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cESOC, Darmstadt, Germany

Abstract

Following a feasibility study in 2000–2001 about using EISCAT radars to detect
centimetre-sized space debris in the frame of an ESA contract, we are now in the
middle of a continuation study, aimed at doing the debris detection and parameter
estimation in real-time. A requirement in is to “piggy-pack” space debris measure-
ments on top of EISCAT’s normal ionospheric work, without interfering with those
measurements, and to be able to handle on the order of 500 hours of measurements
per year. We use a special digital receiver in parallel to EISCAT’s standard receiver.
We sample fast enough to correctly band-pass sample the EISCAT analog frequency
band. To increase detection sensitivity, we use coherent pulse-to-pulse integration.
The coherent integration is build-in in our method of parameter estimation, which
we call the MF-method. The method is derived via Bayesian statistical inversion,
but reduces, with common assumptions about noise and priors, to minimizing the
least squares norm ||z(t)−b χ(R, v, a; t)||2, where z is the measured signal and b χ(t)
is the model signal. Because the model signal depends linearly on the amplitude b,
it is sufficient to maximize the magnitude of the inner product (cross correlation)
between z and χ, the amplitude estimate is then determined by direct computation.
Magnitude of the inner product, when properly normalized, is the MF. To construct
an appropriate set of model signals, we sample the EISCAT transmission, in the
same way as we sample the received signal, and apply linearly changing Doppler-
shifts (chirps) on it. Our original implementation of the MF-method was about four
orders of magnitude too slow, but we have now gained the required speed factors. A
factor of ten comes from using faster computers, another factor of ten comes from
coding our key algorithms in plain c instead of Matlab. The largest factor, typically
100–300, comes from using a special, approximative, but in practice quite sufficient,
method of finding the MF maximum. Test measurements show that we get real-time
speed already when using a single PPC Dual Processor 2GHz G5 Macintosh to do
the detection computations.
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1 Introduction

It is estimated that there are approximately 200 000 objects larger than 1 cm
currently orbiting the Earth, as an enduring heritage of four decades of space
activity. This includes the functioning satellites, but by far most of the objects
are what is called space debris (SD), man-made orbital objects which no longer
serve any useful purpose. Many of the small-sized (less than 10 cm) particles
are due to explosions of spacecraft and rocket upper stages, but there are also
exhaust particles from solid rocket motors, leaked cooling agents, and particles
put into space intentionally for research purposes. The large (> 10 cm) objects
have known orbits and are routinely monitored by the U.S. Space Surveillance
Network, but information of the smaller particles is fragmentary and mainly
statistical. Especially, in Europe there is no radar that is routinely used for
monitoring small-size SD.

From 2000, we have been involved in two studies, contracted by ESA (ESOC,
1999, 2003), to start utilizing the EISCAT ionospheric research radars also
for space debris measurements. Since the early 1980’s, the EISCAT mainland
radars have been performing ionospheric measurements at least 2000 hours
per year; and since late 1990’s, after the EISCAT Svalbard radar became op-
erational, EISCAT has measured more than 3000 hours per year. The aim is
to be able to use a substantial amount of these operating hours for simultane-
ous space debris measurement. In our initial study (Markkanen et al., 2002),
we showed that it is feasibility, and indeed technically straightforward, to run
SD measurement in parallel with normal EISCAT ionospheric measurements,
without interfering with those measurements.

Our approach is to operate a separate digital receiver back-end, which we call
the SD receiver, in parallel with EISCAT standard digital receiver. This al-
lowes us to implement our own, amplitude domain data processing, the match
function or matched-filtering (MF) method. The MF-method seeks to increase
detection sensitivity by implementing pulse-to-pulse coherent integration. To
make the hardware as simple and cheap as possible, the custom-made part of
the SD receiver is basically just a fast sampler and digital demodulator; the
interesting processing is done in fast but still cheap general purpose worksta-
tions. The SD receiver samples the analog IF2 band fast enough to capture all
the relevant EISCAT frequency channels into a single digital stream, without
doing channel separation. Typically during a measurement, we sample with
the rate of about a million complex samples per second continuously, produc-
ing more than 10 Gbytes of data per hour. Early on, ESA suggested that we
should strive to do data analysis in real time so that the raw data could be
quickly disregarded. We describe the basics of the SD receiver in section 3.

A straightforward implementation of the MF-method implies long data vec-
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tors, with lengths of hundreds of thousands complex points, to be Fourier-
transformed a few thousand times, per every second of raw data. At the Space
Debris III conference in 2001, we had to concede that with the processing speed
that we had achieved at the time, it would take several centuries of CPU time
to analyze just one year’s quota of EISCAT space debris measurements. How-
ever, soon afterwards, one of us (Lehtinen), realized that by accepting some
loss of detection sensitivity and a changing bias in the velocity estimate, it
would be possible to speed up MF computation drastially, typically by more
than two orders of magnitude. We use the term fast match function algorithm
(FMF) for the resulting computation scheme. We outline the algorithm in
section 8 of this paper.

The results of the initial study were encouraging. The achieved detection sensi-
tivity was equivalent to being able to observe spherical targets with diameters
of about 2 cm from 1000 km range. With the advent of the FMF algorithm,
the processing speed, though still sluggish, was starting to become useful. In
2003, ESA commenced a new study with us to bring the analysis of large
amounts of EISCAT SD data up to real-time speed. The study has achieved
the required processing speed. In addition to the factor of 100 delivered by
the FMF algorithm, we now use computers that are about ten times faster
than what we had available in 2001. A final required factor of ten to the speed
was obtained by coding the MF- and FMF-algorithms in c, instead of using
Matlab as was done in the initial study.

The EISCAT system (Byron, 1984, 1986; Wannberg et al., 1997) consists of
three separate radars: monostatic VHF radar, located near Tromsø, Norway,
and operating at 224 MHz; monostatic but two-antenna EISCAT Svalbard
Radar in Longyerbyen, Svalbard, operating at 500 MHz; and tristatic EISCAT
UHF radar at 930 MHz, with transmitter in Tromsø and receivers in Tromsø
and in Kiruna, Sweden, and Sodankylä, Finland. All the transmitters operate
in the megawatt peak power range and routinely utilize high (10–20%) duty
cycles.

