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Fourier presentation of a signal

A signal x(t) can be presented in terms of its Fourier transform

X(ν) = F{x(t)} =

∞∫
−∞

x(t)e−iωt dt (1)

in the form

x(t) = F−1{X(ν)} =

∞∫
−∞

X(ν)eiωt dν. (2)

Here ν is the frequency and ω = 2πν the angular frequency. We say that x(t) and X(ν)
make a Fourier transform pair. When x(t) is real,

X∗(ν) =

∞∫
−∞

x(t)eiωt dt = X(−ν). (3)

In terms of the modulus |X(ν)| and phase angle ϕ(ν) this can be written as

|X(ν)|e−iϕ(ν) = |X(−ν)|eiϕ(−ν) (4)

or

|X(−ν)| = |X(ν)|
(5)

ϕ(−ν) = −ϕ(ν).

These relations are not valid for a complex signal z(t).

Filtering a signal

A filter is a linear system which is completely described by its impulse response. The
impulse response is defined as the output signal corresponding to an input signal equal
to the Dirac delta function.

Assume x(t) is the input signal in a linear system with an impulse response h(t). The
task is to calculate the output signal y(t). Using the definition of the delta function, we
can write

x(t) =

∞∫
−∞

x(τ)δ(τ − t)dτ =

∞∫
−∞

x(τ)δ(t− τ)dτ. (6)

The latter equality is valid, because the delta function is even. This formula allows x(t)
to be interpreted as a sum of elementary signals

dx(t) = x(τ)δ(t− τ)dτ. (7)
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Figure 1: Convolution of input signal and impulse response.

If the input signal is δ(t− τ), the output is obviously h(t− τ). Since the system is linear,
multiplying an input by some constant also multiplies the output by the same constant.
Therefore the output corresponding to an input dx(t) is

dy(t) = x(τ)h(t− τ)dτ. (8)

Also, in a linear system the output of a sum of inputs is the sum of individual outputs of
these inputs. Hence the output given by input x(t) is

y(t) =

∞∫
−∞

x(τ)h(t− τ)dτ = (x ∗ h)(t). (9)

This integral is convolution, which is often briefly marked by ’∗’. Thus we have arrived
at an important result: the output of a linear system is a convolution of the input and
the impulse response of the system.

A Fourier transform of eq. (9) gives

Y (ν) = F(x) · F(h) = X(ν) ·H(ν), (10)

where

H(ν) = F(h) =

∞∫
−∞

h(t)e−iωt dt (11)
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is the transfer function of the linear system.

This indicates that, if H(ν) = 0 at some frequency range, these frequencies are filtered
out in the output y(t), even if the input x(t) contains these frequencies.

Frequency mixing

Mixing means shifting a signal from one frequency band to another without losing its
information content. Shifts to lower and higher frequency bands are also called downcon-
version and upconversion, respectively.

Let us consider a signal

x(t) =

∞∫
−∞

X(ν)eiωt dν. (12)

When x(t) is real-valued, its amplitude spectrum is an even function of frequency and its
phase spectrum is odd. It is always possible to write

X(ν) = X+(ν) +X−(ν), (13)

where X+(ν) = 0 at negative frequencies and X−(ν) = 0 at positive frequencies.

Multiplying x(t) by exp(−iω0t) gives

y(t) = e−iω0tx(t) = e−iω0t
∞∫
−∞

X(ν)eiωtdν =

∞∫
−∞

X(ν)ei(ω − ω0)tdν

=

∞∫
−∞

X(ν + ν0)e
iωtdν =

∞∫
−∞

Y (ν)eiωtdν, (14)

where
Y (ν) = X(ν + ν0). (15)

This shows that complex mixing shifts the whole spectrum towards negative frequencies
by ν0. With a proper choice of ν0, X

+(ν + ν0) will lie around zero frequency in such a
manner that X−(ν + ν0) can be filtered out. The Fourier transform of the filtered signal
is

Z(ν) = X(+)(ν + ν0) (16)

and the signal itself is

z(t) = e−iω0t
∞∫
0

X(ν)eiωtdν =

∞∫
0

X(ν)ei(ω − ω0)tdν

=

∞∫
−ν0

X(ν + ν0)e
iωtdν. (17)
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The modulus of Z(ν) is no more necessarily even and the phase odd, and therefore z(t)
can be a complex signal.

If, instead of exp(−iω0t), the original signal is multiplied by exp(iω0t), shifting takes place
towards higher frequencies.

In radar receivers, cases also arise where frequency conversion is not made to a frequency
band around zero frequency (base band). Even then the principle is the same as above.

Spectrum and autocorrelation function

Assume an experiment producing a random signal x(t) each time it is carried out. Each
outcome of the experiment (realisation) is different, but the signals have the same statis-
tical properties. An example of five realisations is shown in Fig. 2. The autocorrelation
function is defined by

Rx(ti, tj) = 〈x(ti)x(tj)〉 = 〈xixj〉, (18)

where the angle brackets indicate ensemble average. If the signal is stationary, the auto-
correlation function depends only on the time difference τ = ti − tj, i.e.

Rx(τ) = 〈x(t)x(t− τ)〉. (19)

Then the autocorrelation function is also obtained as a time average from a single reali-
sation, i.e.

Rx(τ) = lim
T→∞

1

2T

T∫
−T

x(t)x(t− τ) dt. (20)

t
j

t
i

x(1)

x(2)

x(3)

x(4)

x(5)

0 1 2 3 4 5 6 7 8 9 10
TIME / arbitrary units

Figure 2: Realisations of a stochastic process with zero mean value.
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Figure 3: The autocorrelation function of the stochastic process shown in Fig. 2. The
same time units are used in the two figures.

The Fourier transform of the autocorrelation function is

S(ν) =

∞∫
−∞

Rx(τ)e−iωτ dτ = lim
T→∞

1

2T

T∫
−T

 T∫
−T

x(t)x(t− τ) dt

 e−iωτ dτ
= lim

T→∞

1

2T

T∫
−T

x(t)e−iωtdt

T∫
−T

x(τ ′)eiωτ
′
dτ ′ = lim

T→∞

1

2T
XT (ν)X∗T (ν)

= lim
T→∞

1

2T
|XT (ν)|2. (21)

Here XT (ν) is the Fourier transform of x(t) from the time interval (−T, T ). If x(t) is
voltage, the unit of autocorrelation function is V2 (this is power for unit resistance).
Then the unit of S(ν) is V2s and the unit of S(ν)dν is V2. Hence S(ν) means power per
small frequency interval, i.e. S(ν) is the power spectral density of x(t). Therefore the
autocorrelation function and the power spectral density make a Fourier transform pair.

