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Preface to the first edition

The origin of this book was a sixteen-lecture course that each of us
has given over the last several years to final-year Oxford undergraduate
mathematicians; and its development owes much to the suggestions of
some of our colleagues that the subject matter could readily be taught
somewhat earlier as a companion course to one introducing the theory
of partial differential equations. On the other hand, we have used much
of the same material in teaching a one-year Master’s course on mathe-
matical modelling and numerical analysis. These two influences have
guided our choice of topics and the level and manner of presentation.

Thus we concentrate on finite difference methods and their application
to standard model problems. This allows the methods to be couched in
simple terms while at the same time treating such concepts as stability
and convergence with a reasonable degree of mathematical rigour. In a
more advanced text, or one with greater emphasis on the finite element
method, it would have been natural and convenient to use standard
Sobolev space norms. We have avoided this temptation and used only
discrete norms, specifically the maximum and the l2 norms. There are
several reasons for this decision. Firstly, of course, it is consistent with
an aim of demanding the minimum in prerequisites – of analysis, of PDE
theory, or of computing – so allowing the book to be used as a text in
an early undergraduate course and for teaching scientists and engineers
as well as mathematicians.

Equally importantly though, the decision fits in with our widespread
use of discrete maximum principles in analysing methods for elliptic and
parabolic problems, our treatment of discrete energy methods and con-
servation principles, and the study of discrete Fourier modes on finite
domains. We believe that treating all these ideas at a purely discrete
level helps to strengthen the student’s understanding of these important

viii



Preface to the first edition ix

mathematical tools. At the same time this is a very practical approach,
and it encourages the interpretation of difference schemes as direct mod-
els of physical principles and phenomena: all calculations are, after all,
carried out on a finite grid, and practical computations are checked for
stability, etc. at the discrete level. Moreover, interpreting a difference
scheme’s effect on the Fourier modes that can be represented on the
mesh, in terms of the damping and dispersion in one time step is often
of greater value than considering the truncation error, which exemplifies
the second justification of our approach.

However, the limiting process as a typical mesh parameter h tends to
zero is vital to a proper understanding of numerical methods for partial
differential equations. For example, if Un is a discrete approximation
at time level n and evolution through a time step ∆t is represented as
Un+1 = ChUn, many students find great difficulty in distinguishing the
limiting process when n → ∞ on a fixed mesh and with fixed ∆t, from
that in which n → ∞ with n∆t fixed and h, ∆t → 0. Both processes
are of great practical importance: the former is related to the many
iterative procedures that have been developed for solving the discrete
equations approximating steady state problems by using the analogy
of time stepping the unsteady problem; and understanding the latter is
crucial to avoiding instability when choosing methods for approximating
the unsteady problems themselves. The notions of uniform bounds and
uniform convergence lie at the heart of the matter; and, of course, it is
easier to deal with these by using norms which do not themselves depend
on h. However, as shown for example by Palencia and Sanz–Serna,1 a
rigorous theory can be based on the use of discrete norms and this lies
behind the approach we have adopted. It means that concepts such as
well-posedness have to be rather carefully defined; but we believe the
slight awkwardness entailed here is more than compensated for by the
practical and pedagogical advantages pointed out above.

The ordering of the topics is deliberate and reflects the above con-
cerns. We start with parabolic problems, which are both the simplest
to approximate and analyse and also of widest utility. Through the
addition of convection to the diffusion operator, this leads naturally to
the study of hyperbolic problems. It is only after both these cases have
been explored in some detail that, in Chapter 5, we present a careful
treatment of the concepts of consistency, convergence and stability for
evolutionary problems. The final two chapters are devoted respectively
1 Palencia, C. and Sanz–Serna, J. M. (1984), An extension of the Lax–Richtmyer

theory, Numer. Math. 44 (2), 279–283.
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to the discretisation of elliptic problems, with a brief introduction to
finite element methods, and to the iterative solution of the resulting
algebraic equations; with the strong relationship between the latter and
the solution of parabolic problems, the loop of linked topics is complete.
In all cases, we present only a small number of methods, each of which is
thoroughly analysed and whose practical utility we can attest to. Indeed,
we have taken as a theme for the book that all the model problems and
the methods used to approximate them are simple but generic.

Exercises of varying difficulty are given at the end of each chapter; they
complete, extend or merely illustrate the text. They are all analytical in
character, so the whole book could be used for a course which is purely
theoretical. However, numerical analysis has very practical objectives, so
there are many numerical illustrations of the methods given in the text;
and further numerical experiments can readily be generated for students
by following these examples. Computing facilities and practices develop
so rapidly that we believe this open-ended approach is preferable to
giving explicit practical exercises.

We have referred to the relevant literature in two ways. Where key
ideas are introduced in the text and they are associated with specific
original publications, full references are given in footnotes – as earlier in
this Preface. In addition, at the end of each chapter we have included a
brief section entitled ‘Bibliographic notes and recommended reading’ and
the accumulated references are given at the end of the book. Neither
of these sets of references is intended to be comprehensive, but they
should enable interested students to pursue further their studies of the
subject. We have, of course, been greatly guided and influenced by the
treatment of evolutionary problems in Richtmyer and Morton (1967); in
a sense the present book can be regarded as both introductory to and
complementary to that text.

We are grateful to several of our colleagues for reading and comment-
ing on early versions of the book (with Endre Süli’s remarks being par-
ticularly helpful) and to many of our students for checking the exercises.
The care and patience of our secretaries Jane Ellory and Joan Himpson
over the long period of the book’s development have above all made its
completion possible.



Preface to the second edition

In the ten years since the first edition of this book was published, the
numerical solution of PDEs has moved forward in many ways. But when
we sought views on the main changes that should be made for this second
edition, the general response was that we should not change the main
thrust of the book or make very substantial changes. We therefore aimed
to limit ourselves to adding no more than 10%–20% of new material and
removing rather little of the original text: in the event, the book has
increased by some 23%.

Finite difference methods remain the starting point for introducing
most people to the solution of PDEs, both theoretically and as a tool for
solving practical problems. So they still form the core of the book. But
of course finite element methods dominate the elliptic equation scene,
and finite volume methods are the preferred approach to the approxi-
mation of many hyperbolic problems. Moreover, the latter formulation
also forms a valuable bridge between the two main methodologies. Thus
we have introduced a new section on this topic in Chapter 4; and this
has also enabled us to reinterpret standard difference schemes such as
the Lax–Wendroff method and the box scheme in this way, and hence
for example show how they are simply extended to nonuniform meshes.
In addition, the finite element section in Chapter 6 has been followed by
a new section on convection–diffusion problems: this covers both finite
difference and finite element schemes and leads to the introduction of
Petrov–Galerkin methods.

The theoretical framework for finite difference methods has been well
established now for some time and has needed little revision. However,
over the last few years there has been greater interaction between meth-
ods to approximate ODEs and those for PDEs, and we have responded to
this stimulus in several ways. Firstly, the growing interest in applying

xi



xii Preface to the second edition

symplectic methods to Hamiltonian ODE systems, and extending the
approach to PDEs, has led to our including a section on this topic in
Chapter 4 and applying the ideas to the analysis of the staggered leap–
frog scheme used to approximate the system wave equation. More gen-
erally, the revived interest in the method of lines approach has prompted
a complete redraft of the section on the energy method of stability anal-
ysis in Chapter 5, with important improvements in overall coherence
as well as in the analysis of particular cases. In that chapter, too, is
a new section on modified equation analysis: this technique was intro-
duced thirty years ago, but improved interpretations of the approach for
such as the box scheme have encouraged a reassessment of its position;
moreover, it is again the case that its use for ODE approximations has
both led to a strengthening of its analysis and a wider appreciation of
its importance.

Much greater changes to our field have occurred in the practical appli-
cation of the methods we have described. And, as we continue to have
as our aim that the methods presented should properly represent and
introduce what is used in practice, we have tried to reflect these changes
in this new edition. In particular, there has been a huge improvement
in methods for the iterative solution of large systems of algebraic equa-
tions. This has led to a much greater use of implicit methods for time-
dependent problems, the widespread replacement of direct methods by
iterative methods in finite element modelling of elliptic problems, and a
closer interaction between the methods used for the two problem types.
The emphasis of Chapter 7 has therefore been changed and two major
sections added. These introduce the key topics of multigrid methods and
conjugate gradient methods, which have together been largely responsi-
ble for these changes in practical computations.

We gave serious consideration to the possibility of including a num-
ber of Matlab programs implementing and illustrating some of the key
methods. However, when we considered how very much more powerful
both personal computers and their software have become over the last
ten years, we realised that such material would soon be considered out-
moded and have therefore left this aspect of the book unchanged. We
have also dealt with references to the literature and bibliographic notes
in the same way as in the earlier edition: however, we have collected
both into the reference list at the end of the book.

Solutions to the exercises at the end of each chapter are available in the
form of LATEX files. Those involved in teaching courses in this area can
obtain copies, by email only, by applying to solutions@cambridge.org.
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We are grateful to all those readers who have informed us of errors in
the first edition. We hope we have corrected all of these and not intro-
duced too many new ones. Once again we are grateful to our colleagues
for reading and commenting on the new material.
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Introduction

Partial differential equations (PDEs) form the basis of very many math-
ematical models of physical, chemical and biological phenomena, and
more recently their use has spread into economics, financial forecast-
ing, image processing and other fields. To investigate the predictions
of PDE models of such phenomena it is often necessary to approximate
their solution numerically, commonly in combination with the analysis of
simple special cases; while in some of the recent instances the numerical
models play an almost independent role.

Let us consider the design of an aircraft wing as shown in Fig. 1.1,
though several other examples would have served our purpose equally
well – such as the prediction of the weather, the effectiveness of pollutant
dispersal, the design of a jet engine or an internal combustion engine,

(a) (b)

Fig. 1.1. (a) A typical (inviscid) computational mesh around
an aerofoil cross-section; (b) a corresponding mesh on a wing
surface.

1



2 Introduction

the safety of a nuclear reactor, the exploration for and exploitation of
oil, and so on.

In steady flight, two important design factors for a wing are the lift
generated and the drag that is felt as a result of the flow of air past
the wing. In calculating these quantities for a proposed design we know
from boundary layer theory that, to a good approximation, there is
a thin boundary layer near the wing surface where viscous forces are
important and that outside this an inviscid flow can be assumed. Thus
near the wing, which we will assume is locally flat, we can model the
flow by

u
∂u

∂x
− ν

∂2u

∂y2 = (1/ρ)
∂p

∂x
, (1.1)

where u is the flow velocity in the direction of the tangential co-ordinate
x, y is the normal co-ordinate, ν is the viscosity, ρ is the density and
p the pressure; we have here neglected the normal velocity. This is a
typical parabolic equation for u with (1/ρ)∂p/∂x treated as a forcing
term.

Away from the wing, considered just as a two-dimensional cross-
section, we can suppose the flow velocity to be inviscid and of the form
(u∞ + u, v) where u and v are small compared with the flow speed at
infinity, u∞ in the x-direction. One can often assume that the flow is
irrotational so that we have

∂v

∂x
− ∂u

∂y
= 0; (1.2a)

then combining the conservation laws for mass and the x-component
of momentum, and retaining only first order quantities while assuming
homentropic flow, we can deduce the simple model

(1 − M2
∞)

∂u

∂x
+

∂v

∂y
= 0 (1.2b)

where M∞ is the Mach number at infinity, M∞ = u∞/a∞, and a∞ is
the sound speed.

Clearly when the flow is subsonic so that M∞ < 1, the pair of equa-
tions (1.2a, b) are equivalent to the Cauchy–Riemann equations and the
system is elliptic. On the other hand for supersonic flow where M∞ > 1,
the system is equivalent to the one-dimensional wave equation and the
system is hyperbolic. Alternatively, if we operate on (1.2b) by ∂/∂x

and eliminate v by operating on (1.2a) by ∂/∂y, we either obtain an
equivalent to Laplace’s equation or the second order wave equation.
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Thus from this one situation we have extracted the three basic types
of partial differential equation: we could equally well have done so from
the other problem examples mentioned at the beginning. We know from
PDE theory that the analysis of these three types, what constitutes a
well-posed problem, what boundary conditions should be imposed and
the nature of possible solutions, all differ very markedly. This is also
true of their numerical solution and analysis.

In this book we shall concentrate on model problems of these three
types because their understanding is fundamental to that of many more
complicated systems. We shall consider methods, mainly finite differ-
ence methods and closely related finite volume methods, which can be
used for more practical, complicated problems, but can only be ana-
lysed as thoroughly as is necessary in simpler situations. In this way we
will be able to develop a rigorous analytical theory of such phenomena
as stability and convergence when finite difference meshes are refined.
Similarly, we can study in detail the speed of convergence of iterative
methods for solving the systems of algebraic equations generated by dif-
ference methods. And the results will be broadly applicable to practical
situations where precise analysis is not possible.

Although our emphasis will be on these separate equation types, we
must emphasise that in many practical situations they occur together,
in a system of equations. An example, which arises in very many appli-
cations, is the Euler–Poisson system: in two space dimensions and time
t, they involve the two components of velocity and the pressure already
introduced; then, using the more compact notation ∂t for ∂/∂t etc., they
take the form

∂tu + u∂xu + v∂yu + ∂xp = 0

∂tv + u∂xv + v∂yv + ∂yp = 0

∂2
xp + ∂2

yp = 0. (1.3)

Solving this system requires the combination of two very different tech-
niques: for the final elliptic equation for p one needs to use the techniques
described in Chapters 6 and 7 to solve a large system of simultaneous
algebraic equations; then its solution provides the driving force for the
first two hyperbolic equations, which can generally be solved by march-
ing forward in time using techniques described in Chapters 2 to 5. Such
a model typically arises when flow speeds are much lower than in aero-
dynamics, such as flow in a porous medium, like groundwater flow. The
two procedures need to be closely integrated to be effective and efficient.
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(a) (b)

Fig. 1.2. A typical multi-aerofoil: (a) a general view; (b) a
detail of the mesh that might be needed for a Navier–Stokes
calculation. (Courtesy of DRA, Farnborough.)