Even though routinely picking-up hard target echoes 1 , standard EISCAT data
processing is not optimized for hard targets. The characteristic feature ex-
pected from small hard targets is long signal coherence time, several hundred
milliseconds. By a signal’s (phase-) coherence we mean that the signal phase
φ0(t) obeys a deterministic functional form for some duration of time, called
the coherence time.

EISCAT′s normal ionospheric signal has coherence time less than a millisecond
in most parts of the ionosphere. This time is much shorter than the interval
between transmitted pulses, which in EISCAT typically is 3–10 ms. Therefore,

1 Always termed, confusingly, “satellites” in the EISCAT parlance.
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echoes from individual pulses are uncorrelated, and can only be added up in
the power domain. This is done by computing, for each of the received pulses
separately, signal autocorrelation functions, or, equivalently, power spectra,
for a set of range gates, and then adding these power-domain quantities. This
is called non-coherent pulse-to-pulse integration. Even though it is not per-
haps always appreciated, we want to emphasize that within a single trans-
mission/reception (T/R) cycle, computing range-gated power-spectra achieves
coherent integration. In fact, for a single uncoded pulse, our MF-method, too,
in effect just computes range-gated power spectra.

To achieve coherent integration from pulse to pulse, the MF-method adds
the echos from different T/R cycles in amplitude domain, taking care that
the pulses are added with equal phase. The method, in essence, removes all
phase variation from the signal before adding the samples. This is achieved by
guessing the phase factor eiφ0(t) of the signal, and canceling it by multiplying
the signal by the complex conjugate of the guess, e−iφ0(t). The guesses in
our implementation are generated by brute force. We search through a large
set of parametrized model functions, and use the one which achieves best
cancellation of the phase, that is, which results in largest integrated amplitude.
After the phase variation has successfully been removed, the remaining part
of the signal can be safely integrated, both within a single pulse, as well as
from pulse to pulse. Incidentally, dividing the radar data into T/R cycles is
artificial from the MF-method point of view. It is more natural to consider
the totality of transmission during an integration period as just a waveform
pattern, to be matched against the totality of reception, irrespective of how
the patterns are chopped to T/R cycles. In particular, there is no need for
the T/R cycles to be identical, neither in terms of length nor transmission
content.

As long as the signal stays coherent (obeys the assumed model), coherent
integration suppresses the non-coherent background noise, so that the effec-
tive signal-power to noise-power ratio increases directly proportionally to the
number of pulses integrated. This increases detection sensitivity. Non-coherent
integration, instead, does not increase signal-to-noise ratio. The drawback in
coherent integration, in addition of it being computationally more demanding
due to the long data vectors, is that if the signal model is not accurate, the
ensuing phase error will quickly eat into the integrated signal amplitude, and
can actually start to reduce the amplitude. 2 In our case, coherent integration
beyond about 300 ms does not seem to improve detection sensitivity.

2 And long enough integration will kill the amplitude altogether, by the Riemann-
Lebesgue lemma. We admit that there is a grain of truth in the statement claim-
ing that “most radars utilize non-coherent integration”, because “maintaining co-
herency [. . .] is very costly and challenging to achieve.” (Mahafza, 2000)
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Part of the reason for the unexpectedly short apparent coherence time is that,
although we in (see section 6) will derive a model signal that we believe should
be quite accurate for small (structureless) targets, for performance reasons we
cannot actually use the ideal model. The approximative model that we do use,
both in the MF and FMF algorithms, is suitable for single-frequency-channel
transmissions. The different frequency channels in our multi-frequency signal
will have slightly different Doppler-shifts because the Doppler-shift depends
on transmission frequency. It is impossible to cancel the Doppler phase factors
simultaneously using only the single model phase factor which is available in
the approximative model.

We derive, in section 4, the MF-method via Bayesian statistical inversion (Lehti-
nen, 1986). Within the Bayesian approach, the estimates for the basic parame-
ters range, radial velocity, radical acceleration and signal amplitude (or signal
total energy), are be found as the most probable values, given the measured
noisy signal. With our assumptions, this solution is also the the one that min-
imizes the least squares norm between the measured signal and the set of
model functions.

We have, during several test campaigns over four years, collected and analysed
about 50 hours of data at the EISCAT UHF radar in Tromsø. This data has
been taken mostly for method development and verification purposes. We will
not attempt to describe the data in this paper, but only mention here that the
mean event rate slightly has been slightly more than 20 events per hours. Our
observed height distribution seems to reproduce the well-known main features
of SD distribution in low Earth orbit region. Our measurements cover altitude
up to about 4000 km, with some gaps that depend on the EISCAT experiment
we have been hooked to. The data has also shown that the EISCAT UHF
radar can observe targets with effective diameters (diameter of a hypothetical
spherical target that would be on the antenna optical axis and would give the
observed signal strength at the observed range) about 2–2.5 cm at 1000 km
range.

However, we cannot say anything much about the actual target cross sections,
let alone target physical diameters. The single major deficiency in EISCAT,
in comparison with other radars used for space debris observations, is that
EISCAT antennas do not have monopulse feed. At the moment at least, there
is no way available that would allow pinpointing the actual direction of a
target within the radar beam, and so the target’s radar cross section cannot
be deduced from the signal strength. We hope that in future we can partly
alleviate this problem by collecting fairly large amounts of data—perhaps
about 500 hours per year—so that the antenna beam pattern can be taken
into account statistically, and meaningful comparisons to space debris models
made.
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2 EISCAT UHF Radar

So far in our measurements, we have been using mainly the EISCAT UHF
radar. Block diagram of the UHF-radar’s Tromsø site is shown in Fig. 1. The
EISCAT receivers at all three UHF sites, Tromsø, Kiruna, and Sodankylä,
are almost identical, the main difference being that at the receiving-only
sites Kiruna and Sodankylä there is no need for the duplexer and the re-
ceiver protector. Also the polarizer arrangements are somewhat different. The
Tromsø UHF receiver has a cooled preamplifier, giving system temperature
Tsys ≈ 110 K. Kiruna and Sodankylä have recently moved over to HEMP-
based, uncooled preamplifiers, with system temperatures around 50 K. The
radar’s RF band is centered at 929 MHz, and there are 14 transmission fre-
quencies available, 300 kHz apart. In the most common EISCAT experiment
modes, two frequency channels are used. Recently those have been centered
at 929.9 MHz (EISCAT frequency F13) and 930.2 MHz (F14). The RF signal
is mixed in two stages to the second intermediate frequency (IF2) band, using
local oscillators at 812.0 MHz and 128 MHz, so that F13 maps to 10.1 MHz
and F14 to 9.8 MHz. The band is formed by the radar’s antialiasing filter,
which is 6.8 MHz wide and centered at 11.25 MHz.