In the radar receiver, the signal is downconverted to a lower frequency. This is made by
complex mixing and it leads to a complex signal. If z(t) is a stationary complex stochastic
process, the autocorrelation function must be defined as

Rz(τ) = 〈z(t)z∗(t− τ)〉. (22)

Then a straightforward calculation shows that the Fourier transform of this function of
the power spectrum of the signal.
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Thomson scattering from a single electron

Assume electric field
Ei = E0e

iω0t (23)

acting on an electron. The momentum equation is

me
d2re
dt2

= −eEi. (24)

This gives electron velocity

ve =
dre
dt

= − e

me

∫
Ei dt = −eE0

me

∫
eiω0t dt = i

eE0

meω0

eiω0t. (25)

The charge density of an electron is

ρe(r, t) = −eδ[r− re(t)] (26)

and current density

j(r, t) = ρe(r, t)ve(t) = −eve(t) · δ[r− re(t)] = −i e
2E0

meω0

eiω0t · δ[r− re(t)]. (27)

The retarded vector potential at r is

As(r, t) =
µ0

4π

∫ j(r′, t− |r− r′|/c)
|r− r′|

d3r′. (28)

Inserting eq. (27) in eq. (28) gives

As(r, t) = −i µ0e
2E0

4πmeω0

∫ eiω0(t−|r−r′|/c)

|r−r′|
· δ[r′−re(t− |r−r′|/c)] d3r′. (29)

Put the electron oscillating around the origin. Far from the origin r� re ≈ 0 and

Ei = E0eiω0t

Ei

Figure 4: The mechanism of Thomson scattering in terms of dipole radiation of an oscil-
lating electron.
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As(r, t) = −i µ0e
2E0

4πmeω0

· e
iω0 (t− r/c)

r
. (30)

The wave vector in the direction of r is

ks =
ω0

c
es where es =

r

r
. (31)

Then

As(r, t) = −iµ0e
2E0

4πmω0

· e
i(ω0t− ks · r)

r
. (32)

Far from the origin the wave fronts are nearly planes. Therefore

∇× ≈ −iks×

and the magnetic induction of the scattered wave is

Bs = ∇×As ≈ −
µ0e

2(ks × E0)

4πmeω0

· e
i(ω0t− ks · r)

r
. (33)

The electric field of the scattered wave is

Es = cBs × es. (34)

Then the electric field of the scattered wave is

Es =
cµ0e

2ksE0 sinX
4πmeω0

· e
i(ω0t− ks · r)

r
e⊥ = reE0 sinX · e

i(ω0t− ks · r)

r
e⊥, (35)

where the electron classical radius is

re =
cµ0e

2ks
4πmeω0

=
µ0e

2

4πme

=
e2

4πε0mec2
= 2.82 · 10−15 m (36)

and

e⊥ =
es × (es × E0)

E0

(37)

ks

r
E0 !

Figure 5: The angle between the electric field of the incident wave and the scattering
direction.
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Scattering from density fluctuations

The displacement vector due to an electric field E is

D = εε0E = ε0E + P, (38)

where P is the volume polarisation

P = (ε− 1)ε0E. (39)

The permittivity is a sum of its average value and fluctuation

ε(r, t) = 〈ε〉+ ∆ε(r, t), (40)

Then
P = (〈ε〉+ ∆ε− 1)ε0E = (〈ε〉 − 1)ε0E + ∆ε · ε0E = P〈ε〉 + ∆P. (41)

Hence the polarisation fluctuation is

∆P = ∆ε · ε0E. (42)

Volume polarisation creates polarisation current density

jP =
∂P

∂t
=
∂(∆P)

∂t
= ∆εε0

∂E

∂t
. (43)

This current density emits radiation, i.e. it is responsible for scattering.

In Fig. 6, a small scattering volume δV within the crossing of the two antenna beams
is considered. Here rs indicates the centre of δV . The electric field of the transmitted
spherical wave at r can be written as

E = E0(r)ei(ω0t− k0r). (44)

r

Tx Rx

δV r’

rs- rx
ki ks

rs

rx

r - rx

Figure 6: Scattering from a small volume δV .
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It causes a polarisation fluctuation

∆P = ∆ε(r, t)ε0E0(r)ei(ω0t− k0r), (45)

and a polarisation current density

jP =
∂(∆P)

∂t
= iω0∆ε(r, t)ε0E0(r)ei(ω0t− k0r). (46)

The current within a volume element d3r (inside δV ) causes a vector potential

dAs =
µ0

4π
· jP d

3r

|r− rx|
(47)

at the receiver. The retarded vector potential at rx is

dAs(rx, t) =
µ0

4π
· jP (r, t− |r− rx|/c)

|r− rx|
d3r

=
iω0µ0ε0E0(r)∆ε (r, t− |r− rx|/c)

4π|r− rx|
ei[ω0t− k0(r + |r− rx|)]d3r. (48)

The dimensions of δV are much smaller than its distance from the transmitter or the
receiver. Then

E0(r) ≈ E0(rs). (49)

Also, for the denominator of eq. (48) and the slowly varying ∆ε

|r− rx| ≈ |rs − rx|. (50)

This approximation is not valid for the fast varying exponential. In order to approximate
the exponential we use a definition

r′ = r− rs. (51)

Then

|r− rx| ≈ |rs − rx|+ r′ · (rs − rx)

|rs − rx|
(52)

and

r ≈ rs +
r′ · rs
rs

. (53)

These approximations give

k0(r+|r−rx|) = k0

[
rs+ r′ · rs

rs
+|rs−rx|+ r′ · (rs − rx)

|rs − rx|

]
= ki · rs+ ki · r′ +ks · (rx−rs)− ks · r′. (54)

where

ki = k0
rs
rs

and ks = k0
rx−rs
|rx−rs|

. (55)
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Then

dAs(rx, t) =
iω0µ0ε0E0(rs)

4π|rs−rx|
exp{i[ω0t−ki ·rs−ks ·(rx−rs)]}∆ε (r′, t′) e−i(ki − ks) · r′d3r′.

(56)
The total vector potential scattered from all elements inside δV contains the integral∫

δV

∆ε(r′, t′)e−i(ki − ks) · r′d3r′. (57)

This is obviously the three-dimensional spatial Fourier transform of ∆ε

∆E(k, t) =
∫

∆ε(r, t) e−ik · r d3r (58)

calculated at a wave number k = ki − ks. The total vector potential at the receiver is

δAs(rx, t) =
iω0µ0ε0E0(rs)

4π|rs − rx|
|∆E(ki−ks, t)| exp{i[ω0t−ki · rs−ks · (rx− rs) +ϕε]}, (59)

where ϕε is the phase of ∆E . The magnetic induction of the scattered radiation is

δBs(rx, t) =
ω0µ0ε0ks × E0(rs)

4π|rs − rx|
|∆E(ki−ks, t)| exp{i[ω0t−ki ·rs−ks ·(rx−rs)+ϕε]} (60)

and the scattered electric field is Es = cBs × es, i.e.

δEs(rx, t) =
ω2
0E0(rs) sinX
4πc2|rs − rx|

|∆E(ki−ks, t)| exp{i[ω0t−ki ·rs−ks ·(rx−rs)+ϕε]} e⊥. (61)

This applies to all cases where scattering takes place at permittivity fluctuations, whatever
the reason for the fluctuations may be. In plasma, the refractive index is

n =

√
1− nee2

ε0meω2
0

. (62)

Here ne is the electron density, e is the (positive) elementary charge and me is the electron
mass. Thus the plasma permittivity is

ε = n2 = 1− nee
2

ε0meω2
0

. (63)

This indicates that the permittivity and electron density fluctuations ∆ε and ∆ne are
connected by

∆ε = − e2

ε0meω2
0

·∆ne. (64)

and consequently,

∆E = − e2

ε0meω2
0

·∆Ne, (65)
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where ∆Ne is the spatial Fourier transform of ∆ne. Then, using the definition of the
classical electron radius (36), eq. (61) can be written as

δEs(rx, t) =
re sinX
|rs − rx|

|∆Ne(ki−ks, t)|E0(rs) exp{i[ω0t−ki ·rs−ks ·(rx−rs)+ϕN ]}. (66)

This is the elementary signal from elementary volume δV .