Returning to our wing design example, however, it will be as well to
mention some of the practical complications that may arise. For a civil
aircraft most consideration can be given to its behaviour in steady flight
at its design speed; but, especially for a military aircraft, manoeuvrability
is important, which means that the flow will be unsteady and the equa-
tions time-dependent. Then, even for subsonic flow, the equations corre-
sponding to (1.2a, b) will be hyperbolic (in one time and two space vari-
ables), similar to but more complicated than the Euler–Poisson system
(1.3). Greater geometric complexity must also be taken into account:
the three-dimensional form of the wing must be taken into consideration
particularly for the flow near the tip and the junction with the aircraft
body; and at landing and take-off, the flaps are extended to give greater
lift at the slower speeds, so in cross-section it may appear as in Fig. 1.2.

In addition, rather than the smooth flow regimes which we have so
far implicitly assumed, one needs in practice to study such phenom-
ena as shocks, vortex sheets, turbulent wakes and their interactions.
Developments of the methods we shall study are used to model all
these situations but such topics are well beyond the scope of this book.
Present capabilities within the industry include the solution of approxi-
mations to the Reynolds-averaged Navier–Stokes equations for unsteady
viscous flow around a complete aircraft, such as that shown in Fig. 1.3.
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6 Introduction

Moreover, the ultimate objective is to integrate these flow prediction
capabilities into the complete design cycle – rather than calculating the
flow around a given aircraft shape, one would like to design the shape
to obtain a given flow.

Finally, to end this introductory chapter there are a few points of
notation to draw to the reader’s attention. We use the notation ≈ to
mean ‘approximately equal to’, usually in a numerical sense. On the
other hand, the notation ∼ has the precise meaning ‘is asymptotic to’ in
the sense that f(t) ∼ t2 as t → 0 means that t−2[f(t)− t2] → 0 as t → 0.
The notation f(t) = t2 + o(t2) has the same meaning; and the notation
f(t) = O(t2) means that t−2f(t) is bounded as t → 0. We have often
used the notation := to mean that the quantity on the left is defined by
that on the right. We shall usually use bold face to denote vectors.



2

Parabolic equations in one space variable

2.1 Introduction

In this chapter we shall be concerned with the numerical solution of
parabolic equations in one space variable and the time variable t. We
begin with the simplest model problem, for heat conduction in a uni-
form medium. For this model problem an explicit difference method is
very straightforward in use, and the analysis of its error is easily accom-
plished by the use of a maximum principle, or by Fourier analysis. As
we shall show, however, the numerical solution becomes unstable unless
the time step is severely restricted, so we shall go on to consider other,
more elaborate, numerical methods which can avoid such a restriction.
The additional complication in the numerical calculation is more than
offset by the smaller number of time steps needed. We then extend the
methods to problems with more general boundary conditions, then to
more general linear parabolic equations. Finally we shall discuss the
more difficult problem of the solution of nonlinear equations.

2.2 A model problem

Many problems in science and engineering are modelled by special cases
of the linear parabolic equation for the unknown u(x, t)

∂u

∂t
=

∂

∂x

(
b(x, t)

∂u

∂x

)
+ c(x, t)u + d(x, t) (2.1)

where b is strictly positive. An initial condition will be needed; if this is
given at t = 0 it will take the form

u(x, 0) = u0(x) (2.2)

7



8 Parabolic equations in one space variable

where u0(x) is a given function. The solution of the problem will be
required to satisfy (2.1) for t > 0 and x in an open region R which will
be typically either the whole real line, the half-line x > 0, or an interval
such as (0, 1). In the two latter cases we require the solution to be
defined on the closure of R and to satisfy certain boundary conditions;
we shall assume that these also are linear, and may involve u or its first
space derivative ∂u/∂x, or both. If x = 0 is a left-hand boundary, the
boundary condition will be of the form

α0(t)u + α1(t)
∂u

∂x
= α2(t) (2.3)

where

α0 ≥ 0, α1 ≤ 0 and α0 − α1 > 0. (2.4)

If x = 1 is a right-hand boundary we shall need a condition of the form

β0(t)u + β1(t)
∂u

∂x
= β2(t) (2.5)

where

β0 ≥ 0, β1 ≥ 0 and β0 + β1 > 0. (2.6)

The reason for the conditions on the coefficients α and β will become
apparent later. Note the change of sign between α1 and β1, reflecting
the fact that at the right-hand boundary ∂/∂x is an outward normal
derivative, while in (2.3) it was an inward derivative.

We shall begin by considering a simple model problem, the equation
for which models the flow of heat in a homogeneous unchanging medium,
of finite extent, with no heat source. We suppose that we are given
homogeneous Dirichlet boundary conditions, i.e., the solution is given to
be zero at each end of the range, for all values of t. After changing to
dimensionless variables this problem becomes: find u(x, t) defined for
x ∈ [0, 1] and t ≥ 0 such that

ut = uxx for t > 0, 0 < x < 1, (2.7)

u(0, t) = u(1, t) = 0 for t > 0, (2.8)

u(x, 0) = u0(x), for 0 ≤ x ≤ 1. (2.9)

Here we have introduced the common subscript notation to denote par-
tial derivatives.



2.3 Series approximation 9

2.3 Series approximation

This differential equation has special solutions which can be found by the
method of separation of variables. The method is rather restricted in its
application, unlike the finite difference methods which will be our main
concern. However, it gives useful solutions for comparison purposes, and
leads to a natural analysis of the stability of finite difference methods
by the use of Fourier analysis.

We look for a solution of the special form u(x, t) = f(x)g(t); substi-
tuting into the differential equation we obtain

fg′ = f ′′g,
i.e.,

g′/g = f ′′/f. (2.10)

In this last equation the left-hand side is independent of x, and the
right-hand side is independent of t, so that both sides must be constant.
Writing this constant as −k2, we immediately solve two simple equations
for the functions f and g, leading to the solution

u(x, t) = e−k2t sin kx.

This shows the reason for the choice of −k2 for the constant; if we
had chosen a positive value here, the solution would have involved an
exponentially increasing function of t, whereas the solution of our model
problem is known to be bounded for all positive values of t. For all values
of the number k this is a solution of the differential equation; if we now
restrict k to take the values k = mπ, where m is a positive integer,
the solution vanishes at x = 1 as well as at x = 0. Hence any linear
combination of such solutions will satisfy the differential equation and
the two boundary conditions. This linear combination can be written

u(x, t) =
∞∑

m=1

ame−(mπ)2t sin mπx. (2.11)

We must now choose the coefficients am in this linear combination in
order to satisfy the given initial condition. Writing t = 0 we obtain

∞∑
m=1

am sin mπx = u0(x). (2.12)

This shows at once that the am are just the coefficients in the Fourier sine
series expansion of the given function u0(x), and are therefore given by

am = 2
∫ 1

0
u0(x) sin mπxdx. (2.13)
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This final result may be regarded as an exact analytic solution of the
problem, but it is much more like a numerical approximation, for two
reasons. If we require the value of u(x, t) for specific values of x and t,
we must first determine the Fourier coefficients am; these can be found
exactly only for specially simple functions u0(x), and more generally
would require some form of numerical integration. And secondly we
can only sum a finite number of terms of the infinite series. For the
model problem, however, it is a very efficient method; for even quite
small values of t a few terms of the series will be quite sufficient, as the
series converges extremely rapidly. The real limitation of the method
in this form is that it does not easily generalise to even slightly more
complicated differential equations.

2.4 An explicit scheme for the model problem

To approximate the model equation (2.7) by finite differences we divide
the closed domain R̄×[0, tF ] by a set of lines parallel to the x- and t-axes
to form a grid or mesh. We shall assume, for simplicity only, that the
sets of lines are equally spaced, and from now on we shall assume that
R̄ is the interval [0, 1]. Note that in practice we have to work in a finite
time interval [0, tF ], but tF can be as large as we like.

We shall write ∆x and ∆t for the line spacings. The crossing points

(xj = j∆x, tn = n∆t), j = 0, 1, . . . , J, n = 0, 1, . . . , (2.14)

where

∆x = 1/J, (2.15)

are called the grid points or mesh points. We seek approximations of
the solution at these mesh points; these approximate values will be
denoted by

Un
j ≈ u(xj , tn). (2.16)

We shall approximate the derivatives in (2.7) by finite differences and
then solve the resulting difference equations in an evolutionary manner
starting from n = 0.

We shall often use notation like Un
j ; there should be no confusion with

other expressions which may look similar, such as λn which, of course,
denotes the nth power of λ. If there is likely to be any ambiguity we
shall sometimes write such a power in the form (λj)n.
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n

t

n + 1

j x

Fig. 2.1. An explicit scheme.

For the model problem the simplest difference scheme based at the
mesh point (xj , tn) uses a forward difference for the time derivative; this
gives

v(xj , tn+1) − v(xj , tn)
∆t

≈ ∂v

∂t
(xj , tn) (2.17)

for any function v with a continuous t-derivative. The scheme uses a
centred second difference for the second order space derivative:

v(xj+1, tn) − 2v(xj , tn) + v(xj−1, tn)
(∆x)2

≈ ∂2v

∂x2 (xj , tn). (2.18)

The approximation generated by equating the left-hand sides of (2.17)
and (2.18) thus satisfies

Un+1
j = Un

j + µ(Un
j+1 − 2Un

j + Un
j−1) (2.19)

where

µ :=
∆t

(∆x)2
. (2.20)

The pattern of grid points involved in (2.19) is shown in Fig. 2.1; clearly
each value at time level tn+1 can be independently calculated from values
at time level tn; for this reason this is called an explicit difference scheme.
From the initial and boundary values

U0
j = u0(xj), j = 1, 2, . . . , J − 1, (2.21)

Un
0 = Un

J = 0, n = 0, 1, 2, . . . , (2.22)
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we can calculate all the interior values for successive values of n. We
shall assume for the moment that the initial and boundary data are
consistent at the two corners; this means that

u0(0) = u0(1) = 0 (2.23)

so that the solution does not have a discontinuity at the corners of the
domain.

However, if we carry out a calculation using (2.19), (2.21) and (2.22)
we soon discover that the numerical results depend critically on the
value of µ, which relates the sizes of the time step and the space step.
In Fig. 2.2 we show results corresponding to initial data in the form of
a ‘hat function’,

u0(x) =
{

2x if 0 ≤ x ≤ 1
2 ,

2 − 2x if 1
2 ≤ x ≤ 1.

(2.24)

Two sets of results are displayed; both use J = 20, ∆x = 0.05. The
first set uses ∆t = 0.0012, and the second uses ∆t = 0.0013. The former
clearly gives quite an accurate result, while the latter exhibits oscillations
which grow rapidly with increasing values of t. This is a typical example
of stability or instability depending on the value of the mesh ratio µ. The
difference between the behaviour of the two numerical solutions is quite
striking; these solutions use time steps which are very nearly equal, but
different enough to give quite different forms of numerical solution.

We shall now analyse this behaviour, and obtain bounds on the error,
in a more formal way. First we introduce some notation and definitions.

2.5 Difference notation and truncation error

We define finite differences in the same way in the two variables t and
x; there are three kinds of finite differences:

forward differences

∆+tv(x, t) := v(x, t + ∆t) − v(x, t), (2.25a)

∆+xv(x, t) := v(x + ∆x, t) − v(x, t); (2.25b)

backward differences

∆−tv(x, t) := v(x, t) − v(x, t − ∆t), (2.26a)

∆−xv(x, t) := v(x, t) − v(x − ∆x, t); (2.26b)
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After 50 time steps

After 25 time steps

After 1 time step

U

x

At t = 0

∆t = 0.0012 ∆t = 0.0013

Fig. 2.2. Results obtained for the data of (2.24) with the
explicit method; J = 20, ∆x = 0.05. The exact solution is
shown by the full curved line.

central differences

δtv(x, t) := v(x, t + 1
2∆t) − v(x, t − 1

2∆t), (2.27a)

δxv(x, t) := v(x + 1
2∆x, t) − v(x − 1

2∆x, t). (2.27b)

When the central difference operator is applied twice we obtain the very
useful second order central difference

δ2
xv(x, t) := v(x + ∆x, t) − 2v(x, t) + v(x − ∆x, t). (2.28)
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For first differences it is often convenient to use the double interval
central difference

∆0xv(x, t) := 1
2 (∆+x + ∆−x)v(x, t)

= 1
2 [v(x + ∆x, t) − v(x − ∆x, t)].

A Taylor series expansion of the forward difference in t gives for the
solution of (2.7)

∆+tu(x, t) = u(x, t + ∆t) − u(x, t)

= ut∆t + 1
2utt(∆t)2 + 1

6uttt(∆t)3 + · · · . (2.29)

By adding together the Taylor series expansions in the x variable for
∆+xu and ∆−xu, we see that all the odd powers of ∆x cancel, giving

δ2
x u(x, t) = uxx(∆x)2 + 1

12uxxxx(∆x)4 + · · · . (2.30)

We can now define the truncation error of the scheme (2.19). We first
multiply the difference equation throughout by a factor, if necessary, so
that each term is an approximation to the corresponding derivative in
the differential equation. Here this step is unnecessary, provided that
we use the form

Un+1
j − Un

j

∆t
=

Un
j+1 − 2Un

j + Un
j−1

(∆x)2
(2.31)

rather than (2.19). The truncation error is then the difference between
the two sides of the equation, when the approximation Un

j is replaced
throughout by the exact solution u(xj , tn) of the differential equation.
Indeed, at any point away from the boundary we can define the

truncation error T (x, t)

T (x, t) :=
∆+tu(x, t)

∆t
− δ2

xu(x, t)
(∆x)2

(2.32)

so that

T (x, t) = (ut − uxx) +
( 1

2utt∆t − 1
12uxxxx(∆x)2

)
+ · · ·

= 1
2utt∆t − 1

12uxxxx(∆x)2 + · · · (2.33)

where these leading terms are called the principal part of the trunca-
tion error, and we have used the fact that u satisfies the differential
equation.