In the standard EISCAT data processing, the second IF is digitized by a 14-
bit A/D converter, which produces a continuous sample stream at the rate
of 15 Msamples/s. The stream of IF2 samples is distributed to the multi-
channel, VME-based, EISCAT digital receiver, each channel taking one slot in
a VME crate. Custom hardware on each digital channels performs quadrature
detection, followed by sampling rate reduction appropriate to the typical 10–
50 kHz final channel bandwidth. The baseband sample stream is buffered, and
further processing to averaged sample correlation products is done on UNIX-
based computers (EISCAT uses computers based on SPARC-processors, and
the Solaris flavours of UNIX).

The EISCAT UHF transmitter consists of a programmable radar controller
that generates the pulse patterns at DC level, either uncoded on/off pulses
or various classes of binary phase codes; an exciter system that converts the
radar controller output to RF around 928 MHz; and a klystron power amplifier
that consists of two klystron tubes, in principle able to deliver combined peak
power of about 2.5 MW. The power during all our space debris measurement
has been considerably lower, at about 1.5 MW. The maximum transmitter
duty cycle is 12.5%, and duty cycles near this value are also used in most
experiments in practice.

The 32 m UHF antenna has a fully steerable parabolic dish, has Cassegrain
optics, and has rotation rate of about 80◦/min both in azimuth and elevation.
The antenna pointing direction is calibrated using celestial radio sources, and
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Fig. 1. The space debris receiver connected to EISCAT UHF radar.

is believed to be accurate slightly better than 0.1◦ in most directions. The
time and frequency base at all EISCAT sites is from the GPS system.

3 Space debris receiver

To be able to use our own data processing, optimized for hard targets, we
use a special digital receiver back-end, the space debris receiver. Signal to the
space debris receiver is branched off from the EISCAT analog signal path at
the second IF (IF2) level. Figure 1 shows the main blocks of the SD receiver,
connected to the EISCAT UHF system at the Tromsø site.

EISCAT standard measurement modes normally have more than one fre-
quency channel. EISCAT standard data processing handles this situation in
the traditional way, by feeding the IF2 data to multiple hardware channels,
each tuned to a particular center frequency. The end result is several sample
streams, one for each channel. Our approach in the SD receiver is different.
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We sample fast enough to capture the relevant part of the analog IF2 band
into a single digital stream. According to the (bandbass-) sampling theorem,
if the spread of frequencies is B MHz, we need to take B million complex sam-
ples per second, in the minimum. For our most often used measuring mode,
where there are two frequency channels 300 kHz apart, we have normally used
500 kHz sampling rate. But we have also verified that the SD receiver can
handle sampling speeds up to 2.5 Msamples/sec. We call this type of data
multichannel complex data (Lehtinen, 2002).

In addition to the standard reception, our data processing requires that the
transmission waveform is measured. As indicated in Fig. 1, EISCAT provides
the transmission sample signal (TS) time-multiplexed into the same data path
as the reception. The multiplexer switch is controlled by the receiver protector
bit (“Txbit” in the figure), generated by the EISCAT radar controller micro-
processor. We routinely record the receiver protector bit into our data stream
to mark out the transmission blocks. The bit is stored into the least significant
bit of the imaginary part of the 16 + 16-bit complex integer data words. With
this arrangement, the transmission sample signal gets automatically sampled
with the same sampling rate as the actual reception (though we would actually
like to sample it with a higher rate).

The core of the data acquisition system is a custom PCI-board which per-
forms signal sampling, quadrature detection and sampling rate reduction. The
board was developed originally for ionospheric tomography by the now defunct
Finnish company, Invers Ltd.

The A/D converter on the PCI board samples at 40 MHz. The resulting
real-valued sample stream is processed by programmable logic chip, from the
Xilinks SpartanXL family, to perform quadrature detection, essentially by do-
ing Hilbert transform. The result of the transform is a complex-valued 10 MHz
sample stream, which represent the negative frequency part of the spectral con-
tents of the analog input. The chip then decimates the 10 MHz stream to the
final sampling rate. Typical decimation factor M is 20, which yields 500 kHz
final sampling rate. The decimation is done by adding samples in blocks of M;
this ensures proper filtering.

It may be noted that there is no separate multiplication to baseband in this
scheme. Instead, the customary frequency component at baseband is created
by the undersampling. With 40 MHz raw sampling, the arrangement requires
that the band-limited analog input is centered at 10 MHz. Although it is possi-
ble to run the A/D converter on the board at other sampling rates, the 40 MHz
is a most convenient choise. That the two frequencies EISCAT nowadays most
often use in the standard measurements, are 10.1 MHz and 9.8 MHz, is a very
happy coincidence indeed. Next version of the SD receiver will have a complex
mixer build-in.
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The PCI board is mounted on a Power Macintosh G4 workstations, running
under the Mac OS X version of UNIX. The Mac G4 we call the measurement
computer. In addition, there is a dual CPU Macintosh G5 computer for data
analysis, and a second G5 analysis computer is forthcoming. The Mac work-
stations are connected to each other via a gigabit Ethernet link, and are also
connected to the site LAN. The measurement computer runs software from
Invers Ltd to read the sample data from an onboard buffer and write them to
hard disk, either local disk, or (normally) a disk mounted over the gigabit link
from the analysis computer. Data accumulation rate to hard disk is between
7 and 30 Gbytes per hour, depending on the sampling rate. The LAN connec-
tion is used to access the EISCAT process computer, to update the time base
on the G4 and G5 once every 5 minutes, using the ntp protocol. This ensures
that the time base in the Mac’s stays within 20 ms from the time kept in
the EISCAT system. This is more than adequate for time-stamping the space
debris events.