In the receiver, the signal is amplified and downconverted. The resulting complex voltage
is

δz(t) = (RP0)
1/2|∆Ne(ki − ks, t)|eiϕN eiϕ = (RP0)

1/2∆Ne(ki − ks, t)e
iϕ. (67)

Here ϕ is a phase, R is the receiver impedance and P0 is a power coefficient

P0 ∝
r2e sin2X
|rs − rx|2

, (68)

which depends on

• transmitted power

• distance from scattering volume to receiver

• antenna gains

• receiver amplification.

Scattering from wave fronts

The density fluctuation is
∆ne(r, t) = ne(r, t)− ne0 (69)

and its three-dimensional spatial Fourier transform is

∆Ne(k, t) =
∫ ∞∫
−∞

∫
∆ne(r, t)e

−ik · r d3r, (70)

so that

∆ne(r, t) =
1

(2π)3

∫ ∞∫
−∞

∫
∆Ne(k, t)e

ik · r d3k. (71)

Also, the temporal Fourier transform of ∆Ne(k, t) is

Ne(k, ν) =

∞∫
−∞

∆Ne(k, t)e
−iωt dt (72)

so that

∆Ne(k, t) =

∞∫
−∞

Ne(k, ν)eiωt dν. (73)
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Inserting this in eq. (71) gives

∆ne(r, t) =
1

(2π)3

∫ ∞∫
−∞

∫  ∞∫
−∞

Ne(k, ν)eiωt dν

 eik · r d3k
=

1

(2π)3

∫ ∞∫
−∞

∫  ∞∫
−∞

Ne(k, ν)ei(ωt+ k · r) dν

 d3k. (74)

Hence the density fluctuation is composed of waves propagating in all directions.

ki

k

ks!

Figure 7: The relation of incident and scattered wave vectors and the wave vector of the
permittivity fluctuation.

2d tan! sin!

!d
d

cos!

Figure 8: Scattering from parallel wave fronts.

This can be visualised as follows. It was shown above that scattering is due to the Fourier
component ∆Ne(ki−ks, t), i.e. at a wave number k = ki−ks. Since ki = ks = k0 = 2π/λ0,
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k = 2k0 cosφ and the corresponding wave length is

λ =
λ0

2 cosφ
. (75)

If the radio waves were scattered from parallel wave fronts separated by a distance d, their
path difference would be

∆ =
2d

cosφ
− 2d tanφ sinφ = 2d cosφ. (76)

Constructive interference is given by

d =
λ0

2 cosφ
. (77)

The distance in eq. (77) is equal to the wave length λ in eq. (75).

The two main wave modes contributing to density fluctuations are

1. Ion acoustic waves

2. Langmuir waves

Ion acoustic waves are non-dispersive. Their phase velocity is

v⊕ =

√
kB(Ti + Te)

mi

. (78)

TEMPERATURE / K
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m
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mi = 32 u

mi = 16 u
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400
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1200

1400

1600

Figure 9: Phase velocity of ion acoustic wave for O+ and O+
2 ions as a function of tem-

perature. Equal ion and electron temperatures are assumed.
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Figure 10: Left hand panel: Debye length as a function of electron temperature for
different values of electron density. Right hand panel: The frequency of Langmuir wave
(normalised by plasma frequency) as a function of wave length for different values of
Debye length.

Langmuir waves are dispersive and they are excited by energetic electrons. Their phase
velocity is

v	 = λ	 · fp
√

1 + 12π2λ2D/λ
2
	, (79)

where λ	 is the wave length,

fp =
1

2π

[
nee

2

ε0me

]1/2
(80)

is the plasma frequency and

λD =

[
ε0kBTe
nee2

]1/2
(81)

is the Debye length.
Since the plasma waves are in motion, the scattered waves are Doppler shifted. The
sacttering electrons in the moving wave fronts experience a Doppler-shifted frequency

ν ′ = ν0

√
c+ v⊥e⊥ · eT
c− v⊥e⊥ · eT

. (82)

At the receiver, after a second Doppler shift, the observed frequency is

ν ′′ = ν ′
√
c+ v⊥e⊥ · eR
c− v⊥e⊥ · eT

= ν0

√√√√(c+ v⊥e⊥ · eR)(c+ v⊥e⊥ · eR)

(c− v⊥e⊥ · eT )(c− v⊥e⊥ · eT )
. (83)

Since e⊥ · eT = e⊥ · eR = cosφ, this can be written as

ν ′′ = ν0
c+ v⊥ cosφ

c− v⊥ cosφ
≈ ν0

(
1 + 2

v⊥ cosφ

c

)
. (84)
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Figure 11: Generation of Doppler shift in scattering from plasma waves.

Then the observed Doppler shift is

δν = ν ′′ − ν0 = 2ν0
v⊥ cosφ

c
= 2

v⊥ cosφ

λ0
. (85)

Since λ0 = 2λ cosφ, we can also write

δν = 2
v⊥ cosφ

2λ cosφ
=
v⊥
λ
. (86)

This frequency shift is given by the frequency of the plasma fluctuation at a wave length
λ = λ0/(2 cosφ). The result is valid separately for ion acoustic waves and Langmuir
waves. Thus the scattering spectrum should contain four lines, two of them caused by ion
acoustic waves and two by Langmuir waves. These are called ion lines and plasma lines,
respectively, and they are shown schematically in Fig. 12.

Since the phase velocity of the ion acoustic wave is independent of wave length, it is
convenient to use eq. (85) in calculating the Doppler shift of the ion lines. This gives

δνi = ±2
v⊕ cosφ

λ0
, (87)

indicating that the frequency shift depends on the angle φ. The maximum Doppler shift
2v⊕/λ0 is observed in backscattering. When the radar wave length is 0.3–1.5 m and the
phase velocity a few hundreds of metres per second, the Doppler shift is of the order of a
few kilohertz or even less.
The Doppler shift of plasma lines can be calculated from eqs. (86) and (79), and the result
is

δνp = ± v	
λ	

= ±fp
√

1 + 48π2λ2D cos2 φ/λ20. (88)

Fig. 10 reveals that, for typical values of Debye length in the ionosphere, the frequency of
the Langmuir wave is quite close to the plasma frequency (e.g. for λD = 5 mm, λ0 = 32 cm
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ν0

 ≈ fp≈ fp

ν

2v  cos(φ)/λ0 2v  cos(φ)/λ0

Figure 12: Location of ion and plasma lines around the transmitter frequency.

and φ = 0, eq. (88) gives ν	 = 1.06fp). Hence the Debye term in eq. (88) is small as
compared to unity and the Doppler shift is independent of φ in practice. Eq. (88) also
means that the Doppler shift is typically of the order of several megahertz, i.e. the plasma
lines lie about three orders of magnitude further from the transmitter frequency than the
ion lines do.

In the above discussion a zero bulk plasma motion was assumed. If the plasma is moving
in the radar frame of reference, the theory must be modified to include an additional
Doppler shift. In Fig. 13 the ionospheric plasma is in motion and its bulk velocity is

u = u‖e‖ + u⊥e⊥ + u‖⊥e‖⊥.