2.5 Difference notation and truncation error 15

We have used Taylor series expansions to express the truncation error
as an infinite series. It is often convenient to truncate the infinite Taylor
series, introducing a remainder term; for example

u(x, t + ∆t) = u(x, t) + ut∆t + 1
2utt(∆t)2 + 1

6uttt(∆t)3 + · · ·
= u(x, t) + ut∆t + 1

2utt(x, η)(∆t)2, (2.34)

where η lies somewhere between t and t + ∆t. If we do the same thing
for the x expansion the truncation error becomes

T (x, t) = 1
2utt(x, η)∆t − 1

12uxxxx(ξ, t)(∆x)2 (2.35)

where ξ ∈ (x − ∆x, x + ∆x), from which it follows that

|T (x, t)| ≤ 1
2Mtt∆t + 1

12Mxxxx(∆x)2 (2.36)

= 1
2∆t

[
Mtt + 1

6µMxxxx

]
, (2.37)

where Mtt is a bound for |utt| and Mxxxx is a bound for |uxxxx|. It is
now clear why we assumed that the initial and boundary data for u were
consistent, and why it is helpful if we can also assume that the initial
data are sufficiently smooth. For then we can assume that the bounds
Mtt and Mxxxx hold uniformly over the closed domain [0, 1] × [0, tF ].
Otherwise we must rely on the smoothing effect of the diffusion operator
to ensure that for any τ > 0 we can find bounds of this form which hold
for the domain [0, 1] × [τ, tF ]. This sort of difficulty can easily arise in
problems which look quite straightforward. For example, suppose the
boundary conditions specify that u must vanish on the boundaries x = 0
and x = 1, and that u must take the value 1 on the initial line, where
t = 0. Then the solution u(x, t) is obviously discontinuous at the corners,
and in the full domain defined by 0 < x < 1, t > 0 all its derivatives are
unbounded, so our bound for the truncation error is useless over the full
domain. We shall see later how this problem can be treated by Fourier
analysis.

For the problem of Fig. 2.2 we see that

T (x, t) → 0 as ∆x, ∆t → 0 ∀(x, t) ∈ (0, 1) × [τ, tF ),

independently of any relation between the two mesh sizes. We say that
the scheme is unconditionally consistent with the differential equation.
For a fixed ratio µ we also see from (2.37) that |T | will behave asymp-
totically like O(∆t) as ∆t → 0: except for special values of µ this will
be the highest power of ∆t for which such a statement could be made,
so that the scheme is said to have first order accuracy.
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However, it is worth noting here that, since u satisfies ut = uxx every-
where, we also have utt = uxxxx and hence

T (x, t) = 1
2

(
1 − 1

6µ

)
uxxxx∆t + O

(
(∆t)2

)
.

Thus for µ = 1
6 the scheme is second order accurate. This however is a

rather special case. Not only does it apply just for this particular choice
of µ, but also for more general equations with variable coefficients it
cannot hold. For example, in the solution of the equation ut = b(x, t)uxx

it would require choosing a different time step ∆t at each point.

2.6 Convergence of the explicit scheme

Now suppose that we carry out a sequence of calculations using the same
initial data, and the same value of µ = ∆t/(∆x)2, but with successive
refinement of the two meshes, so that ∆t → 0 and ∆x → 0. Then we say
that the scheme is convergent if, for any fixed point (x∗, t∗) in a given
domain (0, 1) × (τ, tF ),

xj → x∗, tn → t∗ implies Un
j → u(x∗, t∗). (2.38)

We shall prove that the explicit scheme for our problem is convergent if
µ ≤ 1

2 .
We need consider only points (x∗, t∗) which coincide with mesh points

for sufficiently refined meshes; for convergence at all other points will
follow from the continuity of u(x, t). We also suppose that we can intro-
duce an upper bound T̄ = T̄ (∆x,∆t) for the truncation error, which
holds for all mesh points on a given mesh, and use the notation Tn

j for
T (xj , tn):

|Tn
j | ≤ T̄ . (2.39)

We denote by e the error U − u in the approximation; more precisely

en
j := Un

j − u(xj , tn). (2.40)

Now Un
j satisfies the equation (2.19) exactly, while u(xj , tn) leaves the

remainder Tn
j ∆t; this follows immediately from the definition of Tn

j .
Hence by subtraction we obtain

en+1
j = en

j + µδ2
xen

j − Tn
j ∆t (2.41)

which is in detail

en+1
j = (1 − 2µ)en

j + µen
j+1 + µen

j−1 − Tn
j ∆t. (2.42)
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The important point for the proof is that if µ ≤ 1
2 the coefficients of the

three terms en on the right of this equation are all positive, and add up
to unity. If we introduce the maximum error at a time step by writing

En := max{|en
j |, j = 0, 1, . . . , J}, (2.43)

the fact that the coefficients are positive means that we can omit the
modulus signs in the triangle inequality to give∣∣en+1

j

∣∣ ≤ (1 − 2µ)En + µEn + µEn + |Tn
j |∆t

≤ En + T̄∆t. (2.44)

Since this inequality holds for all values of j from 1 to J − 1, we have

En+1 ≤ En + T̄∆t. (2.45)

Suppose for the moment that the bound (2.39) holds on the finite interval
[0, tF ]; and since we are using the given initial values for Un

j we know that
E0 = 0. A very simple induction argument then shows that En ≤ nT̄∆t.
Hence we obtain from (2.37)

En ≤ 1
2∆t

[
Mtt + 1

6µMxxxx

]
tF

→ 0 as ∆t → 0. (2.46)

In our model problem, if it is useful we can write Mtt = Mxxxx.
We can now state this convergence property in slightly more gen-

eral terms. In order to define convergence of a difference scheme which
involves two mesh sizes ∆t and ∆x we need to be clear about what
relationship we assume between them as they both tend to zero. We
therefore introduce the concept of a refinement path. A refinement path
is a sequence of pairs of mesh sizes, ∆x and ∆t, each of which tends to
zero:

refinement path := {((∆x)i, (∆t)i), i = 0, 1, 2, . . . ; (∆x)i, (∆t)i → 0} .

(2.47)
We can then specify particular refinement paths by requiring, for exam-
ple, that (∆t)i is proportional to (∆x)i, or to (∆x)2i . Here we just
define

µi =
(∆t)i

(∆x)2i
(2.48)

and merely require that µi ≤ 1
2 . Some examples are shown in Fig. 2.3.
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∆x

∆t

Fig. 2.3. Refinement paths; shown as full lines for constant
∆t/(∆x)2 and as dashed lines for constant ∆t/∆x.

Theorem 2.1 If a refinement path satisfies µi ≤ 1
2 for all sufficiently

large values of i, and the positive numbers ni, ji are such that

ni(∆t)i → t > 0, ji(∆x)i → x ∈ [0, 1],

and if |uxxxx| ≤ Mxxxx uniformly in [0, 1] × [0, tF ], then the approxi-
mations Uni

ji
generated by the explicit difference scheme (2.19) for i =

0, 1, 2 . . . converge to the solution u(x, t) of the differential equation,
uniformly in the region.

Such a convergence theorem is the least that one can expect of a numer-
ical scheme; it shows that arbitrarily high accuracy can be attained by
use of a sufficiently fine mesh. Of course, it is also somewhat imprac-
tical. As the mesh becomes finer, more and more steps of calculation
are required, and the effect of rounding errors in the calculation would
become significant and would eventually completely swamp the trunca-
tion error.

As an example with smoother properties than is given by the data of
(2.24), consider the solution of the heat equation with

u(x, 0) = x(1 − x), (2.49a)

u(0, t) = u(1, t) = 0, (2.49b)

on the region [0, 1] × [0, 1]. Errors obtained with the explicit method
are shown in Fig. 2.4. This shows a graph of log10 En against tn, where
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Fig. 2.4. Error decay for the explicit method applied to the
heat equation with initial condition u(x, 0) = x(1 − x). The
top curve is for ∆x = 0.1, µ = 0.5, and the bottom curve is
for ∆x = 0.05, µ = 0.5.

En is given by (2.43). Two curves are shown; one uses J = 10, ∆x = 0.1,
and the other uses J = 20, ∆x = 0.05. Both have µ = 1

2 , which is the
largest value consistent with stability. The two curves show clearly how
the error behaves as the grid size is reduced: they are very similar in
shape, and for each value of tn the ratio of the two values of En is close
to 4, the ratio of the values of ∆t = 1

2 (∆x)2. Notice also that after some
early variation the error tends to zero as t increases; our error bound
in (2.45) is pessimistic, as it continues to increase with t. The early
variation in the error results from the lack of smoothness in the corners
of the domain already referred to. We will discuss this in more detail in
the next section and in Section 2.10.

2.7 Fourier analysis of the error

We have already expressed the exact solution of the differential equation
as a Fourier series; this expression is based on the observation that a
particular set of Fourier modes are exact solutions. We can now easily
show that a similar Fourier mode is an exact solution of the difference
equations. Suppose we substitute

Un
j = (λ)neik(j∆x) (2.50)
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into the difference equation (2.19), putting Un+1
j = λUn

j and similarly
for the other terms. We can then divide by Un

j and see that this Fourier
mode is a solution for all values of n and j provided that

λ ≡ λ(k) = 1 + µ
(
eik∆x − 2 + e−ik∆x

)
= 1 − 2µ(1 − cos k∆x)

= 1 − 4µ sin2 1
2k∆x; (2.51)

λ(k) is called the amplification factor for the mode. By taking k = mπ

as in (2.11), we can therefore write our numerical approximation in the
form

Un
j =

∞∑
−∞

Ameimπ(j∆x) [λ(mπ)]n . (2.52)

The low frequency terms in this expansion give a good approximation to
the exact solution of the differential equation, given by (2.11), because
the series expansions for λ(k) and exp(−k2∆t) match reasonably well:

exp(−k2∆t) = 1 − k2∆t + 1
2k4(∆t)2 − · · · ,

λ(k) = 1 − 2µ
[ 1
2 (k∆x)2 − 1

24 (k∆x)4 + · · ·
]

= 1 − k2∆t + 1
12k4∆t(∆x)2 − · · · . (2.53)

Indeed these expansions provide an alternative means of investigating
the truncation error of our scheme. It is easy to see that we will have at
least first order accuracy, but when (∆x)2 = 6∆t we shall have second
order accuracy. In fact it is quite easy to show that there exists a
constant C(µ) depending only on the value of µ such that

|λ(k) − e−k2∆t| ≤ C(µ)k4(∆t)2 ∀k,∆t > 0. (2.54)

Theorem 2.1 establishes convergence and an error bound under the
restriction µ ≤ 1

2 , but it does not show what happens if this condition
is not satisfied. Our analysis of the Fourier modes shows what happens
to the high frequency components in this case. For large values of k the
modes in the exact solution are rapidly damped by the exponential term
exp(−k2t). But in the numerical solution the damping factor |λ(k)| will
become greater than unity for large values of k if µ > 1

2 ; in particular
this will happen when k∆x = π, for then λ(k) = 1 − 4µ. These Fourier
modes will then grow unboundedly as n increases. It is possible in
principle to choose the initial conditions so that these Fourier modes do
not appear in the solution. But this would be a very special problem,
and in practice the effect of rounding errors would be to introduce small
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components of all the modes, some of which would then grow without
bound. For the present model problem we shall say that a method is
stable if there exists a constant K, independent of k, such that

|[λ(k)]n| ≤ K, for n∆t ≤ tF , ∀k. (2.55)

Essentially, stability has to do with the bounded growth in a finite time
of the difference between two solutions of the difference equations, uni-
formly in the mesh size; we shall formulate a general definition of stabil-
ity in a later chapter. Evidently, for stability we require the condition,
due to von Neumann,

|λ(k)| ≤ 1 + K ′∆t (2.56)

to hold for all k. We shall find that such a stability condition is neces-
sary and sufficient for the convergence of a consistent difference scheme
approximating a single differential equation. Thus for the present model
problem the method is unstable when µ > 1

2 and stable when µ ≤ 1
2 .

We have used a representation for Un
j as the infinite Fourier series

(2.52), since it is easily comparable with the exact solution. However
on the discrete mesh there are only a finite number of distinct modes;
modes with wave numbers k1 and k2 are indistinguishable if (k1 −k2)∆x

is a multiple of 2π. It may therefore be more convenient to expand Un
j

as a linear combination of the distinct modes corresponding to

k = mπ, m = −(J − 1),−(J − 2), . . . ,−1, 0, 1, . . . , J. (2.57)

The highest mode which can be carried by the mesh has k = Jπ, or
k∆x = π; this mode has the values ±1 at alternate points on the mesh.
We see from (2.51) that it is also the most unstable mode for this dif-
ference scheme, as it often is for many difference schemes, and has the
amplification factor λ(Jπ) = 1 − 4µ. It is the fastest growing mode
when µ > 1

2 , which is why it eventually dominates the solutions shown
in Fig. 2.2.

We can also use this Fourier analysis to extend the convergence the-
orem to the case where the initial data u0(x) are continuous on [0, 1],
but may not be smooth, in particular at the corners. We no longer
have to assume that the solution has sufficient bounded derivatives that
uxxxx and utt are uniformly bounded on the region considered. Instead
we just assume that the Fourier series expansion of u0(x) is absolutely
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convergent. We suppose that µ is fixed, and that µ ≤ 1
2 . Consider the

error, as before,

en
j = Un

j − u(xj , tn)

=
∞∑

−∞
Ameimπj∆x

{
[λ(mπ)]n − e−m2π2n∆t

}
, (2.58)

where we have also used the full Fourier series for u(x, t) instead of the
sine series as in the particular case of (2.11); this will allow treatment
other than of the simple boundary conditions of (2.8). We now split this
infinite sum into two parts. Given an arbitrary positive ε, we choose m0

such that ∑
|m|>m0

|Am| ≤ 1
4ε. (2.59)

We know that this is possible, because of the absolute convergence of
the series. If both |λ1| ≤ 1 and |λ2| ≤ 1, then

|(λ1)n − (λ2)n| ≤ n|λ1 − λ2|; (2.60)

so from (2.54) we have

|en
j | ≤ 1

2ε +
∑

|m|≤m0

|Am|
∣∣∣[λ(mπ)]n − e−m2π2n∆t

∣∣∣
≤ 1

2ε +
∑

|m|≤m0

|Am|nC(µ)
(
m2π2∆t

)2
. (2.61)

We can thus deduce that

|en
j | ≤ 1

2ε + tF C(µ)π4


 ∑

|m|≤m0

|Am|m4


 ∆t (2.62)

and by taking ∆t sufficiently small we can obtain |en
j | ≤ ε for all (xj , tn)

in [0, 1] × [0, tF ]. Note how the sum involving Amm4 plays much the
same role as the bound on uxxxx in the earlier analysis, but by making
more precise use of the stability properties of the scheme we do not
require that this sum is convergent.