Data analysis is done by c- and Matlab-programs running on the analysis com-
puter. First, a scanner reads a segment (typically 300 ms) of raw data from
disk, and searches though the segment for hard targets, using threshold detec-
tion within the framework of the match function method. When the threshold
is exceeded, we call this a hit. The scanner saves the hit’s description to a file,
and proceeds for next data segment. A second program, the event archiver,
inspect the list of hits trying to combine to an event the hits that correspond
to a single target passing though the radar beam. Having determined the time
boundaries of the event, the archiver copies raw data belonging to the event
to a separate event directory, and goes looking for more events. Finally, the
analyser picks events from the event directories, and deduces and saves the
event parameters.

By far the most time-consuming step in the dada analysis is the scanning.
Scanning is done by a c-program that makes use of the AltiVec vector proces-
sor onboard the G5, by calling routines in Apple’s DSP library (vdsp), most
especially the FFT routine.

The event-archiver is also a c-program, but is not performance critical. Most
of its time goes to data copying, so the speed is mainly limited by disk speed.
We have saved all raw data from all our test measurements so far—somewhat
less than a terabyte—but in routine measurements, at most the raw data of
events will be saved. With the event rates observed in test measurements,
saving all events from all the ≈ 400 hours of space debris measurements that
we anticipate to be able to do annually, would require (only) in the order of a
terabyte of storage per year.

The way to compute the final target parameters is still under development.
What the analyser now does, is basically to call the scanner to rescan the data,
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with maximal time and range resolution but over a narrow range interval, and
then make linear or quadratic fits to the range and Doppler-velocity time
series. The range and velocity parameters that we normally quote are then
taken from these fits, for the time instant of maximum signal strength. The
analyser is a Matlab program.

The overall processing speed is such that for data taken with 2 MHz sampling
rate, it takes 40–45 minutes to scan, archive and analyse one hour of raw data,
while keeping the raw data access running at the same time.

4 The match function method

We want to estimate the parameters of a hard target echo signal s(t) in the
presence of gaussian noise γ(t), in an optimal way. We denote by z(t) the
received signal,

z(t) = s(t) + γ(t) . (1)

We denote by x(t) the transmission sample signal. We ignore the frequency
translations done in the actual space debris receiver, and treat all these quan-
tities as complex-valued (detected) waveforms. The frequency translations af-
fect both the signal s(t) and the transmission signal x(t) by a factor of form
exp(iωLOt), where ωLO is some local ocillator frequency, and hence cancel out
of the products s(t)x(t).

To find an optimal estimate (or at least a well-defined estimate), we will
use the approach of Bayesian statistical inversion. The basic idea is to use
a parametrized model for the signal s(t) and find the most probable signal
among the model signals, given the measured signal.

We specify our set of model signals explicitly in section 6. Here we will make
use only of the property that the model depend linearly on one parameter,
the complex amplitude b, and non-linearly on a set of the other parameters
(R, v and a in our case), which we collectively denote by θ, so that

s(t) = b · χ(θ; t). (2)

We sample the signal z(t), using sampling interval τ , and get Nc samples
during a time interval Tc, which we call the integration time. Each of Nc the
samples is a “measurement”.

It makes sense that after a specific measurement z, some parameter (b, θ)
values should be considered more likely than others, in a way that depends
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on z. That is, the probability of the various imaginable values should be de-
scribable by some conditional probability density, with z in the condition. In
the Bayesian worldview, that density is termed the posteriori density, and
is denoted here by Dp(b, θ|z). The inversion problem is to utilize the mea-
surements to find the posteriori density. The posteriori density is the most
complete inference that can be made about the parameter values, based on
the measurements. Normally one wants to condense the inference to single
numbers, the parameter estimates. There is no unique way to select “best”
estimates, but the standard Bayesian criterion is to use the most probable val-
ues, and that is what we will use. In our case, the estimates b̂ and θ̂ therefore
are

(b̂, θ̂) = arg max
b,θ

Dp(b, θ|z). (3)

We now derive the posteriory density. We denote by D(zn|sn) the conditional
probability density function (PDF) of zn, given sn. This is just the PDF of
the noise,

(zn|sn) =
1

πσ2
e−

1
σ2 |zn−sn|2 . (4)

We assume that the noise is white, so that the noise samples are uncorrelated.
Then the conditional joint PDF to produce a particular measured vector z, if
the actual signal vector is s, is

D(z|s) =
N−1∏
k=0

D(zk|sk) =
1

(πσ2)N
· e−

1
σ2 ‖z−s‖2

. (5)

The density D(z|s) is called the direct theory. Given the direct theory, the
Baysian solution to our inversion problem is

Dp(b, θ|z) = C ′(z) ·Dpr(b, θ) ·D(z|s). (6)

Here C ′(z) is normalization factor. The new factor, Dpr(b, θ), is called the prior
density or a priori density. The prior density is a weight that can be used if
it is known a priori— before making the measurement—that some particular
signals s(b, θ) tend to occur more frequently than some others. Using Dpr might
actually make sense when measuring space debris, to throw out detections
with highly unlikely parameters. But so far we have used constant priors. For
constant prior, it follows from Eq. (6) and Eq. (5) that the sought-for posteriori
density is

Dp(b, θ|z) = C(z) · e−
1

σ2 ‖z−b·χ(θ)‖2

. (7)
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It follows that finding the most probable parameters amounts to minimizing
the least-squares norm,

(b̂, θ̂) = arg min
b,θ

‖z − b · χ(θ)‖2 . (8)

That we should arrive at this most basic technic of parameter estimation,
least-squares fitting, is perhaps not surprising. But what we have gained by
walking though the Bayesian route, is that not only do we have a method for
acquiring the parameter estimates, but we have an explicit expression for the
posteriori density. In the future, we intend to make use of the posteriori density
in error analysis. Due to highly non-linear dependence of the model functions
χ(θ; t) on the parameters-to-be-fitted, θ, error estimation is not trivial.