The component of ve in the direction of the transmitter beam is ve · eT . The electrons

e!!

rT

rR

v

"

Tx Rx

v

u

ve

eT
eR

e#

e||#

Figure 13: The effect of plasma flow on Doppler shift.
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observe the transmitted wave at a frequency

ν ′ = ν0

√
c+ ve · eT
c− ve · eT

(89)

and the frequency observed at the receiver is

ν ′′ = ν ′
√
c+ ve · eR
c− ve · eR

= ν0

√√√√ (c+ ve · eT )(c+ ve · eR)

(c− ve · eT )(c− ve · eR)
. (90)

Using v = v⊥e⊥ and u = u‖e‖+u⊥e⊥+u‖⊥e‖⊥ and, noticing that e‖⊥ ·eT = e‖⊥ ·eR = 0,
this can be put in the form

ν ′′ = ν0

√√√√ [c+ (v + u⊥) cosφ]2 − u2‖ sin2 φ

[c− (v + u⊥) cosφ]2 − u2‖ sin2 φ
. (91)

Since u2‖ sin2 φ is small in comparison with the other term, it can be neglected. Then

ν ′′ = ν0
c+ (v⊥ + u⊥) cosφ

c− (v⊥ + u⊥) cosφ
≈ ν0

[
1 + 2

(v⊥ + u⊥) cosφ

c

]
, (92)

and the total Doppler shift is

δν = ν ′′ − ν0 = 2ν0
(v⊥ + u⊥) cosφ

c
, (93)

and the Doppler shift due to the bulk plasma motion is

δνu = 2ν0
u⊥ cosφ

c
. (94)

This allows the measurement of the plasma velocity.
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Plasma autocorrelation function and incoherent scat-
ter spectrum

The autocorrelation function of the radar signal in eq. (67) is

〈δz(r, t)δz∗(r, t′)〉 = RP0〈∆Ne(ki − ks, t)∆N
∗
e (ki − ks, t

′)〉. (95)

If the statistical properties of the plasma inside the elementary volume δV (r) are con-
stant, δz(r, t) is a stationary stochastic process and it is possible to define the plasma
autocorrelation function

σe(r, t− t′) = 〈∆Ne(ki − ks, t)∆N
∗
e (ki − ks, t

′)〉. (96)

Then the autocorrelation function of an elementary signal from δV (r) is given by

〈δz(r, t)δz∗(r, t′)〉 = RP0σe(r, t− t′). (97)

The power spectrum of the scattering signal is

δS(ν) = RP0

∞∫
−∞

σe(τ)e−iωτ dτ = RP0Σe(ν), (98)

where

Σe(ν) =

∞∫
−∞

σe(τ)e−iωτ dτ (99)

is the scattering spectrum.
It was stated above that the scattering spectrum consists of two plasma lines and two
ion lines. This is an oversimplification. The ion lines are broadened by damping of the
ion acoustic waves. Damping takes place due to ion-neutral collisions but, even in the
absence of collisions, due to Landau damping. Landau damping results from the velocity
distribution of ions, and Vlasov equation is needed for its theoretical treatment. The
principle, however, can be understood in a simple way.

Assume a pulse of molecules (top panel) with no thermal velocities travelling at some
bulk velocity. The shape of the pulse does not change.

When the molecules have a thermal velocity distribution, some molecules travel faster and
some slower than the pulse. The amount depends on the thermal velocities of individual
molecules (middle panel).

The result is that the pulse gradually disintegrates (bottom panel).

This is a diffusion like process which is also going on in ion acoustic waves which contain
density gradients. It causes damping of the wave, even when no ion-neutral collisions are
present.

The broadening due to Landau damping can be understood as follows. The power spec-
trum and the plasma autocorrelation function of a signal are connected by Fourier trans-
form. The autocorrelation function of a sinusoidal ion acoustic wave is also sinusoidal
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Figure 14: The principle of Landau damping.

and the power spectrum is a delta peak. However, all the time ion acoustic waves are
thermally generated as well as attenuated in the plasma. Therefore the amplitude and
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Figure 15: Dependence of ion line shape on plasma parameters
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phase of a given Fourier component at a sufficiently distant time in the past have no
relation to the the present amplitude and phase whatsoever. In terms of autocorrelation
function, this means that the autocorrelation function of the scattered signal is attenuated
with increasing delay. Then the autocorrelation function is no more sinusoidal and the
corresponding spectrum can no more be a delta function but it must be broader. It turns
out that Landau damping is so heavy that the two ion lines merge into a single line.

The shape of the ion line depends on ion and electron temperatures, ion-neutral collision
frequency and ion mass:

Correlation of incoherent scatter signal

For investigating the spectrum and autocorrelation function of the incoherent scatter
signal, we must find an elementary signal from an elementary volume. The volume must
be such that signals from different parts of it are not statistically independent. Consider
bistatic radar.

• Ellipsoid is a surface which reflects rays from one focal point to the other focal point.

• Density fluctuation can be built of elliptic wave fronts with transmitter and receiver
at the two focal points of the ellipsoid.

• Ion acoustic waves are heavily damped; typically at distances of the order of a single
wave length.

• Scattering takes place at thin shells with an ellipsoid shape.

• Correlating signals can only obtained from regions of the ellipsoid which are equidis-
tant from the transmitter, thus a thin stripe cut from an elliptic shell could work
as an elementary volume giving an elementary scattering signal.

Tx Rx

r

b)

αr

αtTx

Rx

a)

Figure 16: Scattering from from elliptic and spherical wave fronts.
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• The antenna beam cuts a piece of this stripe. This is the elementary volume δV
producing a coherent scattering signal in the receiver.

• In the case of a monostatic radar, spherical wave fronts of plasma waves should be
considered. Then the flight time from transmitter to each point of the wave front
is the same. Hence the elementary volume δV is obtained by cutting a piece from
a spherical thin shell.

Consider lementary signals δz1(r1, t) and δz2(r2, t) from two elementary volumes δV1 and
δV2, located at r1 and r2. The sum signal is

δz(r1, r2, t) = δz1(r1, t) + δz2(r2, t). (100)

The autocorrelation function of this signal is

〈δz(r1, r2, t)δz
∗(r1, r2, t

′)〉 = 〈δz1(r1, t)δz∗1(r1, t
′)〉+ 〈δz2(r2, t)δz∗2(r2, t

′)〉
+ 〈δz1(r1, t)δz∗2(r2, t

′)〉+ 〈δz2(r2, t)δz∗1(r1, t
′)〉. (101)

Since δz1 and δz2 are statistically independent,

〈δz1(r1, t)δz∗2(r2, t
′)〉 = 〈δz1(r1, t)〉〈δz∗2(r2, t

′)〉 and

〈δz2(r2, t)δz∗1(r1, t
′)〉 = 〈δz2(r2, t)〉〈δz∗1(r1, t

′)〉. (102)

In the absence of any offset voltage

〈δz1(r1, t)〉 = 〈δz∗1(r1, t)〉 = 〈δz2(r2, t)〉 = 〈δz∗2(r2, t)〉 = 0, (103)

and therefore

〈δz(r1, r2, t)δz
∗(r1, r2, t

′)〉 = 〈δz1(r1, t)δz∗1(r1, t
′)〉+ 〈δz2(r2, t)δz∗2(r2, t

′)〉. (104)

This means that the autocorrelation function of a signal from the whole scattering volume
V is the sum of autocorrelation functions of elementary signals δz from all elementary
volumes δV inside V .
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Principle of monostatic measurement

In monostatic measurements, altitude profiles of plasma parameters are determined. Then
the transmitter cannot work continuously but only during some transmission periods.
After transmission, a wave packet travels through the ionosphere causing scattering, which
is detected by the receiver.

The propagation of a transmitted pulse can be presented in time-range coordinates as
shown in Fig. 17. Modulation means that a continuous sinusoidal signal is multiplied by
amodulation envelope (here is a single pulse). The pulse front end travels at a speed c
along a line r = ct. The rear end starts at a later time and travels along a parallel line. A
snapshot of the pulse is a vertical bar. The propagating pulse sweeps all the way through
the area between the two tilted lines.