2.8 An implicit method

The stability limit ∆t ≤ 1
2 (∆x)2 is a very severe restriction, and implies

that very many time steps will be necessary to follow the solution over
a reasonably large time interval. Moreover, if we need to reduce ∆x
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Fig. 2.5. The fully implicit scheme.

to improve the accuracy of the solution the amount of work involved
increases very rapidly, since we shall also have to reduce ∆t. We shall
now show how the use of a backward time difference gives a difference
scheme which avoids this restriction, but at the cost of a slightly more
sophisticated calculation.

If we replace the forward time difference by the backward time differ-
ence, the space difference remaining the same, we obtain the scheme

Un+1
j − Un

j

∆t
=

Un+1
j+1 − 2Un+1

j + Un+1
j−1

(∆x)2
(2.63)

instead of (2.31). This may be written using the difference notation
given in Section 2.5 as

∆−tU
n+1
j = µδ2

xUn+1
j ,

where µ = ∆t/(∆x)2, and has the stencil shown in Fig. 2.5.
This is an example of an implicit scheme, which is not so easy to

use as the explicit scheme described earlier. The scheme (2.63) involves
three unknown values of U on the new time level n + 1; we cannot
immediately calculate the value of Un+1

j since the equation involves the
two neighbouring values Un+1

j+1 and Un+1
j−1 , which are also unknown. We

must now write the equation in the form

−µUn+1
j−1 + (1 + 2µ)Un+1

j − µUn+1
j+1 = Un

j . (2.64)

Giving j the values 1, 2, . . . , (J − 1) we thus obtain a system of J − 1
linear equations in the J −1 unknowns Un+1

j , j = 1, 2, . . . , J −1. Instead
of calculating each of these unknowns by a separate trivial formula, we
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must now solve this system of equations to give the values simultane-
ously. Note that in the first and last of these equations, corresponding
to j = 1 and j = J − 1, we incorporate the known values of Un+1

0 and
Un+1

J given by the boundary conditions.

2.9 The Thomas algorithm

The system of equations to be solved is tridiagonal:equation number j

in the system only involves unknowns with numbers j − 1, j and j + 1,
so that the matrix of the system has non-zero elements only on the
diagonal and in the positions immediately to the left and to the right of
the diagonal. We shall meet such systems again, and it is useful here to
consider a more general system of the form

−ajUj−1 + bjUj − cjUj+1 = dj , j = 1, 2, . . . , J − 1, (2.65)

with

U0 = 0, UJ = 0. (2.66)

Here we have written the unknowns Uj , omitting the superscript for the
moment. The coefficients aj , bj and cj , and the right-hand side dj , are
given, and we assume that they satisfy the conditions

aj > 0, bj > 0, cj > 0, (2.67)

bj > aj + cj . (2.68)

Though stronger than necessary, these conditions ensure that the matrix
is diagonally dominant, with the diagonal element in each row being at
least as large as the sum of the absolute values of the other elements. It is
easy to see that these conditions are satisfied by our difference equation
system.

The Thomas algorithm operates by reducing the system of equations
to upper triangular form, by eliminating the term in Uj−1 in each of the
equations. This is done by treating each equation in turn. Suppose that
the first k of equations (2.65) have been reduced to

Uj − ejUj+1 = fj , j = 1, 2, . . . , k. (2.69)

The last of these equations is therefore Uk − ekUk+1 = fk, and the next
equation, which is still in its original form, is

−ak+1Uk + bk+1Uk+1 − ck+1Uk+2 = dk+1.
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It is easy to eliminate Uk from these two equations, giving a new equation
involving Uk+1 and Uk+2,

Uk+1 − ck+1

bk+1 − ak+1ek
Uk+2 =

dk+1 + ak+1fk

bk+1 − ak+1ek
.

Comparing this with (2.69) shows that the coefficients ej and fj can be
obtained from the recurrence relations

ej =
cj

bj − ajej−1
, fj =

dj + ajfj−1

bj − ajej−1
, j = 1, 2, . . . , J − 1; (2.70)

while identifying the boundary condition U0 = 0 with (2.69) for j = 0
gives the initial values

e0 = f0 = 0. (2.71)

Having used these recurrence relations to find the coefficients, the values
of Uj are easily obtained from (2.69): beginning from the known value of
UJ , this equation gives the values of UJ−1, UJ−2, . . . , in order, finishing
with U1.

The use of a recurrence relation like (2.69) to calculate the values of
Uj in succession may in general be numerically unstable, and lead to
increasing errors. However, this will not happen if, for each j, |ej | < 1
in (2.69), and we leave it as an exercise to show that the conditions
(2.67) and (2.68) are sufficient to guarantee this (see Exercise 4).

The algorithm is very efficient (on a serial computer) so that (2.64) is
solved with 3(add) + 3(multiply) + 2(divide) operations per mesh point,
as compared with 2(add) + 2(multiply) operations per mesh point for
the explicit algorithm (2.19). Thus it takes about twice as long for each
time step. The importance of the implicit method is, of course, that the
time steps can be much larger, for, as we shall see, there is no longer
any stability restriction on ∆t. We shall give a proof of the convergence
of this implicit scheme in the next section, as a particular case of a
more general method. First we can examine its stability by the Fourier
method of Section 2.7.

We construct a solution of the difference equations for Fourier modes
of the same form as before,

Un
j = (λ)neik(j∆x). (2.72)

This will satisfy (2.64) provided that

λ − 1 = µλ(eik∆x − 2 + e−ik∆x)

= −4µλ sin2 1
2k∆x, (2.73)
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which shows that

λ =
1

1 + 4µ sin2 1
2k∆x

. (2.74)

Evidently we have 0 < λ < 1 for any positive choice of µ, so that this
implicit method is unconditionally stable. As we shall see in the next
section, the truncation error is much the same size as that of the explicit
scheme, but we no longer require any restriction on µ to ensure that no
Fourier mode grows as n increases.

The time step is still limited by the requirement that the truncation
error must stay small, but in practice it is found that in most problems
the implicit method can use a much larger ∆t than the explicit method;
although each step takes about twice as much work, the overall amount
of work required to reach the time tF is much less.

2.10 The weighted average or θ-method

We have now considered two finite difference methods, which differ only
in that one approximates the second space derivative by three points on
the old time level, tn, and the other uses the three points on the new
time level, tn+1. A natural generalisation is to an approximation which
uses all six of these points. This can be regarded as taking a weighted
average of the two formulae. Since the time difference on the left-hand
sides is the same, we obtain the six-point scheme (see Fig. 2.6)

Un+1
j − Un

j = µ
[
θδ2

xUn+1
j + (1 − θ)δ2

xUn
j

]
, j = 1, 2, . . . , J − 1. (2.75)

We shall assume that we are using an average with nonnegative
weights, so that 0 ≤ θ ≤ 1; θ = 0 gives the explicit scheme, θ = 1
the fully implicit scheme. For any θ �= 0, we have a tridiagonal system
to solve for

{
Un+1

j

}
, namely,

−θµUn+1
j−1 + (1 + 2θµ)Un+1

j − θµUn+1
j+1 =

[
1 + (1 − θ)µδ2

x

]
Un

j . (2.76)

Clearly the coefficients satisfy (2.67) and (2.68), so the system can be
solved stably by the Thomas algorithm given above for the fully implicit
scheme.

Let us consider the stability of this one-parameter family of schemes
by using Fourier analysis as in Section 2.7 and above. Substituting the
mode (2.72) into equation (2.75), we obtain

λ − 1 = µ[θλ + (1 − θ)]
(
eik∆x − 2 + e−ik∆x

)
= µ[θλ + (1 − θ)]

(
−4 sin2 1

2k∆x
)
,
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Fig. 2.6. The θ-method.

i.e.,

λ =
1 − 4(1 − θ)µ sin2 1

2k∆x

1 + 4θµ sin2 1
2k∆x

. (2.77)

Because µ > 0, and we are assuming that 0 ≤ θ ≤ 1, it is clear that we
can never have λ > 1: thus instability arises only through the possibility
that λ < −1, that is that

1 − 4(1 − θ)µ sin2 1
2k∆x < −

[
1 + 4θµ sin2 1

2k∆x
]
,

i.e.,

4µ(1 − 2θ) sin2 1
2k∆x > 2.

The mode most liable to instability is the one for which the left side is
largest: as before this is the most rapidly oscillatory mode, for which
k∆x = π. This is an unstable mode if

µ(1 − 2θ) > 1
2 . (2.78)

This includes the earlier explicit case, θ = 0: and it also shows that
the fully implicit scheme with θ = 1 is not unstable for any value of µ.
Indeed no scheme with θ ≥ 1

2 is unstable for any µ. If condition (2.78)
is satisfied there can be unbounded growth over a fixed time as ∆t → 0
and hence n → ∞: on the other hand if (2.78) is not satisfied, we have
|λ(k)| ≤ 1 for every mode k, so that no mode grows at all and the scheme
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is stable. Thus we can summarise the necessary and sufficient conditions
for the stability of (2.75) as

when 0 ≤ θ < 1
2 , stable if and only if µ ≤ 1

2 (1 − 2θ)−1

when 1
2 ≤ θ ≤ 1, stable for all µ.


 (2.79)

The two cases are often referred to as conditional and unconditional
stability respectively. As soon as θ is non-zero a tridiagonal system has to
be solved, so there would seem to be no advantage in using schemes with
0 < θ < 1

2 which are only conditionally stable – unless they were more
accurate. Thus we should next look at the truncation error for (2.75).

To calculate the truncation error for such a six-point scheme it is
important to make a careful choice of the point about which the Taylor
series are to be expanded. It is clear that the leading terms in the trun-
cation error will be the same for any choice of this expansion point: but
the convenience and simplicity of the calculation can be very materially
affected. Thus for the explicit scheme (2.31) the natural and convenient
point was (xj , tn): by the same argument the natural point of expansion
for the purely implicit scheme (2.63) would be (xj , tn+1). However, for
any intermediate value of θ we shall use the centre of the six mesh points,
namely (xj , tn+1/2), and often write the truncation error as T

n+1/2
j . It is

also helpful to group the terms in the scheme in a symmetric manner so
as to take maximum advantage of cancellations in the Taylor expansions.
Working from (2.75) we therefore have, using the superscript/subscript
notation for u as well as U ,

un+1
j =

[
u + 1

2∆t ut + 1
2

( 1
2∆t

)2
utt + 1

6

( 1
2∆t

)3
uttt + · · ·

]n+1/2

j
,

un
j =

[
u − 1

2∆t ut + 1
2

( 1
2∆t

)2
utt − 1

6

( 1
2∆t

)3
uttt + · · ·

]n+1/2

j
.

If we subtract these two series, all the even terms of the two Taylor series
will cancel, and we obtain

δtu
n+1/2
j = un+1

j − un
j =

[
∆t ut + 1

24 (∆t)3uttt + · · ·
]n+1/2
j

. (2.80)

Also from (2.30) we have

δ2
xun+1

j =
[
(∆x)2uxx + 1

12 (∆x)4uxxxx + 2
6! (∆x)6uxxxxxx + · · ·

]n+1
j

.

(2.81)
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We now expand each term in this series in powers of ∆t, about the
point (xj , tn+1/2). For simplicity in presenting these expansions, we
omit the superscript and subscript, so it is understood that the resulting
expressions are all to be evaluated at this point. This gives

δ2
xun+1

j =
[
(∆x)2uxx + 1

12 (∆x)4uxxxx + 2
6! (∆x)6uxxxxxx + · · ·

]
+ 1

2∆t
[
(∆x)2uxxt + 1

12 (∆x)4uxxxxt + · · ·
]

+ 1
2

( 1
2∆t

)2 [
(∆x)2uxxtt + · · ·

]
+ · · · .

There is a similar expansion for δ2
xun

j : combining these we obtain

θδ2
xun+1

j + (1 − θ)δ2
xun

j =[
(∆x)2uxx + 1

12 (∆x)4uxxxx + 2
6! (∆x)6uxxxxxx + · · ·

]
+ (θ − 1

2 )∆t
[
(∆x)2uxxt + 1

12 (∆x)4uxxxxt + · · ·
]

+ 1
8 (∆t)2(∆x)2 [uxxtt] + · · · . (2.82)

Here we have retained more terms than we shall normally need to calcu-
late the principal part of the truncation error, in order to show clearly
the pattern for all the terms involved. In addition we have not exploited
yet the fact that u is to satisfy the differential equation, so that (2.80)
and (2.82) hold for any sufficiently smooth functions. If we now use
these expansions to calculate the truncation error we obtain

T
n+1/2
j :=

δtu
n+1/2
j

∆t
−

θδ2
xun+1

j + (1 − θ)δ2
xun

j

(∆x)2
(2.83)

= [ut − uxx] +
[( 1

2 − θ
)
∆t uxxt − 1

12 (∆x)2uxxxx

]
+

[ 1
24 (∆t)2uttt − 1

8 (∆t)2uxxtt

]
+

[ 1
12

( 1
2 − θ

)
∆t (∆x)2uxxxxt − 2

6! (∆x)4uxxxxxx

]
(2.84)

where we have still not carried out any cancellations but have merely
grouped terms which are ripe for cancellation.