A straightforward approach to the minimization problem expressed in Eq. (8)
is to discretize the parameter space and perform an exhaustive search. We now
show that the search space dimension can be reduced by one by making use
of the property that the amplitude b enters the problem linearly. The result
can be confirmed analytically, but will be here reasoned from basic vector
geometry. Referring to Fig. 2, the set M of model vectors {b χ(θ)} consists
of 1-dimensional rays Cχ though the origin of N -dimensional complex vector
space CN . The rays are generated by the set of vectors χ(θ). We want to find
the shortest distance between the measurered point z and M. (Due to noise,
in most cases, z is outside M as depicted. It can also by accident be in M, but
that does not change the argument.) We need first to find the ray, Cχ̂, that is
as parallel as possible with the vector z. Then the point in M that is nearest
to z is the orthogonal projection ŝ of z onto Cχ̂ (a theorem in linear algebra
says that the orthogonal projection gives the shortest distance of a point from
a linear subspace; and the rays are linear subspaces), and is computed in the
standard way as

ŝ =
〈z, χ̂〉
‖χ̂‖2

χ̂ . (9)
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So the real problem is to find χ̂. With z fixed, a sufficient measure of parallelism
of a ray Cχ(θ) and the vector z is the length of orthogonal projection of z onto
χ; the ray is the more parallel or antiparallel, the longer the projection. We
call this measure of parallelism the match function 3 , MF. We have

MF(θ) =
|〈z, χ(θ)〉|
‖χ(θ)‖

. (10)

The notation indicates that the MF is a function of the parameter θ that
determines the vector χ. Note that the MF does not depend on the scale of χ
(χ and a χ give the same value of MF). We need to maximize the MF to get
the maximally parallel model vector χ̂ = χ(θ̂):

θ̂ = arg max
θ

MF(θ) . (11)

How the maximum is computed in practice will be discussed later in detail;
basically, we performing an exhaustive search over a grid of values of θ.

The energy 4 of any correctly sampled complex-valued signal x(t) is

Wx =
∫
|x(t)|2dt = τ

∑
|xn|2 = τ‖x‖2 . (12)

From Eq. (9)–(11), the energy Wŝ of the estimated signal ŝ is

Wŝ

τ
= ‖ŝ‖2 =

|〈z, χ̂〉|2

‖χ̂‖2
= [MF(θ̂)]2 = max MF2. (13)

We normally use Wŝ as our estimator of the signal energy. However, as will be
discussed shortly, the estimator contains traces of the noise background, and
is a biased estimator.

We summarize the match function method of parameter estimation

3 Intuitively, the more parallel two signal vectors (functions) are, the more they
look alike, which is one reason for our nomenclature. A more serious reason is that
“MF” also stands for Match Filter. With velocity and acceleration fixed, so that MF
is function of the range variable only, R → 〈z, χ(R)〉 amounts to ordinary filtering
of z by the filter h(t) = χ(0)(t) which is matched to the transmitted signal. The
MF is a generalization of this concept to more general kind of pattern matching.
4 We consider the signals x(t) to have the dimension of voltage, and assume unit
impedance, so that |x|2 is the signal power. The impedance does not matter, for
only signal ratios, like |s|2/|γ|2, are used when comparing to the physical world. We
could also do without explicitly tracking the sampling interval, except that we do
not want to change the dimension of energy in the middle of a chain of equations.
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(1) Get the parameter(s) θ by locating the position of MF maximum, Eq. (11).
(2) Get the signal energy as the square of the value of the MF maximum,

Eq. (13).

According to Eq. (9), the complex amplitude b is be estimated as

b̂ =
〈z, χ̂〉
‖χ̂‖2

, (14)

but because the scale of the χ̂ is arbitrary, so is the scale of b̂. Only the product
ŝ = b̂χ̂ is well-defined.

A noise-free MF is useful for theoretical considerations. Without noise, both
factors in the inner product in Eq. (10) are model functions. We will reserve a
separate notation, AF, and use the standard name, ambiguity function (Skol-
nik, 1981), for our noise-free match function,

AF(b0, θ0; θ) =
|〈b0 χ(θ0), χ(θ)〉|

‖χ(θ)‖
. (15)

In the MF-method, target detection is based on the estimated signal energy
Wŝ exceeding a threshold. Setting the threshold has so far been done by visual
inspection of the data, to be so high that there are only very few false alarms. In
fact, we need to use a range-dependent threshold, because the lower altitudes,
typically up to about 500 km, are often “contaminated” by strong clutter from
ionosphere, and need a higher threshold.

The threshold is set in terms of the ratio of signal energy to the noise power
spectral density (PSD) Gγ. We call this ratio the energy-to-noise ratio, and
denote it by SNRN,

SNRN =
Ws

Gγ

. (16)

We assume that the system noise temperature Tsys is defined in such a way
that the noise PSD density of complex-valued wide-band noise can be written
as

Gγ = kTsys , (17)

where k is the Boltzman constant. The power of such a noise after being filtered
with a boxcar-shaped low-pass filter that extends from frequency−B/2 to B/2
is

Pγ = kTsysB. (18)
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We call B (rather than B/2, as is often done in the literature) the filter
bandwidth, and the noise bandwidth. We assume that the sampling interval
τ and noise bandwidth are related by

B · τ ≈ 1. (19)

In the MF-method, we get an estimate of the energy-to-noise ratio from the
MF maximum value and from separately estimated noise power:

Wŝ

kTsys

=
Wŝ ·B

kTsys ·B
=

(max MF2 · τ) · (1/τ)

Pγ

=
max MF2

Pγ

. (20)

We treat the system temperature as a known, fixed radar parameter, and use
Eq. (20) to find the signal energy in physical units. We use that estimate to
find a lower limit, RCSmin, for the target’s radar cross section (RCS). From
the standard radar equation it follows

RCS =
(4π)3 kTsys ·R4 ·Ws

G(φ)2 · λ2 · Px · DTc

. (21)

Here R is target range, λ is radar wavelength, Px transmission power, D trans-
mission duty cycle so that DTc is the actual length of transmission during the
integration Tc. The factor G(φ) is the antenna power gain in the direction of
the target within the radar beam, an angle φ offset from the known direction
of the antenna optical axes. (The direction of the optical axis is known to an
accuracy of about 0.1◦ on the EISCAT radars). In the EISCAT system, it is
normally not possible to find the offset angle. As a way of cataloguing the
observed signal strength, we therefore normally quote RCSmin, which we get
from Eq. (21) by setting φ = 0.