Scattering takes place at all ranges covered by the pulse. Scattering occurring at a single
instant of time at different parts of the pulse reaches the transmitter at different times.
Hence the signal observed at a single instant of time comes from a fixed point inside the
transmitted pulse.

Since the pulse travels upwards, signals from different parts of the pulse scattered at dif-
ferent instants of time will arrive simultaneously at the transmitter site. This is indicated
in Fig. 18. It is obvious that the signal at a given instant of time comes from a region
with a length of one half of the pulse length.

All this is valid for the signal arriving at the receiver antenna. The receiver acts as a filter
calculating weighted averages of the signal. This is demonstrated in Fig. 19, which also
shows that the observed signal comes form a region which is longer than one half of the
pulse length.

t

r

r =
 ct

modulation
envelope

instantaneous position of
the transmitted pulse

reception from a single
point of the pulse

Figure 17: A transmitted radio pulse travelling in the ionosphere and and backscattered
signal at the transmitter site.
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The modulated transmission signal can be presented as

xt(t) = ε(t) · cosω0t, (105)

where ε(t) is the modulation envelope. If the scattering signal due to continuous transmis-
sion would be δsi(t) from range ri, the scattering signal due to modulated transmission
would obviously be

δxi(t) = ε(t− t0) · δsi(t), (106)

where t0 is the time when the signal from the pulse front reaches the transmitter.

t

r

r =
 ct

modulation
envelope

reception from a
range of pulse postions

pulse positions at
different instants
of time

Figure 18: Backscattered signal observed simultaneously from different pulse positions
and different instants of time.

t

r

r =
 ct

modulation
envelope

receiver impulse
response

Figure 19: Backscattered signal observed at the rear end of the receiver.

24



t

r

r =
 ct

modulation
envelope

reception from
range ri

front  end
reaches
range ri

r i

rear end
leaves
range ri

Figure 20: Backscattered signal observed simultaneously from different pulse positions
and different instants of time.

Two-dimensional ambiguity function

As seen above, a recorded signal sample contains information on elementary signals from
elementary volumes at different ranges. Both radar modulation and receiver filter af-
fect the signal. A problem arises how these two factors affect the signal autocorrelation
function, i.e. the signal spectrum. This problem is solved by the theory of ambiguity
functions.

When the transmission is modulated with an envelope ε(t), the baseband radar signal
(before filtering) from a volume element δV located at a range r is

δzε(t, r) = ε[t−Θ(r)]δz(t, r), (107)

where δz is a signal due to continuous monochromatic transmission and

Θ(r) =
2r

c
(108)

is the flight time of the envelope from transmitter to the scattering volume δV and back.
The total signal is

zε(t) =
∫
δzε(t, r) =

∫
ε[t−Θ(r)]δz(t, r). (109)

One should notice that both δz and δzε are stochastic signals. Then the integral in eq.
(109) is not an ordinary Riemann integral but a stochastic integral (also known as Itò
integral). We can simply take it as a sum of stochastic signals from a large number of
small volume elements. Although we formally add signals from all volume elements in the
whole space, only those coming from a single macroscopic scattering volume are non-zero.
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After downconversion to baseband, the signal passes through the filter at the rear end of
the receiver. The filtered signal is

zεh(t) = (zε ∗ h)(t) = (h ∗ zε)(t) =
∫ ∞
−∞

h(t− ϑ)zε(ϑ)dϑ

=
∫ ∞
−∞

h(t− ϑ)
[∫

ε(ϑ−Θ(r))δz(ϑ, r)
]
dϑ

=
∫ ∞
−∞

[∫
h(t− ϑ)ε[ϑ−Θ(r)]δz(ϑ, r)

]
dϑ, (110)

where h is the impulse response of the receiver. By defining the amplitude ambiguity
function

W
(A)
t (ϑ, r) = h(t− ϑ)ε(ϑ−Θ(r)), (111)

the signal can be written in the form

zεh(t) =
∫ ∞
−∞

[∫
W

(A)
t (ϑ, r)δz(ϑ, r)

]
dϑ. (112)

One should notice that a different amplitude ambiguity function is attached to each time
of observation. Eq. (112) means that the downconverted and filtered signal is a weighted
sum of elementary signals from all volume elements and all times, and the weight in this
sum is given by the amplitude ambiguity function. [Of course, non-zero elementary signals
are only obtained from the scattering volume at the crossing of the radar beams, and their
amplitudes are controlled by the antenna gains. These effects are contained in δz(ϑ, r).
The amplitude ambiguity function introduces an additional spatial weight associated with
the length of the radar modulation and also a temporal weight associated with the receiver
filtering.]
According to eq. (112), the signal autocorrelation function is

〈zεh(t)z∗εh(t′)〉 =

〈 ∞∫
−∞

[∫
WA
t (ϑ, r)δz(ϑ, r)

]
dϑ·

∞∫
−∞

[∫
WA∗
t′ (ϑ′, r)dz∗(ϑ′, r′)

]
dϑ′

〉

=

∞∫
−∞

dϑ

∞∫
−∞

dϑ′
[∫ ∫

WA
t (ϑ, r)WA∗

t′ (ϑ′, r′)〈δz(ϑ, r)δz∗(ϑ′, r′)〉
]
. (113)

This contains a double integral of 〈δz(ϑ, r)δz∗(ϑ′, r′)〉. Since signals from elementary
volumes at different ranges do not correlate, one of the inner integrals disappear and the
result is

〈zεh(t)z∗εh(t′)〉 =

∞∫
−∞

dϑ

∞∫
−∞

dϑ′
[∫

WA
t (ϑ, r)WA∗

t′ (ϑ′, r)〈δz(ϑ, r)δz∗(ϑ′, r)〉
]
. (114)

Using the autocorrelation function of the elementary signal given by eq. (97), this can be
put in the form

〈zεh(t)z∗εh(t′)〉 = R

∞∫
−∞

dϑ

∞∫
−∞

dϑ′
[∫

P0(r)W
(A)
t (ϑ, r)W

(A)∗
t′ (ϑ′, r)σe(ϑ− ϑ′, r)d3r

]
. (115)
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Hence, although the radar signal contains a stochastic integral, it disappears when the
signal autocorrelation function is calculated. This is understandable, because ensemble
average is not a stochastic quantity. The result is that the signal autocorrelation function
contains only ordinary Riemann integrals.

By introducing a new variable τ = ϑ− ϑ′ we obtain

〈zεh(t)z∗εh(t′)〉 = R

∞∫
−∞

dϑ

∞∫
−∞

dτ
[ ∫

P0(r)W
(A)
t (ϑ, r)W

(A)∗
t′ (ϑ− τ, r)σe(τ, r)d3r

]

= R
∫
d3rP0

∞∫
−∞

dτ σe(τ, r)

 ∞∫
−∞

W
(A)
t (ϑ, r)W

(A)∗
t′ (ϑ− τ, r) dϑ

 .(116)

Here

Wtt′(τ, r) =

∞∫
−∞

W
(A)
t (ϑ, r)W

(A)∗
t′ (ϑ− τ, r)dϑ (117)

i.e. the integral of amplitude ambiguity functions, is called the two-dimensional ambiguity
function In terms of this, the signal autocorrelation function is

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(r)

 ∞∫
−∞

Wtt′(τ, r)σe(τ, r)dτ

 dr, (118)

where
P0A(r) =

∫
A(r)

P0(r)dA. (119)

The integration in this equation is carried out over A(r), which is the area of the beam
cross section at a distance r.