The first term in (2.84) always cancels, so confirming consistency for
all values of θ and µ . The second shows that we shall normally have first
order accuracy (in ∆t) but that the symmetric average θ = 1

2 is special:
this value gives the well known and popular Crank–Nicolson scheme,
named after those two authors who in a 1947 paper1 applied the scheme
very successfully to problems in the dyeing of textiles. Since the third

1 Crank, J. and Nicolson, P. (1947) A practical method for numerical evaluation
of solutions of partial differential equations of the heat-conduction type. Proc.
Camb. Philos. Soc. 43, 50–67.
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term in (2.84) does not cancel even when we exploit the differential
equation to obtain

T
n+1/2
j = − 1

12

[
(∆x)2uxxxx + (∆t)2uttt

]n+1/2
j

+ · · · (2.85)

(when θ = 1
2 ),

we see that the Crank–Nicolson scheme is always second order accurate
in both ∆t and ∆x: this means that we can exploit the extra stability
properties of the scheme to take larger time steps, with for example
∆x = O(∆t), and because then the truncation error is O

(
(∆t)2

)
we can

achieve good accuracy economically.
Another choice which is sometimes advocated is a generalisation of

that discussed in Section 2.5. It involves eliminating the second term in
(2.84) completely by relating the choice of θ to that of ∆t and ∆x so
that

θ = 1
2 − (∆x)2/12∆t, (2.86)

i.e.,

µ =
1

6(1 − 2θ)
, (2.87)

but note that this requires (∆x)2 ≤ 6∆t to ensure θ ≥ 0. This gives a
value of θ less than 1

2 but it is easy to see that the condition (2.79) is
satisfied, so that it is stable. It reduces to µ = 1

6 for the explicit case
θ = 0. The resulting truncation error is

T
n+1/2
j = − 1

12

[
(∆t)2uttt + 1

20 (∆x)4uxxxxxx

]n+1/2
j

+ · · · (2.88)

(when θ = 1
2 − 1

12µ ),

which is O
(
(∆t)2 + (∆x)4

)
. Thus again we can take large time steps

while maintaining accuracy and stability: for example, with ∆t = ∆x =
0.1 we find we have θ = 1

2 − 1
120 so the scheme is quite close to the

Crank–Nicolson scheme.
There are many other possible difference schemes that could be used

for the heat flow equation and in Richtmyer and Morton (1967) (pp.
189–91), some fourteen schemes are tabulated. However the two-time-
level, three-space-point schemes of (2.75) are by far the most widely
used in practice, although the best choice of the parameter θ varies from
problem to problem. Even for a given problem there may not be general
agreement as to which scheme is the best. In the next section we consider
the convergence analysis of these more general methods: but first we give
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Fig. 2.7. Maximum error on [0, 1] × [0.1, 1] plotted against
J , for various schemes.
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D : θ = 1, µ = 5 — ∗ — ∗ — ∗ —

θ = 1, ν = 1
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results for the problem of (2.49) obtained with implicit methods, which
show similar behaviour to those of Fig. 2.4 obtained with the explicit
method, with the Crank–Nicolson method being particularly accurate.
In the set of graphs in Fig. 2.7 the maximum error E is plotted against
the number of mesh points J for various schemes: to eliminate transient
behaviour for small t we have used

E := max
{∣∣en

j

∣∣ , (xj , tn) ∈ [0, 1] × [0.1, 1]
}

.

We start with J = 10; for each implicit scheme we show a graph
with fixed µ = ∆t/(∆x)2 as a solid line, and also a graph with fixed
ν = ∆t/∆x as a dotted line; note that in the latter case the number of
time steps that are needed increases much more slowly. The values of µ
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and ν are chosen so that they give the same value of ∆t when J = 10;
this requires that µ = 10ν. For the explicit scheme there is just one
graph, for µ = 1

2 , the largest possible value for a stable result.
Plot A, for the explicit scheme, shows the expected O(∆t) = O

(
J−2

)
behaviour; so too does Plot B, for the Crank–Nicolson scheme with
µ = 1

2 . In the expression (2.85) for the truncation error of the Crank–
Nicolson scheme we see that when µ is kept constant the second term
is negligible compared with the first, so the two plots just differ by the
fixed ratio of 1

2 between their truncation errors. Also, as we shall see
in the next section a maximum principle applies to both schemes so
their overall behaviour is very similar. For Plot B, with ν = 1

20 kept
constant, the two terms are both of order O

(
(∆x)2

)
, but the second

term is numerically much smaller than the first; this accounts for the
fact that the two lines in Plot B are indistinguishable.

Plot C also shows the Crank–Nicolson scheme, but here µ = 5 is much
larger. The numerical solution has oscillatory behaviour for small t, and
the two graphs in Plot C are therefore much more erratic, not settling to
their expected behaviour until J is about 40. For J larger than this the
two graphs with µ = 1

2 and µ = 5 are close together, illustrating the fact
that the leading term in the truncation error in (2.85) is independent
of µ. However, when ν = 1

2 is constant, the second term in (2.85) is a
good deal larger than the first, and when J > 40 this graph lies well
above the corresponding line in Plot B. Further analysis in Section 5.8
will help to explain this behaviour.

For the fully implicit method (plot D), where the maximum principle
will apply again, the results are poor but as expected: with µ = 5 we
have O(∆t) = O

(
J−2

)
behaviour; and with ∆t/∆x = 1

2 we get only
O(∆t) = O(J−1) error reduction.

These graphs do not give a true picture of the relative effectiveness
of the various θ-methods because they do not take account of the work
involved in each calculation. So in the graphs in Fig. 2.8 the same results
are plotted against a measure of the computational effort involved in
each calculation: for each method this should be roughly proportional
to the total number of mesh points (∆x∆t)−1, with the explicit method
requiring approximately half the effort of the implicit methods. The
two lines in Plot B are no longer the same: when J increases with
fixed ν the time step ∆t decreases more slowly than when µ is fixed, so
less computational work is required. These graphs show that, for this
problem, the Crank–Nicolson method with ν = 1

2 is the most efficient of
those tested, provided that J is taken large enough to remove the initial
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Fig. 2.8. Maximum error on [0, 1] × [0.1, 1] plotted against
the total number of mesh points for various schemes.
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oscillations; but a comparison with the ν = 1
20 plot suggests alternative

choices of ν might be better.

2.11 A maximum principle and convergence for µ(1 − θ) ≤ 1
2

If we consider what other properties a difference approximation to ut =
uxx should possess beyond convergence as ∆t, ∆x → 0 (together with the
necessary stability and a reasonable order of accuracy), a natural next
requirement is a maximum principle. For we know mathematically (and
by common experience if u represents, say, temperature) that u(x, t) is
bounded above and below by the extremes attained by the initial data
and the values on the boundary up to time t. Such a principle also lay
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behind the proof of convergence for the explicit scheme in Section 2.6:
and any engineering client for our computed results would be rather
dismayed if they did not possess this property. We generalise that result
by the following theorem.

Theorem 2.2 The θ-method of (2.75) with 0 ≤ θ ≤ 1 and µ(1 − θ) ≤ 1
2

yields
{
Un

j

}
satisfying

Umin ≤ Un
j ≤ Umax (2.89)

where

Umin := min
{
Um

0 , 0 ≤ m ≤ n; U0
j , 0 ≤ j ≤ J ; Um

J , 0 ≤ m ≤ n
}

,

(2.90)
and

Umax := max
{
Um

0 , 0 ≤ m ≤ n; U0
j , 0 ≤ j ≤ J ; Um

J , 0 ≤ m ≤ n
}

.

(2.91)
For any refinement path which eventually satisfies this stability con-
dition, the approximations given by (2.75) with consistent initial and
Dirichlet boundary data converge uniformly on [0, 1] × [0, tF ] if the ini-
tial data are smooth enough for the truncation error T

n+1/2
j to tend to

zero along the refinement path uniformly in this domain.

Proof We write (2.75) in the form

(1 + 2θµ)Un+1
j = θµ

(
Un+1

j−1 + Un+1
j+1

)
+ (1 − θ)µ

(
Un

j−1 + Un
j+1

)
+ [1 − 2(1 − θ)µ] Un

j . (2.92)

Then under the hypotheses of the theorem all the coefficients on the right
are nonnegative and sum to (1 + 2θµ). Now suppose that U attains its
maximum at an internal point, and this maximum is Un+1

j , and let U∗

be the greatest of the five values of U appearing on the right-hand side of
(2.92). Then since the coefficients are nonnegative Un+1

j ≤ U∗; but since
this is assumed to be the maximum value, we also have Un+1

j ≥ U∗, so
Un+1

j = U∗. Indeed, the maximum value must also be attained at each
neighbouring point which has a non-zero coefficient in (2.92). The same
argument can then be applied at each of these points, showing that the
maximum is attained at a sequence of points, until a boundary point
is reached. The maximum is therefore attained at a boundary point.
An identical argument shows that the minimum is also attained at a
boundary point, and the first part of the proof is complete.
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By the definition of truncation error (see (2.84)), the solution of the
differential equation satisfies the same relation as (2.92) except for an
additional term ∆t T

n+1/2
j on the right-hand side. Thus the error en

j =
Un

j − un
j is determined from the relations

(1 + 2θµ)en+1
j = θµ

(
en+1
j−1 + en+1

j+1

)
+ (1 − θ)µ

(
en
j−1 + en

j+1
)

+ [1 − 2(1 − θ)µ] en
j − ∆tT

n+1/2
j (2.93)

for j = 1, 2, . . . , J−1 and n = 0, 1, . . . together with initial and boundary
conditions. Suppose first of all that these latter are zero because U0

j =
u0

j , Um
0 = um

0 and Um
J = um

J . Then we define, as in Section 2.6,

En := max
0≤j≤J

∣∣en
j

∣∣ , Tn+1/2 := max
1≤j≤J−1

∣∣∣Tn+1/2
j

∣∣∣ . (2.94)

Because of the nonnegative coefficients, it follows that

(1 + 2θµ)En+1 ≤ 2θµEn+1 + En + ∆t Tn+1/2

and hence that

En+1 ≤ En + ∆t Tn+1/2 (2.95)

so that, since E0 = 0,

En ≤ ∆t

n−1∑
0

Tm+1/2,

≤ n∆t max
m

Tm+1/2 (2.96)

and this tends to zero along the refinement path under the assumed
hypotheses.

So far we have assumed that numerical errors arise from the truncation
errors of the finite difference approximations, but that the boundary
values are used exactly. Suppose now that there are errors in the initial
and boundary values of Un

j and let us denote them by ε0j , εm
0 and εm

J

with 0 ≤ j ≤ J and 0 ≤ m ≤ N , say. Then the errors en
j satisfy the

recurrence relation (2.93) with initial and boundary values

e0
j = ε0j , j = 0, 1, . . . , n,

em
0 = εm

0 , em
J = εm

J , 0 ≤ m ≤ N.

Then (by Duhamel’s principle) eN
j can be written as the sum of two

terms. The first term satisfies (2.93) with zero initial and boundary
values; this term is bounded by (2.96). The second term satisfies the
homogeneous form of (2.93), with the term in T omitted, and with the
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given non-zero initial and boundary values. By the maximum principle
this term must lie between the maximum and minimum values of these
initial and boundary values. Thus the error of the numerical solution
will tend to zero along the refinement path, as required, provided that
the initial and boundary values are consistent; that is, the errors in the
initial and boundary values also tend to zero along the refinement path.

The condition for this theorem, µ(1 − θ) ≤ 1
2 , is very much more

restrictive than that needed in the Fourier analysis of stability, µ(1 −
2θ) ≤ 1

2 ; for example, the Crank–Nicolson scheme always satisfies the
stability condition, but only if µ ≤ 1 does it satisfy the condition given
for a maximum principle, which in the theorem is then used to deduce
stability and convergence. In view of this large gap the reader may
wonder about the sharpness of this theorem. In fact, the maximum
principle condition is sharp, but a little severe: for with J = 2 and
U0

0 = U0
2 = 0, U0

1 = 1, one obtains U1
1 = 1 − 2(1 − θ)µ which is

nonnegative only if the given condition is satisfied; but, of course, one
would use larger values of J in practice and this would relax the condi-
tion a little (see Exercise 11). Moreover, if with Un

0 = Un
J = 0 one wants

to have ∣∣Un
j

∣∣ ≤ K max
0≤i≤J

∣∣U0
i

∣∣ ∀j, n (2.97)

satisfied with K = 1, which is the property needed to deduce the error
bound (2.96), it has recently been shown1 that it is necessary and suf-
ficient that µ(1 − θ) ≤ 1

4 (2 − θ)/(1 − θ), giving µ ≤ 3
2 for the Crank–

Nicolson scheme. It is only when any value of K is accepted in this
growth bound, which is all that is required in the stability definition of
(2.55), that the weaker condition µ(1 − 2θ) ≤ 1

2 is adequate. Then for
Crank–Nicolson one can actually show that K ≤ 23 holds!

Thus the maximum principle analysis can be viewed as an alterna-
tive means of obtaining stability conditions. It has the advantage over
Fourier analysis that it is easily extended to apply to problems with
variable coefficients (see below in Section 2.15); but, as we see above, it
is easy to derive only sufficient stability conditions.

These points are illustrated in Fig. 2.9. Here the model problem is
solved by the Crank–Nicolson scheme. The boundary conditions specify
that the solution is zero at each end of the range, and the initial condition

1 See Kraaijevanger, J.F.B.M. (1992) Maximum norm contractivity of discretization
schemes for the heat equation. Appl. Numer. Math. 99, 475–92.
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After 1 time step

After 2 time steps

After 10 time steps

At t  =  0

µ = 1 µ = 2

Fig. 2.9. The Crank–Nicolson method applied to the heat
equation where the initial distribution has a sharp spike at
the mid-point; J = 20, ∆x = 0.05.

gives the values of U0
j to be zero except at the mid-point; the value at

the mid-point is unity. This corresponds to a function with a sharp spike
at x = 1

2 .
In the case µ = 2 the maximum principle does not hold, and we

see that at the first time level the numerical solution becomes negative
at the mid-point. This would normally be regarded as unacceptable.
When µ = 1 the maximum principle holds, and the numerical values all
lie between 0 and 1, as required. However, at the first time level the
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numerical solution shows two peaks, one each side of the mid-point; the
exact solution of the problem will have only a single maximum for all t.
These results correspond to a rather extreme case, and the unaccept-
able behaviour only persists for a few time steps; thereafter the solution
becomes very smooth in each case. However, they show that in a sit-
uation where we require to model some sort of rapid variation in the
solution we shall need to use a value of µ somewhat smaller than the
stability limit.

