(2πf_ot)

• Doppler-shifted rx signal: $cos(2\pi(f_0+f_D)t)$

 Multiply by tx signal, low-pass filter => Doppler frequency cos(2πf_Dt)

Generate signal by mixing sin and cos using two oscillators 90° out of phase:
 Aexp(i2πf_Dt) = cos(2πf_Dt)+isin(2πf_Dt) = I+iQ

Signed Doppler => signed radial velocity

Summary

Pulse length => range resolution
IPP => range ambiguity <=> time scale process
Wavelength => scale of process/object
Power, aperture, antenna design => scatter cross section, received signal
Aperture, wavelength => far-field distance