The two-dimensional ambiguity function is a basic concept in the analysis of incoherent
scatter data. For each r, it is an unnormalised cross correlation function of the amplitude
ambiguity functions for times t and t′. The amplitude ambiguity functions, for their part,
depend both on the modulation envelope and the receiver impulse response as indicated
by eq. (111). Thus the modulation envelope and receiver impulse response both affect the
signal autocorrelation in an inseparable way. The result indicates that each lag t − t′ of
the signal autocorrelation function has a different two-dimensional ambiguity function.

Instead of r, it is convenient to use Θ = 2r/c as the second argument of Wtt′ , i.e. Wtt′ =
Wtt′(τ,Θ).
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Example of a single pulse

The modulation envelope of a single pulse is

ε(t) =

{
1 , when 0 < t < T
0 , when t ≤ 0 or t ≥ T.

(120)

We assume a receiver impulse response with a boxcar shape and the same length as the
modulation envelope, i.e.

h(t) =
ε(t)

T
. (121)

The construction of the amplitude ambiguity function is as follows:

• W (A)
t (ϑ,Θ) is defined in ϑ,Θ plane

• h(t−ϑ) does not depend on Θ and is non-zero within a vertical stripe t−T < ϑ < t

• ε(ϑ−Θ) is nonzero within a tilted stripe between the lines Θ = ϑ and Θ = ϑ− T

• the product of these two factors is W
(A)
t (ϑ,Θ), and it is non-zero where both factors

are non-zero; this is an area with a shape of a parallelogram in ϑ,Θ plane.

0 T t-T t
e(t)

Θ

t0 t-T

h(t- )

t

 (
-Θ

) =
 1

( -Θ
) =

 1h(t- ) = 1/ T

h(t- ) = 1/ T

W t (A) = 1
/ T

Figure 21: Construction of the amplitude ambiguity function of a single pulse, assuming
an impulse response with the same shape.
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Figure 22: Two-dimensional ambiguity function of zero-lag of a single pulse.

Range ambiguity function

Assume that Wtt′(τ,Θ) is non-zero within such a narrow range in τ that

σe(τ,Θ) ≈ σe(t
′ − t,Θ) (122)

within that range. Then

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(r)

 ∞∫
−∞

Wtt′(τ, r)σe(t
′ − t, r)dτ

 dr
= R

∞∫
0

P0A(r)σe(t
′ − t, r)

 ∞∫
−∞

Wtt′(τ, r)dτ

 dr
= R

∞∫
0

P0A(r)W
(r)
tt′ [Θ(r)]σe(t

′ − t, r)dr, (123)
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Figure 23: Range ambiguity function of a single pulse.

where

W
(r)
tt′ (Θ) =

∞∫
−∞

Wtt′(τ,Θ)dτ (124)

is the range ambiguity function.

It can be easily shown that

W
(r)
tt′ (Θ) = [(h ∗ ε)(t−Θ)] · [(h ∗ ε)∗(t′ −Θ)]. (125)

This shows that, in order to obtain the range ambiguity function, it is not necessary
to calculate the two-dimensional ambiguity function first and then integrate it over the
lag variable. Instead, it can be directly calculated from the convolution of the impulse
response and the modulation envelope.
Consider a simple pulse and a boxcar impulse response Then h ∗ ε has a triangular shape.
Therefore the range ambiguity function for zero lag is a sawtooth peak with sides of
parabolic shape.
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Spectral ambiguity function

The spectral ambiguity function is defined as

Wtt′(ν,Θ) =

∞∫
−∞

Wtt′(τ,Θ)e2πiντ dτ. (126)

Because

Σe(ν,Θ) =

∞∫
−∞

σe(τ,Θ)e−2πiντ dτ, (127)

a direct calculation shows that

∞∫
−∞

Wtt′(τ,Θ)σe(τ,Θ)dτ =

∞∫
−∞

Wtt′(τ,Θ)

 ∞∫
−∞

Σe(ν,Θ)e2πiντ dν

 dτ
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Figure 24: Spectral ambiguity function of zero-lag of a single pulse.
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=

∞∫
−∞

Σe(ν,Θ)

 ∞∫
−∞

Wtt′(τ,Θ)e2πiντ dτ

 dν
=

∞∫
−∞

Σe(ν,Θ)Wtt′(ν,Θ)dν. (128)

Inserting this in eq. (118) gives

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(Θ)

 ∞∫
−∞

Σe(ν,Θ)Wtt′(ν,Θ)dν

 dΘ. (129)

Determination of plasma parameters

In order to determine the plasma parameters from a given altitude range, one should
obtain samples of the radar signal zεh(t) from this altitude range. Then one should
calculate products zεh(t)z

∗
εh(t

′). When this is repeated a large number of times, the average
of these products gives an estimate of 〈zεh(t)z∗εh(t′)〉. Then one can use the equation

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(Θ)

 ∞∫
−∞

Wtt′(τ,Θ)σe(τ,Θ)dτ

 dΘ, (130)

or

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(Θ)

 ∞∫
−∞

Σe(ν,Θ)Wtt′(ν,Θ)dν

 dΘ (131)

or

〈zεh(t)z∗εh(t′)〉 = R

∞∫
0

P0A(Θ)W
(r)
tt′ (Θ)σe(t

′ − t, r) dΘ (132)

for finding the best values of the plasma parameters. This is done by fitting the plasma
autocorrelation function σe(t

′−t, r) or scattering spectrum Σe(ν,Θ) to the observed signal
autocorrelation function. (Nowadays, methods exist which differ from what is said here.)

The scattering spectrum or plasma autocorrelation function is obtained from the plasma
theory. The fitting is non-linear and it must be made using numerical methods (Levenberg-
Marquard).

Specific radar modulations and associated filtering are used for obtaining signal from given
altitude ranges. The above theory shows that modulaion and filtering are bound together
in an unseparable way.
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Pulse codes (three-pulse code as an example)

The principle of the three-pulse code is shown in Figs. 25–27. The sampling interval
is twice the pulse length and the length of the impulse response is equal to the pulse
length. Fig. 25 shows the calculation of zi z

∗
i+1. Each sample contains signal contribution

from three different range intervals. The sampling interval is such that two of the range
intervals overlap. Samples from these intervals come from the same plasma and therefore
they correlate. Signal contributions from the other intervals only produce noise. The
measurement gives the signal autocorrelation function at a delay τ = 2T (first lag). The
ambiguity functions are similar to those for a single pulse.

The principle of obtaining the second lag is shown in Fig. 26. Now every third sample
is used in calculating the autocorrelation function estimate. The pulse separations are
such that, again, only two range intervals of the two samples overlap. Therefore the
autocorrelation function is obtained from this range interval, and the other contributions
act as noise. Fig. 27 portrays the generation of the third lag. Now every fourth sample is
used in calculating zi z

∗
i+3. Again, correlating signal is obtained only from a single range

interval and contributions from other intervals produce self noise. Zero lag of the signal
autocorrelation function is obtained using a single pulse.

When the calculation is repeated for different values of i, height profiles of the autocor-
relation function at different values of lag are obtained.