2.12 A three-time-level scheme

We have seen how the Crank–Nicolson scheme improves on the accuracy
of the explicit scheme by the use of symmetry in the time direction to
remove the even time derivative terms in the truncation error. This
improvement has to be balanced against the extra complication involved
in the use of an implicit method. This suggests investigation of the
possibility of using more than two time levels to improve accuracy, while
retaining the efficiency of an explicit method.

Consider, for example, the use of a symmetric central difference for
the time derivative, leading to the explicit three-level scheme

Un+1
j − Un−1

j

2∆t
=

Un
j+1 − 2Un

j + Un
j−1

(∆x)2
. (2.98)

It is easy to see that the truncation error of this approximation involves
only even powers of both ∆x and ∆t, and hence has order O

(
(∆x)2 +

(∆t)2
)
. However, if we investigate the stability of the scheme we find a

solution of the usual form (2.72) provided that

λ − 1/λ

2∆t
=

−4 sin2 1
2k∆x

(∆x)2
(2.99)

or

λ2 + 8λµ sin2 1
2k∆x − 1 = 0. (2.100)

This quadratic equation for λ has two roots, giving two solution modes
for each value of k. The roots are both real with a negative sum, and
their product is −1. Hence one of them has magnitude greater than
unity, giving an unstable mode. The scheme is therefore useless in prac-
tice since it is always unstable, for every value of µ.



2.13 More general boundary conditions 39

This result does not, of course, mean that every three-level explicit
scheme is always unstable. We leave as an exercise the proof that the
scheme

Un+1
j − Un−1

j

2∆t
=

θδ2
xUn

j + (1 − θ)δ2
xUn−1

j

(∆x)2
(2.101)

has both solution modes satisfying |λ| ≤ 1 if θ ≤ 1
2 and 4(1 − θ)µ ≤ 1

(see also Exercise 6); but then this stability restriction is as bad as that
for our first simple scheme.

2.13 More general boundary conditions

Let us now consider a more general model problem by introducing a
derivative boundary condition at x = 0, of the form

∂u

∂x
= α(t)u + g(t), α(t) ≥ 0. (2.102)

By using a forward space difference for the derivative, we can approxi-
mate this by

Un
1 − Un

0

∆x
= αnUn

0 + gn (2.103)

and use this to give the boundary value Un
0 in the form

Un
0 = βnUn

1 − βngn∆x, (2.104a)

where

βn =
1

1 + αn∆x
. (2.104b)

Then we can apply the θ-method (2.75) in just the same way as for
Dirichlet boundary conditions. We need to solve the usual tridiagonal
system of linear equations, but now this is a system of J equations in
the J unknowns, namely the interior values at the new time step and
the value at the left-hand boundary. Equation (2.104a) is then the first
equation of the system, and it is clear that the augmented system is
still tridiagonal and, because we have assumed α(t) ≥ 0 and therefore
0 < βn ≤ 1, the coefficients still satisfy the conditions of (2.67) and
(2.68), except that when α(t) = 0 we have b0 = a0 and e0 = 1.

To consider the accuracy and stability of the resulting scheme, we
need to concentrate attention on the first interior point. We can use
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(2.104a) to eliminate Un
0 ; the second difference at the first interior point

then has the form

δ2
xUn

1 = Un
2 − (2 − βn)Un

1 − βngn∆x. (2.105)

Thus with the usual definition of truncation error, after some manipula-
tion, the global error can be shown to satisfy, instead of (2.93), the new
relation

[
1 + θµ(2 − βn+1)

]
en+1
1 = [1 − (1 − θ)µ(2 − βn)] en

1

+ θµen+1
2 + (1 − θ)µen

2

− ∆tT
n+1/2
1 . (2.106)

This equation is different from that at other mesh points, which pre-
cludes our using Fourier analysis to analyse the system. But the maxi-
mum principle arguments of the preceding section can be used: we see
first that if µ(1 − θ) ≤ 1

2 all the coefficients in (2.106) are nonnegative
for any nonnegative value of αn; and the sum of the coefficients on the
right is no greater than that on the left if

θ(1 − βn+1) ≥ −(1 − θ)(1 − βn), (2.107)

which again is always satisfied if α(t) ≥ 0. Hence we can deduce the
bound (2.96) for the global error in terms of the truncation error as
before. The importance of the assumption α(t) ≥ 0 is clear in these
arguments: to assume otherwise would correspond to having heat inflow
rather than outflow in proportion to surface temperature, which would
lead to an exponentially increasing solution. This is very unlikely to
occur in any real problem, and would in any case lead to a problem
which is not well-posed.

It remains to estimate the truncation error T
n+1/2
1 . Let us consider

only the explicit case θ = 0, for which we expand around the first in-
terior point. Suppose we straightforwardly regard (2.103) as applying
the boundary condition at (0, tn) and expand about this point for the
exact solution to obtain

un
1 − un

0

∆x
− αnun

0 − gn =
[ 1
2∆x uxx + 1

6 (∆x)2uxxx + · · ·
]n

0 . (2.108)

Then we write the truncation error in the following form, in which
an appropriate multiple of the approximation (2.103) to the boundary
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condition is added to the difference equation in order to cancel the terms
in un

0 ,

T
n+1/2
1 =

un+1
1 − un

1

∆t
− δ2

xun
1

(∆x)2
− βn

∆x

[
un

1 − un
0

∆x
− αnun

0 − gn

]
=

[ 1
2∆t utt − 1

12 (∆x)2uxxxx + · · ·
]n

1 − βn
[ 1
2uxx + · · ·

]n

0 ,

to obtain

T
n+1/2
1 ≈ − 1

2βnuxx. (2.109)

This does not tend to zero as the mesh size tends to zero and, although
we could rescue our convergence proof by a more refined analysis, we
shall not undertake this here.

However, a minor change can remedy the problem. We choose a new
grid of points, which are still equally spaced, but with the boundary
point x = 0 half-way between the first two grid points. The other bound-
ary, x = 1, remains at the last grid point as before. We now replace the
approximation to the boundary condition by the more accurate version

Un
1 − Un

0

∆x
= 1

2αn (Un
0 + Un

1 ) + gn, (2.110)

Un
0 =

1 − 1
2αn∆x

1 + 1
2αn∆x

Un
1 − ∆x

1 + 1
2αn∆x

gn. (2.111)

Then (2.108) is replaced by an expansion about j = 1
2 , giving

un
1 − un

0

∆x
− 1

2αn (un
0 + un

1 ) − gn =[ 1
24 (∆x)2uxxx − 1

8αn(∆x)2uxx + · · ·
]n

1/2 (2.112)

and hence

Tn+1/2 =
[ 1
2∆tutt − 1

12 (∆x)2uxxxx + . . .
]n

1

− 1
1 + 1

2αn∆x

[ 1
24∆x (uxxx − 3αnuxx) + · · ·

]n

0

= O(∆x). (2.113)

Only minor modifications are necessary to (2.106) and the proof of con-
vergence is straightforward. Indeed, as we shall show in Chapter 6 where
a sharper error analysis based on the maximum principle is presented,
the error remains O

(
(∆x)2

)
despite this O(∆x) truncation error near

the boundary.
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An alternative, and more widely used, approach is to keep the first
grid point at x = 0 but to introduce a fictitious value Un

−1 outside the
domain so that we can use central differences to write

Un
1 − Un

−1

2∆x
= αnUn

0 + gn. (2.114)

Then the usual difference approximation is also applied at x = 0 so that
Un

−1 can be eliminated. That is, for the θ-method we take

Un+1
0 − Un

0

∆t
− δ2

x

(∆x)2

[
θUn+1

0 + (1 − θ)Un
0

]

− 2θ

∆x

[
Un+1

1 − Un+1
−1

2∆x
− αn+1Un+1

0 − gn+1

]

− 2(1 − θ)
∆x

[
Un

1 − Un
−1

2∆x
− αnUn

0 − gn

]
= 0. (2.115)

Clearly for the truncation error we pick up terms like

2θ

∆x

[
un+1

1 − un+1
−1

2∆x
− αn+1un+1

0 − gn+1

]
= θ

[
1
3∆xuxxx

]n+1

0

+ · · ·

(2.116)
to add to the usual truncation error terms. If we rewrite (2.115) in the
form

[
1 + 2θµ

(
1 + αn+1∆x

)]
Un+1

0 = [1 − 2(1 − θ)µ (1 + αn∆x)]Un
0

+ 2θµUn+1
1

− 2µ∆x
[
θgn+1 + (1 − θ)gn

]
(2.117)

we also see that the error analysis based on a maximum principle still
holds with only the slight strengthening of condition needed in Theorem
2.2 to

µ(1 − θ) (1 + αn∆x) ≤ 1
2 . (2.118)

In this section we have considered the solution of the heat equa-
tion with a derivative boundary condition at the left-hand end, and a
Dirichlet condition at the other. The same idea can be applied to a prob-
lem with a derivative condition at the right-hand end, or at both ends.
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Fig. 2.10. The effect of a Neumann boundary condition
approximation on the error for the Crank–Nicolson scheme
with J = 10, ∆x = 0.1; the top curve is for (2.103) and the
lower two for (2.114) and (2.110).

On carrying through the similar analysis, we soon discover why the con-
dition at x = 1 must be of the form

∂u

∂x
= β(t)u + g(t), β(t) ≤ 0. (2.119)

As an illustration of different methods of treating the boundary condi-
tion, we compute solutions to the problem ut = uxx on 0 < x < 1, with
initial condition u(x, 0) = 1 − x2, and boundary conditions ux(0, t) =
0, u(1, t) = 0, giving a Neumann condition at the left-hand end, and a
Dirichlet condition at the right-hand end. We use the Crank–Nicolson
method, with J = 10 and µ = 1, so that ∆t = 0.01. The maximum
error in the numerical solution, as a function of tn, is shown in Fig. 2.10
for the three methods described above: namely, the use of the forward
difference approximation to ux(0, t), the use of the central difference
incorporating the fictitious value Un

−1, and the placing of the boundary
half-way between the first two mesh points. The numerical results from
the second and third of these methods are very similar, but show a quite
dramatic difference from those for the first method; the error in this case
is some 50 times larger.

Notice also that the maximum error in each method increases with n

for part of the range, before beginning to decrease again, rather slowly;
compare the behaviour with that in Fig. 2.4 where Dirichlet conditions
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were applied at each boundary. In the next section we consider Neumann
conditions at each boundary.

2.14 Heat conservation properties

Suppose that in our model heat flow problem ut = uxx we define the
total heat in the system at time t by

h(t) =
∫ 1

0
u(x, t) dx. (2.120)

Then from the differential equation we have

dh

dt
=

∫ 1

0
ut dx =

∫ 1

0
uxx dx =

[
ux

]1
0. (2.121)

This is not very helpful if we have Dirichlet boundary conditions: but
suppose we are given Neumann boundary conditions at each end; say,
ux(0, t) = g0(t) and ux(1, t) = g1(t). Then we have

dh

dt
= g1(t) − g0(t), (2.122)

so that h is given by integrating an ordinary differential equation.
Now suppose we carry out a similar manipulation for the θ-method

equations (2.75), introducing the total heat by means of a summation
over the points for which (2.75) holds:

Hn =
J−1∑

1

∆xUn
j . (2.123)

Then, recalling from the definitions of the finite difference notation that
δ2
xUj = ∆+xUj − ∆+xUj−1, we have

Hn+1 − Hn =
∆t

∆x

J−1∑
1

δ2
x

[
θUn+1

j + (1 − θ)Un
j

]

=
∆t

∆x

{
∆+x

[
θUn+1

J−1 + (1 − θ)Un
J−1

]
− ∆+x

[
θUn+1

0 + (1 − θ)Un
0
]}

. (2.124)

The rest of the analysis will depend on how the boundary condition is
approximated. Consider the simplest case as in (2.103): namely we set
Un

1 − Un
0 = ∆x gn

0 , Un
J − Un

J−1 = ∆x gn
1 . Then we obtain

Hn+1 − Hn = ∆t
[
θ
(
gn+1
1 − gn+1

0

)
+ (1 − θ) (gn

1 − gn
0 )

]
(2.125)
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as an approximation to (2.122); this approximation may be very accu-
rate, even though we have seen that Un may not give a good pointwise
approximation to un. In particular, if g0 and g1 are independent of t the
change in H in one time step exactly equals that in h(t). How should
we interpret this?

Clearly to make the most of this matching we should relate (2.123)
as closely as possible to (2.120). If u and U were constants that would
suggest we take (J − 1)∆x = 1, rather than J∆x = 1 as we have been
assuming; and we should compare Un

j with

un
j :=

1
∆x

∫ j∆x

(j−1)∆x

u(x, tn) dx, j = 1, 2, . . . , J − 1, (2.126)

so that it is centred at (j − 1
2 )∆x and we have

h(tn) =
J−1∑

1

∆x un
j . (2.127)

Note that this interpretation matches very closely the scheme that we
were led to in (2.110)–(2.113) by analysing the truncation error. It would
also mean that for initial condition we should take U0

j = u0
j as defined

by (2.126). Then for time-independent boundary conditions we have
Hn = h(tn) for all n. Moreover, it is easy to see that the function

û(x, t) := (g1 − g0) t + 1
2 (g1 − g0) x2 + g0x + C (2.128)

with any constant C satisfies the differential equation, and the two
boundary conditions. It can also be shown that the exact solution of
our problem, with any given initial condition, will tend to such a solu-
tion as t → ∞. Since the function (2.128) is linear in t and quadratic
in x it will also satisfy the finite difference equations exactly; hence the
error in a numerical solution produced and interpreted in this way will
decrease to zero as t increases. As we have seen above, the usual finite
difference approximations, with Neumann boundary conditions and the
usual interpretation of the errors, may be expected to give errors which
initially increase with n, and then damp only very slowly.