We note that the energy estimate Wŝ, defined in Eq. (9), is a biased estimate.
That is, the expectation value E Wŝ, over (hypothetical) repeated trials of
measurements of the same signal s, is not equal to Ws, the actual signal
energy. Instead, in our typical SD measuring situations in EISCAT, EWŝ is
larger than Ws by as much as a few times the mean noise power σ2. This
is readily seen qualitatively by considering the case when there is no signal
present, and thus an unbiased estimate would have zero energy. Because MF2

is non-negative, max MF2 will in any case have expectation value that is larger
than zero. But we can actually show that the expectation will be larger than
the noise power.

Taking, for definiteness, the model signal to be of the form of (see Eq. (35))

χ(t) = x(t− 2R/c)eiωt , (22)
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where x(t) is transmitted pulse and ω the Doppler shift, the square of the MF
becomes

MF2 =
|∑ γnxn exp i2πνn|2∑ |xn|2

(23)

=

∑
nn′ γnγ′

nxnx
′
n exp[i2πν(n− n′)]∑ |xn|2

. (24)

Assuming that the noise is uncorrelated, so that

E[γnγ
′
n] = δn,n′ · σ2, (25)

we get from Eq. (24)

E[MF(θ)2] = σ2 , for all θ . (26)

Thus, in most measurements without signal, MF(θ)2 varies on both side of σ2,
especially, gets values that are larger than σ2. Thus the expected value of MF2

at the maximum position will be larger than σ2. How much larger, depends on
the statistical properties of the noise, the number of parameter space included
in the maximization search, and also on the set of model functions used.

The positive bias in the energy estimate means that we tend to overestimate
radar cross section when we use Wŝ in Eq. (21) without correction.

5 Receiver effects

The MF-method provides an estimate of the energy-to-noise ratio SNRN for
signal and noise which have been processes through the space debris receiver.
But to start estimating the target cross section, we need an estimate of the
signal energy before the signal has been “corrupted” by the receiver. The noise
which enters into the SNRN estimate has come through the same receiver path
as the signal. Nevertheless, there is in general no guarantee that the (relatively
wideband) noise is attenuated by the same amount in the receiver than the
signal, which typically consists of a few relatively narrowband frequency chan-
nels, transmitted cyclically.

In the standard EISCAT data handling, the receiver effects are taken into
account by incorporating the receiver impulse response 5 into the estimation

5 Normally, only the impulse response of the post-detection filters is incorporated.
But in the SD receiver, the receiver bandwidth can be up to 25% of the width of
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theory, in the model functions to be fitted. We might ultimately need to do so
for the space debris data analysis also. But in this paper, we try to keep the
theory simpler by ignoring the receiver response in the model functions. The
price is that we need to be prepared to correct the estimated energy. It turns
out that for our most common measuring configuration, the estimated energy
of the processed signal (relative to noise power) is about 75% of the value in
front of the receiver.

For small spherical targets the radar cross section, and therefore the received
power, varies proportionally to the six’th power of the target diameter. Thus,
a 30% underestimate of received power results only in 5% underestimate of
the effective diameter. Considering other serious problems that we have in
determining the targets’ radar cross section, we have so far simply ignored the
receive effect on energy estimate. The other problems include us not knowing
the efficiency of the coherent integration (that is, how coherent the “coherent
integration” actually is); the problem of not knowing the position of the tar-
get within the radar beam; and the problem of (not) knowing accurately the
radar’s transmitted power.

Ignoring the receiver impulse response is not expected to effect velocity esti-
mate. As of the range estimate, the filter causes a “filter delay” of the order of
the sampling interval (0.5–2 µs in our case), and this would in many systems
shift the estimated range. But because our model functions are constructed
from the actually measured transmission sample signal, and that signal travels
though the same receiver path as the target echo, the filter delay should not
be an issue.

6 Signal model

We will model the phase of the received signal s(t) by assuming that the
phase behaves as if the signal would reflect from a mirror which moves with
constant radial acceleration a0. We will assume that during an integration
time Tc, which typically is about 300 ms, the amplitude b of the signal stays
constant. Denoting by x(t) the transmitted signal, and by t′ the delayed time,
with reference to Fig. 3 we take

s(t) = bx(t′) . (27)

the IF2 band, and then the IF2 band shape cannot be automatically ignored.
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r = R0 + v0 t + ½ a0 t
2

tt' ½(t' + t)0

Fig. 3. Pulse reflection from an accelerating target.

For any given target radial motion r(t), the delayed time for reflection from a
point target is determined by

t− t′ =
2r( t′+t

2
)

c
. (28)

With constant radial acceleration, the motion is

r = r(R0, v0, a0; t) = R0 + v0t +
1

2
a0t

2 . (29)

For the motion (29), Eq. (28) is quadratic in t′. Solution of the equation for
the pulse propagation time t − t′, with appropriate choice of the sign of the
square root, is

t− t′ =
2c

a0

1 +
v0

c
+

a0

c
t−

[
1 +

2v0

c
+

(
v0

c

)2

+
2a0

c
(t− R0

c
)

] 1
2

 . (30)

Equation (30) can be simplified by expanding the square root to power series.
Care must be excised regarding to which terms can be dropped from the
expansion. With parameter values that are typical at EISCAT UHF when
antenna is pointed near vertically,

R0≈ 106 m ,

v0≈ 103 ms−1 ,

a0≈ 102 ms−2 ,

ω1≈ 6 · 109 Hz ,
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all terms following the “1” inside the square brackets in Eq. (30) are quite small
compared to unity. But what actually determines which terms X we need to
keep, is the requirement that the corresponding phase factor ω1

2c
a0

X, where ω1

is the radar transmission frequency, stays small during the integration time.
Using the first three terms of the power series expansion of [1+(. . .)]