In conclusion, the gaps in the three-pulse code have been chosen in such a manner that
correlating signals are always obtained from a single range interval when autocorrelation
function estimates are calculated for lags 2T , 4T and 6T . The length of this interval in
range is the same as the spatial length of a single pulse. The ambiguity functions for all

t

r

0 T 2T 6T
zi zi+1 zi+2 zi+3 zi+4

Figure 25: First lag of a three-pulse code.
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lags have similar shapes. If the impulse response were a boxcar function, the shapes of
the ambiguity functions would be similar to those in Figs. 22 and 23.

The three-pulse code gives only lags 1, 2 and 3. This is not sufficient for practical work,
but a larger number of lags is needed in the way demonstrated in Fig. 28. Longer pulse
codes exist which are able to give up to ten lags. In the past, five-pulse codes were
commonly used, but now they are replaced by more sophisticated modulations. Pulse
codes are able to give a range resolution of a few kilometres.

t

r

0 T 2T 6T zi zi+1 zi+2 zi+3 zi+4

Figure 26: Second lag of a three-pulse code.

t

r

0 T 2T 6T
zi zi+1 zi+2 zi+3 zi+4

Figure 27: Third lag of a three-pulse code.
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Figure 28: Real part of the signal autocorrelation function at a number of lags.

Barker codes

Improving range resolution beyond the limits put by a reasonable pulse length can be
made by means of phase modulation. This means that, e.g. the pulses in a pulse code are
divided into shorter elements and the phase of the transmission can be switched by 180◦

at the boundary between two elements as in Fig. 29.

A phase change of 180◦ can be obtained by multiplying the original wave from by −1.
This can be interpreted as an amplitude modulation envelope of minus unity. Therefore

Figure 29: Change of phase by 180◦.
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Figure 30: Modulation envelope of a 13-bit Barker code.

a phase code can be written in terms of a sequence of plus and minus signs. ’Plus’ means
one phase of the transmitter wave form and ’minus’ an inverted phase. It is irrelevant
which one of the phases is chosen to be ’plus’ and which one ’minus’; in this respect the
choice is free.

In phase code modulation the phase elements are of equal length. Since one of the two
phases is attached to each element, it is reasonable call them bits. A number of different
phase codes exist and are also used in incoherent scatter radars. One family of these
phase codes are called Barker codes.

Barker codes have a property that their autocorrelation functions have a triangular peak
around zero, surrounded by a set of smaller triangular peaks of equal height symmetrically
on both sides. A Barker-coded signal is decoded using a matched filter with an impulse
response

h(t) = ε(−t), (133)

where ε(t) is the modulation envelope of the Barker code. Then

(h ∗ ε)(τ) = [ε(−t) ∗ ε(t)](τ) =

∞∫
−∞

ε(τ + t)ε(t)dt = Rε(τ), (134)

where

Rε(τ) =

∞∫
−∞

ε(τ + t)ε(t)dt. (135)

Thus the range ambiguity function is

W
(r)
tt′ (Θ)=[(h ∗ ε)(t−Θ)] · [(h ∗ ε)∗(t′−Θ)]=Rε(t−Θ) · Rε(t

′−Θ). (136)

For zero lag this reads

W
(r)
00′ (Θ) = Rε(−Θ) · Rε(−Θ) = R2

ε(−Θ). (137)

The modulation envelope of a 13-bit Barker code is given in Fig. 30 and the resulting
Rε(−Θ) in Fig. 31.
Then, applying eq. (137) gives the range ambiguity function in Fig. 32. This consists
of a narrow peak in the middle and tiny sidelobes. The full width of the main peak
corresponds to two bit lengths. Without Barker coding the function would be similar
to that in Fig. 23, extending from -13 to +13. This means that the effect is nearly the
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Figure 31: Rε(−Θ) for a 13-bit Barker code.
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Figure 32: Range ambiguity function of a 13-bit Barker code.

same as compressing the pulse into a single bit and conserving the pulse energy. The
two-dimensional ambiguity function is shown in Fig. 33.

A single Barker-coded pulse can be used for measuring the zero lag. The other lags can
be obtained with a similar range resolution using Barker-coded pulse codes. An example
of such a code is given in Fig. 34. The difference with the unmodulated pulse code is that
the gaps between the individual pulses are shorter.

The left hand panel in Fig. 35 shows the convolution of the 13-bit Barker impulse response
and the 13-bit three-pulse pattern shown in the right hand panel of Fig. 34. The first lag
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Figure 33: Two-dimensional ambiguity function of a 13-bit Barker code.

is calculated for a single pulse separation which is equal to 13 bit lengths. Hence the first
lag is given by

Wt,t+13 = [h ∗ ε(t−Θ)] · h ∗ ε(t+ 13−Θ). (138)

In Fig. 35 this is gained by shifting a copy of h ∗ ε(t − Θ) along the Θ axis by 13 bit
lengths and multiplying. The range ambiguity function of the third lag is

Wt,t+39 = [h ∗ ε(t−Θ)] · h ∗ ε(t+ 39−Θ). (139)

0 T 2T 3T 4T 5T 6T 7T 8T

1 2

3

0 T 2T 3T 4T

1 2

3

B B B

Figure 34: Comparison of plain three-pulse code (left) and a Barker coded three-pulse
code (right). Here B indicates any Barker modulation of a pulse.
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Figure 35: Calculation of the range ambiguity functions of a Barker-coded three-pulse
code. A 13-bit Barker code is used.

In this a copy of h ∗ ε(t − Θ) is shifted by 39 bit lengths. The multiplication gives the
range ambiguity function shown in the right hand panel of Fig. 35. This same principle
can be used for longer codes.

Alternating codes

Alternating codes are a more modern modulation which gives a high range resolution and
is more effective than pulse codes are. The latter results from the fact that alternating
codes contain no gaps and therefore they utilize the radar duty cycle more effectively than
pulse codes do.

Alternating codes are phase codes which use two phase values, 0◦ and 180◦. They consist
of a cycle of long pulses, which are divided into a number of bits. Reception takes place
after each transmission before the next pulse is transmitted. The phase patterns change
from pulse to pulse and the length of the impulse response is equal to the bit length
rather than pulse length. When all pulses are transmitted, the sequence is repeated all
over again.

The codes work in power domain rather than in amplitude domain. This means that the
process corresponding to decoding is not done in terms of amplitudes (like in Barker cod-
ing) but in terms of lagged products; lagged products from successive pulses are added and
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subtracted according to certain rules so that the corresponding ambiguity functions cancel
except at a single short altitude range corresponding to the bit length. The modulations
of alternating codes make a finite set which is repeated all over again.

Alternating codes are divided into two types, weak and strong. Weak codes are applicable
if each bit of the code is further modulated by a Barker code, otherwise strong codes must
be used. The number of bits in both codes is equal to a power of two. The cycle length of
a weak code is equal to the number of bits in a single phase pattern and that of a strong
code twice the number of bits. In practice, only strong codes are nowadays used even
when Barker submodulation is applied.

The working principle of alternating codes can be demonstrated in terms of a four-bit
weak code as shown in Fig. 36. The modulation envelopes of the four transmissions of the
cycle are shown by pluses and minuses on the four rows in the left hand panel. The four
rows together make the whole cycle. The rows, i.e. the phase patterns of the individual
pulses, are sometimes called scans and their order in the cycle is indicated by a number
called the scan count.

The matrix in the second panel (W
(r)
1 ) is obtained by multiplying the successive columns

in the original sign matrix in the left hand panel; the first column is the product of the
first and second, the second a product of second and third, and the third a product of
third and fourth.