These observations are illustrated by a solution of the heat equation
with homogeneous Neumann boundary conditions ux = 0 at x = 0 and
x = 1, and with initial value u(x, 0) = 1 − x2. Fig. 2.11 shows the
maximum error as a function of tn for three cases, each using J = 10
for the Crank–Nicolson method with µ = 1

2 . The top curve corresponds
to using the Neumann conditions (2.103) as above and interpreting the
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Fig. 2.11. Effect of error interpretation for a pure Neumann
problem: the top curve corresponds to boundary conditions
(2.103) and the second to (2.114), both with the usual initial
data and definition of En; the bottom curve is computed as
for the top curve but with initial data from (2.126) and the
error reinterpreted through the heat conservation principle.

error En in the usual way, with ∆x = 0.1, ∆t = 0.005. The second curve
is the same apart from using the approximaton (2.114) for the boundary
conditions. Clearly both give a substantial residual error. However, the
bottom curve corresponds to the same method as the top but with the
initial data obtained from the un

j of (2.126), and the error reinterpreted
to reflect the heat conservation principle as described above: namely,
En := max{|Un

j − un
j |, j = 0, 1, 2, . . . , J}; and tn = n∆t = nµ(∆x)2 =

1
2n(J − 1)−2. We see clearly the decay of the error as predicted by the
argument given above.

2.15 More general linear problems

The form of the heat equation which we have considered so far corre-
sponds to a physical situation where all the physical properties of the
material are constant in time, and independent of x. More generally
these properties may be functions of x, or t, or both. In particular,
a dependence on x is often used to model the nearly one-dimensional
flow of heat in a thin bar whose cross-sectional area depends on x. We
shall therefore examine briefly how the methods so far discussed may be
adapted to problems of increasing generality.



2.15 More general linear problems 47

First of all, consider the problem

∂u

∂t
= b(x, t)

∂2u

∂x2 , (2.129)

where the function b(x, t) is, as usual, assumed to be strictly positive.
Then the explicit scheme (2.19) is extended in an obvious way to give

Un+1
j = Un

j +
∆t

(∆x)2
bn
j (Un

j+1 − 2Un
j + Un

j−1), (2.130)

where bn
j = b(xj , tn). The practical implementation of this scheme is just

as easy as before, and the analysis of the error is hardly altered. The
same expansion in Taylor series leads, as for (2.19), to the expression

T (x, t) = 1
2∆t utt − 1

12b(x, t)(∆x)2uxxxx + · · · . (2.131)

The analysis leading to (2.44) still applies, but the stability condition
has to be replaced by

∆t

(∆x)2
b(x, t) ≤ 1

2 (2.132)

for all values of x and t in the region. The final error bound becomes

En ≤ 1
2∆t

[
Mtt + B(∆x)2

6∆t Mxxxx

]
tF (2.133)

where B is a uniform upper bound for b(x, t) in the region [0, 1]× [0, tF ].
The θ-method can be applied to this more general problem in several

slightly different ways. Evidently equation (2.75) can be generalised to

Un+1
j − Un

j =
∆t

(∆x)2
b∗ [

θδ2
xUn+1

j + (1 − θ)δ2
xUn

j

]
, (2.134)

but it is not obvious what is the best value to use for b∗. In our previous
analysis of the truncation error of this scheme we expanded in Taylor
series about the centre point (xj , tn+1/2). This suggests the choice

b∗ = b
n+1/2
j ; (2.135)

and in fact it is easy to see that with this choice our former expansion
of the truncation error is unaltered, except for the inclusion of the extra
factor b in (2.84), which becomes

T
n+1/2
j = [(1

2 − θ)∆t uxxt − b
12 (∆x)2uxxxx + 1

24 (∆t)2uttt

− b
8 (∆t)2uxxtt + 1

12 ( 1
2 − θ)∆t(∆x)2uxxxxt

− 2b
6! (∆x)4uxxxxxx + · · · ]n+1/2

j . (2.136)
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The proof of convergence by means of a maximum principle is also unal-
tered, except that the stability condition now requires that

∆t

(∆x)2
(1 − θ)b(x, t) ≤ 1

2 (2.137)

for all points (x, t) in the region considered.
This choice of b∗ requires the computation of b(x, t) for values of t

half-way between time steps. This may be awkward in some problems,
and an obvious alternative is to use

b∗ = 1
2 (bn+1

j + bn
j ). (2.138)

Now we need another Taylor expansion, about the centre point, giving

b∗ =
[
b + 1

4 (∆t)2btt + · · ·
]n+1/2
j

(2.139)

which will lead to an additional higher order term, involving btt, appear-
ing in the expansion of the truncation error.

The most general form of the linear parabolic equation is

∂u

∂t
= b(x, t)

∂2u

∂x2 − a(x, t)
∂u

∂x
+ c(x, t)u + d(x, t), (2.140)

where as before b(x, t) is assumed to be always positive. The notation
used here is chosen to match that used in later chapters, and specifi-
cally in (5.48) of Section 5.7. In particular the negative sign in front
of a(x, t) is convenient but unimportant, since a(x, t) may take either
sign; only b(x, t) is required to be positive. We can easily construct an
explicit scheme for this equation; only the term in ∂u/∂x needs any
new consideration. As we have used the central difference approxima-
tion for the second derivative, it is natural to use the central difference
approximation for the first derivative, leading to the scheme

Un+1
j − Un

j

∆t
=

bn
j

(∆x)2
(Un

j+1 − 2Un
j + Un

j−1)

−
an

j

2∆x
(Un

j+1 − Un
j−1) + cn

j Un
j + dn

j . (2.141)

The calculation of the leading terms in the truncation error is straight-
forward, and is left as an exercise. However, a new difficulty arises in
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the analysis of the behaviour of the error en
j . Just as in the analysis of

the simpler problem, which led to (2.42), we find that

en+1
j = en

j + µn
j (en

j+1 − 2en
j + en

j−1) − 1
2νn

j (en
j+1 − en

j−1)

+ ∆tcn
j en

j − ∆tTn
j

= (1 − 2µn
j + ∆tcn

j )en
j

+ (µn
j − 1

2νn
j )en

j+1 + (µn
j + 1

2νn
j )en

j−1 − ∆tTn
j , (2.142)

where we have written

µn
j =

∆t

(∆x)2
bn
j , νn

j =
∆t

∆x
an

j . (2.143)

In order to go on to obtain similar bounds for en
j as before, we need to

ensure that the coefficients of the three terms in en on the right of this
equation are all nonnegative and have a sum no greater than unity. We
always assume that the function b(x, t) is strictly positive, but we cannot
in general assume anything about the sign of a(x, t). We are therefore
led to the conditions:

1
2

∣∣νn
j

∣∣ ≤ µn
j , (2.144)

2µn
j − ∆tcn

j ≤ 1, (2.145)

as well as cn
j ≤ 0. The second of these conditions is only slightly more

restrictive than in the simpler case, because of the condition cn
j ≤ 0;

indeed, if we had 0 ≤ c(x, t) ≤ C condition (2.145) would represent a
slight relaxation of the condition on µ, but then one can only establish
En+1 ≤ (1+C∆t)En +T∆t. However, the first condition is much more
serious. If we replace ν and µ by their expressions in terms of ∆t and
∆x this becomes

∆x ≤
2bn

j∣∣an
j

∣∣ , or
|an

j | ∆x

bn
j

≤ 2, (2.146)

and this condition must hold for all values of n and j. We therefore have
a restriction on the size of ∆x, which also implies a restriction on the
size of ∆t.

In many practical problems the function b(x, t) may be very small
compared with a(x, t). This will happen, for example, in the flow of
most fluids, which have a very small viscosity. In such situations a key
dimensionless parameter is the Péclet number UL/ν, where U is a veloc-
ity, L a length scale and ν the viscosity. These are close to what are
known as singular perturbation problems, and cannot easily be solved by
this explicit, central difference method: for (2.146) imposes a limit of 2
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on a mesh Péclet number in which the length scale is the mesh length.
Suppose, for example, that b = 0.001, a = 1, c = 0. Then our condi-
tions require that ∆x ≤ 0.002, and therefore that ∆t ≤ 0.000002. We
thus need at least 500 mesh points in the x-direction, and an enormous
number of time steps to reach any sensible time tF .

A simple way of avoiding this problem is to use forward or backward
differences for the first derivative term, instead of the central difference.
Suppose, for example, it is known that a(x, t) ≥ 0 and c(x, t) = 0. We
then use the backward difference, and our difference formula becomes

Un+1
j − Un

j

∆t
=

bn
j

(∆x)2
(Un

j+1 − 2Un
j + Un

j−1)

−
an

j

∆x
(Un

j − Un
j−1) + cn

j Un
j + dn

j , (2.147)

which leads to

en+1
j = en

j + µn
j (en

j+1 − 2en
j + en

j−1) − νn
j (en

j − en
j−1) − ∆tTn

j

= (1 − 2µn
j − νn

j )en
j

+ µn
j en

j+1 + (µn
j + νn

j )en
j−1 − ∆tTn

j . (2.148)

In order to ensure that all the coefficients on the right of this equation
are nonnegative, we now need only

2µn
j + νn

j ≤ 1. (2.149)

This requires a more severe restriction on the size of the time step when
a �= 0, but no restriction on the size of ∆x.

If the function a(x, t) changes sign, we can use the backward difference
where a is positive, and the forward difference where it is negative; this
idea is known as upwind differencing . Unfortunately we have to pay a
price for this lifting of the restriction needed to ensure a maximum prin-
ciple. The truncation error is now of lower order: the forward difference
introduces an error of order ∆x, instead of the order (∆x)2 given by the
central difference. However, we shall discuss this issue in the chapter on
hyperbolic equations.

A general parabolic equation may also often appear in the self-adjoint
form

∂u

∂t
=

∂

∂x

(
p(x, t)

∂u

∂x

)
(2.150)
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where, as usual, we assume that the function p(x, t) is strictly positive.
It is possible to write this equation in the form just considered, as

∂u

∂t
= p

∂2u

∂x2 +
∂p

∂x

∂u

∂x
, (2.151)

but it is usually better to construct a difference approximation to the
equation in its original form. We can write

[
p
∂u

∂x

]n

j+1/2
≈ pn

j+1/2

(
un

j+1 − un
j

∆x

)
, (2.152)

and a similar approximation with j replaced by j − 1 throughout. If
we subtract these two, and divide by ∆x, we obtain an approxima-
tion to the right-hand side of the equation, giving the explicit difference
scheme

Un+1
j − Un

j

∆t
=

1
(∆x)2

[
pn

j+1/2(U
n
j+1 − Un

j ) − pn
j−1/2(U

n
j − Un

j−1)
]
.

(2.153)
We will write

µ′ =
∆t

(∆x)2

which gives in explicit form

Un+1
j =

(
1 − µ′(pn

j+1/2 + pn
j−1/2)

)
Un

j + µ′pn
j+1/2U

n
j+1 + µ′pn

j−1/2U
n
j−1.

(2.154)
This shows that the form of error analysis which we have used before
will again apply here, with each of the coefficients on the right-hand side
being nonnegative provided that

µ′P ≤ 1
2 , (2.155)

where P is an upper bound for the function p(x, t) in the region. So
this scheme gives just the sort of time step restriction which we should
expect, without any restriction on the size of ∆x.

The same type of difference approximation can be applied to give
an obvious generalisation of the θ-method. The details are left as an
exercise, as is the calculation of the leading terms of the truncation
error (see Exercises 7 and 8).
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2.16 Polar co-ordinates

One-dimensional problems often result from physical systems in three
dimensions which have cylindrical or spherical symmetry. In polar co-
ordinates the simple heat equation becomes

∂u

∂t
=

1
rα

∂

∂r

(
rα ∂u

∂r

)
(2.156)

or

ut = urr +
α

r
ur, (2.157)

where α = 0 reduces to the case of plane symmetry which we have con-
sidered so far, while α = 1 corresponds to cylindrical symmetry and
α = 2 to spherical symmetry. The methods just described can easily
be applied to this equation, either in the form (2.156), or in the form
(2.157). Examination of the stability restrictions in the two cases shows
that there is not much to choose between them in this particular situa-
tion. However, in each case there is clearly a problem at the origin r = 0.

A consideration of the symmetry of the solution, in either two or three
dimensions, shows that ∂u/∂r = 0 at the origin; alternatively, (2.157)
shows that either urr or ut, or both, would be infinite at r = 0, were ur

non-zero. Now keep t constant, treating u as a function of r only, and
expand in a Taylor series around r = 0, giving

u(r) = u(0) + rur(0) + 1
2r2urr(0) + · · ·

= u(0) + 1
2r2urr(0) + · · · (2.158)

and
1
rα

∂

∂r

(
rα ∂u

∂r

)
=

1
rα

∂

∂r

[
rαur(0) + rα+1urr(0) + · · ·

]
=

1
rα

[(α + 1)rαurr(0) + · · · ]

= (α + 1)urr(0) + · · · . (2.159)

Writing ∆r for r in (2.158) we get

u(∆r) − u(0) = 1
2 (∆r)2urr(0) + · · · (2.160)

and we thus obtain a difference approximation to be used at the left end
of the domain,

Un+1
0 − Un

0

∆t
=

2(α + 1)
(∆r)2

(Un
1 − Un

0 ). (2.161)

This would also allow any of the θ-methods to be applied.
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j = 0

rj – 1/2
rj + 1/2

j – 1

j + 1
j

Fig. 2.12. Polar co-ordinates.