1
2 , and then

dropping all the individual terms for which the corresponding phase factor is
less than 0.1 rad when integration time is less than a second, we are left with

t− t′≈ 2

c

[
R0 + v0t +

1

2
a0t

2 − (v0 + a0t)
R0

c

]
(31)

=
2

c

[
R0 + v0(t−

R0

c
) +

1

2
a0(t−

R0

c
)2

]
(32)

=
2

c
r(t− R0

c
) . (33)

The term −R0

c
is a natural first order correction to the time instant of pulse

reflection; the only non-trivial aspect is that this correction already is suffi-
cient (for our typical measuring configurations). Thus, the model functions
χ(R, v, a; t) to be used in the MF-computation, Eq. (10), are of the form

χ(R, v, a; t) = x(t− 2

c
r(R, v, a; t− R

c
)) . (34)

Note that has been assumed about the transmission x(t) in this derivation
so far. In principle, as long as the transmission can be accurately measured
via the transmission sample signal, we do not even need (ever) know what
transmission has been used; the MF-machinery incorporates the transmission
transparently. This is a good thing for automated piggy-back measurements,
where we do not have any control on the transmission EISCAT might be using
at any given time.

The reality, of course, is rather different. A basic problem is that the radar’s
noise-environment is often poorly approximated by our assumption that it
consists only of stationary gaussian noise. All kind of distortions happen in
practice, one of them being the ionosphere becoming visible as clutter in our
data. More or less ad hoc, manual, experiment-specific solutions are used to
counter these problems. Also, we cannot at the moment at all handle the case
that the antenna pointing may change during a measurement; many EISCAT
measurements use cyclical antenna pointing schemes. In practice, both now,
and into the foreseeable future, we need to know a priori, and even select, the
EISCAT measurements we are making use of in the SD work.
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7 Computational aspects

Here we derive the approximation for the signal model that we have been
using in our work so far. Assume that transmission can be described as

x(t) = ε(t)eiω1t , (35)

where ω1 is the carrier frequency, and the transmission envelope ε(t) is a
slowly changing function, describing, say, binary phase modulation, as is often
the case in EISCAT. This description is good for a single-frequency-channel
transmission. We drop the correction −R/c to the pulse reflection time in
Eq. (34), and use the special form Eq. (35) of transmission to write the model
function as

χ(t) ≈ ε(t− 2

c
r(t)) eiω1[t− 2

c
r(t)] . (36)

Inside the slowly varying transmission envelope, we can assume r(t) stays
constant, 2R/c, during the integration time. Then, from Eq. (36) and Eq. (35),

χ(t)≈ ε(t− 2R

c
) eiω1(t− 2

c
R) ei[(−ω1

2
c
v)t +(−ω1

a
c
)t2 ]

= x(t− 2R

c
) ei(ωDt+αDt2) , (37)

where ωD = −ω1
2v
c

and αD = −ω1
a
c

are the Doppler frequency and Doppler
drift, respectively. The approximation (37) is often used in the literature (usu-
ally without the drift term), and is described by saying that the received sig-
nal is delayed-in-time, Doppler-shifted replica of the transmission. With the
model (37), the match function definition in Eq. (10) can be expanded for
continuous-time signals as

MF(R, v, a) =
|
∫ Tc
0 z(t)x(t− 2R

c
)e−i(ωDt+αDt2) dt|√

Wx

, (38)

where Wx =
∫
|x(t)|2dt is the energy of the transmission sample signal.

For signal vectors, we need to take into account that transmission samples xn

are only available at times nτ . This already forces us to discretize the range
variable. With

Rj = j · cτ

2
(39)
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the match function becomes

MF(Rj, v, a) =
|∑N−1

n=0 znxn−je
−i(ωdn+αdn2)|

‖x‖
, (40)

where the normalized Doppler-shift and Doppler-drift are

ωd =−ω1τ
2v

c
, (41)

αd =−ω1τ
aτ

c
. (42)

At the points

vk = k
c

ω1Tc

(43)

Eq. (40) can be written as

MF(Rj, vk, a) =
|∑N−1

n=0 (znxn−je
−iαdn2

)e−i kn
N |

‖x‖
, (44)

which shows that at these points the MF can be evaluated using FFT. The
denominator ‖x‖ is the square root of transmission sample energy, and is of
course independent of R, v and a.

In most of our data analysis, we have taken the radial acceleration to be a
deterministic function of range, a = a(R). We have used the acceleration that
corresponds to target being on circular orbit and the antenna being pointed
vertical,

a = g0 ·
RE

h
· ( RE

RE + h
)2, (45)

where RE is the Earth radius 6360 km, g0 is acceleration of gravity at zero
altitude, 9.8 m s−2, and h is the target altitude. Experimentation with data
has shown that not much sensitivity is lost in practice even if the acceleration
is not varied 6 .

6 Which is perhaps a bad thing, because a priori, we would expect the MF to be
rather sensitive to the acceleration being correct. For instance, by inspecting the
acceleration ambiguity function, a → AF(R0, v0, a0;R, v, a), with R and v fixed to
the correct values R0 and v0, with 0.3 s integration time, an 5 m s−2 error in a
should cause the coherently integrated amplitude to drop by 70% from the ideal
case. That this appears not to happen when we vary the acceleration in the analysis
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In our routine analysis therefore, we search the MF-maximum only over the
(Rj, vk)-grid. Even then, the detection computation, using full resolution and
without any further approximation, becomes too large. Assume we want to
cover 1000 km in range and use 0.3 s coherent integration. Assume that the
sampling interval is 0.5 µs. Then input data vector is 600,000 points long,
and the FFT requires about 60 Mflops. The 1000/0.075 ≈ 13 000 range gates
require about 800 Gflops. On a G5 workstation, we get about 2 Gflop/s perfor-
mance on FFTs of this length, so will need about 400 s to handle the 0.3 s of
data. Normal EISCAT UHF-radar phase-coded transmissions use code baud
lengths typically about 20 µs. For these modulations, we can safely relax the
range resolution in the detection phase somewhat, say by a factor of 10 (this
also still ensures sufficient Doppler coverage). But this still leaves us more
than two orders of magnitude short of real-time speed.

8 The fast match function algorithm

Here we present a fast though approximative way to evaluate MF in Eq. (44),
for the purpose of finding the maximum of MF, good for detection purposes. It
is sufficient to get a reasonable approximation near the MF maximum position.
We make use of two special properties of our measuring situation in EISCAT.