The next panel is obtained from W
(r)
1 by multiplying all its columns by the first column

so that the first column will be all pluses. When the sums of the three columns are
calculated, it turns out that only the first column will give a non-zero result (equal to
4), while the pluses and minuses cancel in the other two columns. The last two panels

are obtained in a similar manner using the signs of the second and third column of W
(r)
1 .

Also in these two cases the sums of only a single column (second and third) are non-zero.

For interpreting this result, assume that the signal is sampled at intervals equal to the bit
length. After each transmission, a different set of samples and lag estimates is obtained.

e2
e3
e4

e1

ΘΘ

W(r)
1 4 0 0 0 4 0 0 0 4

ΘΘ

Figure 36: The working principle of a weak alternating code.
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If the impulse response of the system is equal to the Dirac δ, each row in the matrix W
(r)
1

simply corresponds to multiplication of two h ∗ ε terms separated by a single bit length
on the Θ axis. Therefore the pluses and minuses on each row indicate the values of the
range ambiguity functions of lag estimates ziz

∗
i+1 at integer values of Θ.

If lag estimates ziz
∗
i+1 are calculated for each scan of and they are added and subtracted

in using the the same signs as those in calculating the three last panels in Fig. 36, the
range ambiguity functions will add and cancel as shown in the figure. Hence the results
will contain information from the range extent of a single bit length only. There are
three different ways of making this calculation and each of them will give a result from
a different range interval. Thus adding and subtracting range ambiguity functions will
lead to ambiguity functions similar to those of a simple two-pulse code. Since this can be
done in three different ways, two successive data samples give first lag estimates at three
different ranges. These correspond to the three bit pairs which have a separation of a
single bit length in a four-bit sequence.

The second and third lag can be studied in a similar way by calculating the matrices
W

(r)
2 and W

(r)
3 , which consist of two columns and a single column, respectively. Because

a four-bit sequence contains two bit pairs with a separation of two bit lengths, ziz
∗
i+2 will

give second lag estimates at two ranges. Similarly, ziz
∗
i+3 gives only a single third-lag

estimate, since only the separation of the first and fourth bit is equal to three bit lengths.
When lags 1–3 are calculated for all data samples zi in this manner, three lag estimates
will be obtained at each range gate for the first lag, two for the second lag and one for
the third lag.

Longer weak codes work in an analogous way. The code length is a power of two. For an
n-bit code, n − i lag estimates will be obtained for the ith lag. The zero lag cannot be
determined with the same height resolution, but it contains range ambiguities much in
the same way as the zero lag of a multipulse code does.

Here the impulse response was Dirac δ, so that the neighbouring bits are separate in
calculating h ∗ ε. With a realistic impulse response the successive bits would be mixed
and the conclusions are no more valid. However, applying Barker coding to individual
bits makes the range ambiguity functions consist of narrow peaks and weak sidelobes.
The principle is similar to the use of Barker codes in multipulses. Since h ∗ ε consists of
a single high peak with small sidelobes, the different range ambiguity functions will also
consist of a set of peaks, and adding and subtracting them will lead to effective range
ambiguity functions with a single main peak only.

Barker submodulation is not needed in strong alternating codes. The number of scans in
strong codes is twice the number of bits so that a four-bit strong code corresponding to
the weak one in Fig. 36 contains eight scans.

Modulation envelopes of a four-bit strong code are shown in the left hand panel of Fig. 37
and their convolutions with a boxcar-shaped impulse response in the right hand panel.
The length of the impulse response is equal to the bit length.

When the sampling interval is equal to the bit length, the range ambiguity functions of
the first lag of the eight modulation envelopes in Fig. 37 are as shown in Fig. 38. These
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Figure 37: Strong four-bit alternating code sequence and convolutions with a boxcar
impulse response.

can now be added and subtracted in the same way as in Fig. 36. If a sign sequence
+−+−+−++ is used for the eight scans, the ambiguity functions cancel except within
an interval of the peak shown in the first panel of the decoded range ambiguity functions
on the right hand side of the figure. The shape of this ambiguity functions is the same as
that of a single pulse pair. Using sign sequences +−−+ +−−+ and + +−−−−++
lead to similar range ambiguity functions, but at a different ranges. Hence the same data
samples are able to give the first lag at three different ranges and the range resolution is
determined by the length of a single bit in the modulation envelope.

The range ambiguity functions of the second lag are shown in Fig. 39. They are now
shorter than the first-lag ambiguity functions. The decoding is now made by means of
sign sequences +−−−++−− and +−−−−+−+, which leads to two range ambiguity
functions at two different ranges.

Finally, the range ambiguity functions of the third lag are plotted in Fig. 40. Ih this case
decoding produces a range ambiguity function at a single range only, but the shape if this
function is similar to that of a two-bit code.

A pulse divided into four bits contains three subsequent bit pairs, two bit pairs with
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Figure 38: Left panel: Range ambiguity functions of the first lag for the modulation
envelopes of the four-bit alternating code sequence in Fig. 37. Right panel: Corresponding
decoded range ambiguity functions.

one bit in between and a single bit pair with two bits in between. The calculated range
ambiguity functions indicate that the alternating code sequence is able to produce range
ambiguity functions corresponding to each one of these bit pairs. One should also notice
that similar results would not be obtained by transmitting separately two-pulse codes
corresponding to these bit pairs. For instance the bits giving the first lag have no gap
in between. Due to the effect of the filter impulse response, this would lead to a range
ambiguity. Hence the strong alternating code is clever enough to avoid the gaps which
are needed in pulse codes.

The decoded two-dimensional ambiguity functions of all lags of the four-bit strong alter-
nating code are shown in Fig. 39. The functions for all lags 1, 2 and 3 consist of pyramids
like those given by multipulse codes. Unlike in multipulse codes, however, they partly
overlap and the topmost surface is only visible in the figure. The zero lag ambiguity
function is also shown, and it is a ridge elongated in Θ direction.

The strong four-bit code has not much practical value. This is because it gives only three
lags. Longer codes are available which give sufficient lag and range resolutions.

The alternating code principle can only work for specific sign sequences. Finding these
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Figure 39: Same as Fig. 38 for the second lag.

sequnences is a major problem. Consider, for example, a strong four-bit code. The
number of possible combinations is 24×8 = 232 ≈ 4.3 · 109. If your computer is able to
test one combination in 0.01 s, testing all possibilities would take 1.4 years. In the case
of an eight-bit code the number of combinations is 28×16 = 2128 ≈ 3.4 · 1038 and the time
needed would be about 1030 years. This is a long time in comparison with the age of the
universe (about 14 · 109 years). In spite of these pessimistic views, very long alternating
codes have been found, up to a length of 4194304 bits. This, of course, is much more than
needed in any practical application.

The code search is based on Walsh matrices. The starting point for an n-bit strong
alternating code is a 2n × n Walsh matrix. The idea is that, by picking correctly a set
of columns form a Walsh matrix in a proper order and putting them into columns of
a new matrix, the resulting matrix contains the signs of an alternating code sequence,
each modulation envelope on a single row. In searching an n-bit strong code, one half
of the columns of a 2n × 2n Walsh matrix are used. The columns of the Walsh matrix
are numbered starting from zero. It is practical to use octal numbering. These numbers
are called Walsh indices. Thus an alternating code can be written down as a sequence of
Walsh indices. An example of this idea is shown in Fig. 42 for an 8-bit strong alternating
code.
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Figure 40: Same as Fig. 38 for the second lag.
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Figure 41: Two-dimensional ambiguity functions of a four-bit strong alternating code
code.
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Figure 42: Constructing an 8-bit strong alternating code from a Walsh sequence.
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