First, we note that the Doppler-velocity range that we need to monitor is much
narrower than the range that is actually available with the high sampling rate
fs of about 1 M sample per second. For the 930 MHz radar frequency (0.15 m
wavelength), our “bencmark” 2 MHz sampling gives unambiguous velocities in
the interval ±(fs/2)·(λ/2) = ±75 kms−1. Typically, for near-vertical pointing,
we seek to monitor velocity interval ±5 kms−1. Therefore, we can resample
(decimate) the to-be-Fourier-transformed vector in Eq. (44),

znxn−je
−iαn2

= wn , (46)

by a factor Mdec, 75/5 = 15 with 2 MHz sampling. This we do by forming
a new sequence w′

n by adding wn’s in blocks of Mdec. At the same time, we
make use of the fact that within such a block, the acceleration factor e−iαdn2

is
almost constant. We take it to be a constant, and take it out of the decimation
sum, to reduce both the number of multiplications, and the number of complex
exponentials that need to be computed.

Second, we make use of the fact that most of w is zeros. The transmission
duty cycle in EISCAT experiments is about 10% in the UHF and about 20%

of real data, may indicate that there are other factors that are causing the signal
model being non-ideal to begin with.
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at ESR. Therefore, about 80–90% of w is zeros, in regularly placed blocks.
Now we cut out the zero-blocks from w (w′), to form a vector w′′ that is
typically two orders of magnitude shorter than w. In our benchmark case, w′′

has length length (1/15) ·0.1 ·600, 000 = 4000. Finally, we compute FFT from
w′′, and use the result in the denominator of Eq. (44),

FMF(Rj, vk, a) =
|∑N−1

n=0 w′′
ne−i kn

N |
‖x‖

. (47)

This is the fast match function algorithm. Due to the much shorter FFT input
vector, in typical cases the FMF is 100–300 times faster than the standard MF.

That we gain speed by the FMF-algorithm is not in doubt. But what is the
price? Decimation, the first step in the algorithm, does not lose us much in-
formation. Basically, we are just backtracking from our initial oversampling.
We can backtrack at this stage, because the signal w has already been de-
modulated. Reception is multiplied by complex conjugate of transmission, so
the carriers cancel out. Very near the MF maximum, also a possible phase
modulation is cancelled out. So the sampling requirement of w is determined
by the size of the anticipated maximum Doppler-shit only.

We now inspect the second step. What effect does throwing away the zero-
blocks have to the Fourier transform? We consider the original w, ignoring
the decimation step. We are interested in the behaviour of the MF near its
the maximum. Thus, we will assume that correct range and acceleration have
already been found, and only a Doppler-term eiω0n in w still needs to be
cancelled (matched). We ignore noise, so we really are computing what we
might, for consistency of the nomenclature, call the “fast ambiguity function”,
FAF.

We assume that transmission consists of M pulses of length L samples each,
sent P samples apart. Then, near the maximum, w consists of M boxcar pulses
of, say, unit amplitude and L samples each, Doppler-shifted by the normalized
frequency ω0, with P −L zeros between each pair of pulses. The non-zero part
of w consists of m blocks, and in the m’th block, w has values

w(m)
n = eiω0(n+mP ), n = 0, . . . , L− 1. (48)

For computing FAF at velocity point v ↔ ω, instead of just at the FFT points,
the blocks {w(m)

n } are concatenated, and multiplied by e−iωn. The m’th block
gets multiplied by

u(m)
n = e−iω(n+mL), n = 0, . . . , L− 1 . (49)
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The contribution Im of the m’th block to the inner product in the nominator
of Eq. (47) is

Im =
L−1∑
n=0

w(m)
n · u(m)

n . (50)

The norm ‖x‖ in the denominator of Eq. (47) is sum of ML terms all equal
to unity, so we get from Eq. (47) and (50)–(48)

FAF(ω) =
1

ML

∣∣∣∣∣
M−1∑
m=0

Im

∣∣∣∣∣ (51)

=
1

ML

∣∣∣∣∣∑
m

∑
n

eiω0(n+mP )e−iω(n+mL)

∣∣∣∣∣ (52)

=
1

L

∣∣∣∣∣
L−1∑
n=0

ei(ω0−ω)n

∣∣∣∣∣ · 1

M

∣∣∣∣∣
M−1∑
m=0

ei(ω0P−ωL)m

∣∣∣∣∣ (53)

= diric(ω0 − ω,L) · diric(ω0P − ωL,M) , (54)

where the “Dirichlet kernel” is

diric(x, M) =

∣∣∣∣∣ sin xM/2

M sin x/2

∣∣∣∣∣ . (55)

The first factor in Eq. (54) encodes the Doppler-information available from
a single pulse. The function has absolute maximum at the target Doppler-
frequency ω0, and first zeros at ω± = ω0±2π/L. The second factor in Eq. (54)
results from pulse repetition. It has maxima, equal to unity, at the points

ωn =
P

L
ω0 + n

2π

L
. (56)

In general, none of the maxima ωn coincides with ω0. Therefore, the maximum
of FAF(ω) is not situated in the “correct” place ω0, even now when there is
no noise. This mean that (with noise), the estimated velocity would be said to
be “biased”. This is not serious. The bias is rather small, less than 0.2 kms−1

in our typical measurement modes. For some values of the target velocity, the
bias vanishes, and anyway, is deterministic and could be corrected for (modulo
a rather serious velocity ambiguity, ultimately deriving from the infamous
range-Doppler ambiguity).

What is more important for detection, is the loss of maximum signal ampli-
tude. The maximum value of the FAF occurs (very near) that ωn which is
nearest to ω0. Such an ωn, according to Eq. (56), is never further away from
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ω0 than half the spacing 2π/L between the ωn’s. Therefore, the FAF maximum
value, in the worst case, is roughly equal to diric(π/L, L) ≈ 2/π = 64%, of
the ideal value.

When we use FFT, and only evaluate FAF at a discrete set of points vk, the
worst-case maximum value can get worse by another factor of 0.6 due to the
“picket-fence” effect. On the other hand, we normally can observe a target for
several seconds, and during that time, its velocity, hence ω0, typically changes
so much that during some integration period, the FMF maximum gets nearer
to the ideal value. This partially explains why we in practice get almost the
same detection sensitivity when we use FMF as when we use the standard
MF. The main difference seems to be that detection with the FMF goes a few
hundred times faster.
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