An alternative, more physical, viewpoint springs directly from the
form (2.156). Consider the heat balance for an annular region between
two surfaces at r = rj−1/2 and r = rj+1/2 as in Fig. 2.12: the term
rα∂u/∂r on the right-hand side of (2.156) is proportional to a heat flux
times a surface area; and the difference between the fluxes at surfaces
with radii rj−1/2 and rj+1/2 is applied to raising the temperature in a
volume which is proportional to (rα+1

j+1/2 − rα+1
j−1/2)/(α + 1). Thus on a

uniform mesh of spacing ∆r, a direct differencing of the right-hand side
of (2.156) gives

∂Uj

∂t
≈ α + 1

rα+1
j+1/2 − rα+1

j−1/2

δr

(
rα
j

δrUj

∆r

)

=
(α + 1)

[
rα
j+1/2Uj+1 −

(
rα
j+1/2 + rα

j−1/2

)
Uj + rα

j−1/2Uj−1

]
[
rα
j+1/2 + rα−1

j+1/2rj−1/2 + · · · + rα
j−1/2

]
(∆r)2

for j = 1, 2, . . . . (2.162a)

At the origin where there is only one surface (a cylinder of radius
r1/2 = 1

2∆r when α = 1, a sphere of radius r1/2 when α = 2) one has
immediately

∂U0

∂t
≈ α + 1

rα+1
1/2

rα
1/2

U1 − U0

∆r
= 2(α + 1)

U1 − U0

(∆r)2
, (2.162b)

which is in agreement with (2.161). Note also that (2.162a) is identical
with difference schemes obtained from either (2.156) or (2.157) in the
case of cylindrical symmetry (α = 1); but there is a difference in the
spherical case because r2

j+1/2 + rj+1/2rj−1/2 + r2
j−1/2 is not the same

as 3r2
j .
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The form (2.162a) and (2.162b) is simplest for considering the con-
dition that a maximum principle should hold. From calculating the
coefficient of Un

j in the θ-method, one readily deduces that the worst
case occurs at the origin and leads to the condition

2(α + 1)(1 − θ)∆t ≤ (∆r)2. (2.162c)

This becomes more restrictive as the number of space dimensions
increases in a way that is consistent with what we shall see in Chapter 3.

2.17 Nonlinear problems

In the general linear equation we considered in Section 2.15 the phys-
ical properties depended on x and t. It is also very common for these
properties to depend on the unknown function u(x, t). This leads to the
consideration of nonlinear problems.

We shall just consider one example, the equation

ut = b(u)uxx (2.163)

where the coefficient b(u) depends on the solution u only and must be
assumed strictly positive for all u. This simplification is really only for
ease of notation; it is not much more difficult to treat the case in which
b is a function of x and t as well as of u.

The explicit method is little affected; it becomes, in the same notation
as before,

Un+1
j = Un

j + µ′b(Un
j )

(
Un

j+1 − 2Un
j + Un

j−1
)
. (2.164)

The actual calculation is no more difficult than before, the only extra
work being the computation of the function b(Un

j ). The truncation error
also has exactly the same form as before and the conditions for the
values {Un

j } to satisfy a maximum principle are unchanged. However,
the analysis of the behaviour of the global error en

j is more difficult, as
it propagates in a nonlinear way as n increases.

Writing un
j for the value of the exact solution u(xj , tn) we know that

Un
j and un

j satisfy the respective equations

Un+1
j = Un

j + µ′b(Un
j )(Un

j+1 − 2Un
j + Un

j−1), (2.165)

un+1
j = un

j + µ′b(un
j )(un

j+1 − 2un
j + un

j−1) + ∆t Tn
j , (2.166)
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where Tn
j is the truncation error. But we cannot simply subtract these

equations to obtain a relation for en
j , since the two coefficients b(·) are

different. However we can first write

b(un
j ) = b(Un

j ) + (un
j − Un

j )
∂b

∂u
(η) (2.167)

= b(Un
j ) − en

j qn
j (2.168)

where

qn
j =

∂b

∂u
(η) (2.169)

and η is some number between Un
j and un

j .
We can now subtract (2.166) from (2.165), and obtain

en+1
j = en

j + µ′b(Un
j )(en

j+1 − 2en
j + en

j−1)

+ µ′en
j qn

j (un
j+1 − 2un

j + un
j−1) − ∆t Tn

j . (2.170)

The coefficients of en
j−1, en

j , en
j+1 arising from the first two terms on the

right are now nonnegative provided that

∆t [max b(Un
j )] ≤ 1

2 (∆x)2. (2.171)

This is our new stability condition, and the condition for the approx-
imation to satisfy a maximum principle; in general it will need to be
checked (and ∆t adjusted) at each time step. However, assuming that
we can use a constant step ∆t which satisfies (2.171) for all j and n, and
that we have bounds∣∣uj+1 − 2un

j + un
j−1

∣∣ ≤ Mxx(∆x)2,
∣∣qn

j

∣∣ ≤ K, (2.172)

we can write

En+1 ≤ [1 + KMxx∆t] En + ∆t T (2.173)

in our previous notation. Moreover,

(1 + KMxx∆t)n ≤ eKMxxn∆t ≤ eKMxxtF (2.174)

and this allows a global error bound to be obtained in terms of T .
However, although the stability condition (2.171) is not much stronger

than that for the linear problem, the error bound is much worse unless
the a priori bounds on |∂b/∂u| and |uxx| are very small. Furthermore,
our example (2.163) is rather special; equally common would be the case
ut = (b(u)ux)x, and that gives an extra term (∂b/∂u)(ux)2 which can
make very great changes to the problem and its analysis.
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To summarise, then, the actual application of our explicit scheme to
nonlinear problems gives little difficulty. Indeed the main practical use
of numerical methods for partial differential equations is for nonlinear
problems, where alternative methods break down. Even our implicit
methods are not very much more difficult to use; there is just a system
of nonlinear equations to solve with a good first approximation given
from the previous time level. However, the analysis of the convergence
and stability behaviour of these schemes is very much more difficult than
for the linear case.

Bibliographic notes and recommended reading

The general reference for all the material on initial value problems in this
book is the classic text by Richtmyer and Morton (1967). Another classic
text covering the whole range of partial differential equation problems is
that by Collatz (1966). In both of them many more difference schemes
to approximate the problems treated in this chapter will be found.

For a wide-ranging exposition of diffusion problems and applications in
which they arise, the reader is referred to the book by Crank (1975), where
more discussion on the use of the Crank–Nicolson scheme may be found.

The earliest reference that we have to the important Thomas algo-
rithm is to a report from Columbia University, New York in 1949; but
since it corresponds to direct Gaussian elimination without pivoting,
many researchers were undoubtedly aware of it at about this time. For
a more general discussion of Gaussian elimination for banded matrices
the reader is referred to standard texts on numerical analysis, several of
which are listed in the Bibliography at the end of the book, or to more
specialised texts on matrix computations such as that by Golub and Van
Loan (1996).

A fuller discussion of nonlinear problems is given in the book by Ames
(1992), where reference is made to the many examples of physical prob-
lems which are modelled by nonlinear parabolic equations contained in
Ames (1965) and Ames (1972).

Exercises

2.1 (i) The function u0(x) is defined on [0,1] by

u0(x) =

{
2x if 0 ≤ x ≤ 1

2 ,

2 − 2x if 1
2 ≤ x ≤ 1.
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Show that

u0(x) =
∞∑

m=1

am sin mπx

where am = (8/m2π2) sin 1
2mπ.

(ii) Show that ∫ 2p+2

2p

1
x2 dx >

2
(2p + 1)2

and hence that
∞∑

p=p0

1
(2p + 1)2

<
1

4p0
.

(iii) Deduce that u0(x) is approximated on the interval [0, 1]
to within 0.001 by the sine series in part (i) truncated after
m = 405.

2.2 (i) Show that for every positive value of µ = ∆t/(∆x)2 there
exists a constant C(µ) such that, for all positive values of k and
∆x, ∣∣∣1 − 4µ sin2 1

2k∆x − e−k2∆t
∣∣∣ ≤ C(µ)k4(∆t)2.

Verify that when µ = 1
4 this inequality is satisfied by C = 1

2 .
(ii) The explicit central difference method is used to construct a
solution of the equation ut = uxx on the region 0 ≤ x ≤ 1, t ≥ 0.
The boundary conditions specify that u(0, t) = u(1, t) = 0, and
u(x, 0) = u0(x), the same function as given in Exercise 1. Take
ε = 0.01, and show that in the sine series given there

∞∑
m=2p0+1

|am| ≤ ε

4
if p0 = 82,

and that then
2p0−1∑
m=1

|am|m4 ≤ 8p0(2p0 + 1)(2p0 − 1)/3π2.

Deduce that over the range 0 ≤ t ≤ 1 the numerical solution
will have an error less than 0.01 when µ = 1

4 provided that
∆t ≤ 1.7 × 10−10.
(iii) Verify by calculation that the numerical solution has error
less than 0.01 over this range when µ = 1

4 and ∆t = 0.0025.
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[Observe that for this model problem the largest error is always
in the first time step.]

2.3 Suppose that the mesh points xj are chosen to satisfy

0 = x0 < x1 < x2 < · · · < xJ−1 < xJ = 1

but are otherwise arbitrary. The equation ut = uxx is approxi-
mated over the interval 0 ≤ t ≤ tF by

Un+1
j − Un

j

∆t
=

2
∆xj−1 + ∆xj

(
Un

j+1 − Un
j

∆xj
−

Un
j − Un

j−1

∆xj−1

)

where ∆xj = xj+1 − xj . Show that the leading terms of the
truncation error of this approximation are

Tn
j = 1

2∆t utt − 1
3 (∆xj − ∆xj−1)uxxx

− 1
12 [(∆xj)2 + (∆xj−1)2 − ∆xj∆xj−1]uxxxx.

Now suppose that the boundary conditions prescribe the val-
ues of u(0, t), u(1, t) and u(x, 0). Write ∆x = max ∆xj , and
suppose that the mesh is sufficiently smooth so that |∆xj −
∆xj−1| ≤ α(∆x)2, for j = 1, 2, . . . , J −1, where α is a constant.
Show that

|Un
j −u(xj , tn)| ≤

( 1
2∆t Mtt

+ (∆x)2
{ 1

3αMxxx + 1
12 [1 + α∆x ]Mxxxx

})
tF

in the usual notation, provided that the stability condition

∆t ≤ 1
2∆xj−1∆xj , j = 1, 2, . . . , J − 1,

is satisfied.

2.4 The numbers aj , bj , cj satisfy

aj > 0, cj > 0, bj > aj + cj , j = 1, 2, . . . , J − 1,

and

ej =
cj

bj − ajej−1
, j = 1, 2, . . . , J − 1,

with e0 = 0. Show by induction that 0 < ej < 1 for j =
1, 2, . . . , J − 1.

Show, further, that the conditions

bj > 0, bj ≥ |aj | + |cj |, j = 1, 2, . . . , J − 1,
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are sufficient for |e0| ≤ 1 to imply that |ej | ≤ 1 for j =
1, 2, . . . , J − 1.

2.5 Consider the equation ut = uxx, with the boundary condition
u(1, t) = 0 for all t ≥ 0, and

∂u

∂x
= α(t)u + g(t) at x = 0, for all t ≥ 0,

with α(t) ≥ 0. Show in detail how the Thomas algorithm is
used when solving the equation by the θ-method. In particular,
derive the starting conditions which replace equation (2.71).

2.6 (i) By considering separately the cases of real roots and complex
roots, or otherwise, show that both the roots of the quadratic
equation z2 + bz + c = 0 with real coefficients lie in or on the
unit circle if and only if |c| ≤ 1 and |b| ≤ 1 + c.
(ii) Show that the scheme

Un+1
j − Un−1

j = 1
3µ

{
δ2
xUn+1

j + δ2
xUn

j + δ2
xUn−1

j

}
is stable for all values of µ.
(iii) Show that the scheme

Un+1
j − Un−1

j = 1
6µ

{
δ2
xUn+1

j + 4δ2
xUn

j + δ2
xUn−1

j

}
is unstable for all values of µ.

2.7 Find the leading terms in the truncation error of the explicit
scheme

Un+1
j − Un

j

∆t
=

{
(Un

j+1 − Un
j )pj+1/2 − (Un

j − Un
j−1)pj−1/2

}
(∆x)2

for the differential equation

∂u

∂t
=

∂

∂x

(
p(x)

∂u

∂x

)

on the region 0 < x < 1, t > 0, with boundary conditions speci-
fying the values of u at x = 0 and x = 1. Deduce a bound on the
global error of the result in terms of bounds on the derivatives
of u and p, under the condition 0 < p(x)∆t ≤ 1

2 (∆x)2.

2.8 Apply the θ-method to the problem of the previous exercise,
showing that the conditions required for the stable use of the
Thomas algorithm will hold if p(x) > 0. Show also that a maxi-
mum principle will apply provided that 2∆t(1−θ)p(x) ≤ (∆x)2

for all x.
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2.9 Consider application of the θ-method to approximate the equa-
tion ut = uxx with the choice

θ = 1
2 +

(∆x)2

12∆t
.

Show that the resulting scheme is unconditionally stable, has a
truncation error which is O((∆t)2 +(∆x)2) and provides rather
more damping for all Fourier modes that oscillate from time step
to time step than does the Crank–Nicolson scheme. However,
show that the mesh ratio ∆t/(∆x)2 must lie in the interval [16 , 7

6 ]
for the maximum principle to apply.

2.10 To solve the equation ut = uxx suppose that we use a non-
uniform mesh in the x-direction, the mesh points being
given by

xj =
j2

J2 , j = 0, 1, 2, . . . , J.

By the change of variable x = s2, write the equation

ut =
1
2s

∂

∂s

(
1
2s

∂u

∂s

)
;

use a uniform mesh with ∆s = 1/J , and apply the difference
scheme of Exercise 7, with the additional factor 1/2sj on the
right-hand side. Show that the leading terms of the truncation
error are

Tn
j = 1

2∆t utt − 1
24 (∆s)2

1
2s

[(
1
2s

usss)s + (
1
2s

us

)
sss

]

and that this may be transformed into

Tn
j = 1

2∆t utt − (∆s)2( 2
3uxxx + 1

3xuxxxx).

Compare this with the leading terms of the truncation error
obtained in Exercise 3.

2.11 Suppose that the Crank–Nicolson scheme is used for the solution
of the equation ut = uxx, with boundary conditions Un

0 = Un
J =

0 for all n ≥ 0, and the initial condition U0
k = 1 for a fixed k

with 0 < k < J, U0
j = 0, j �= k. Write wj = U1

j , and verify that
wj satisfies the recurrence relation

− 1
2µwj−1 + (1 + µ)wj − 1

2µwj+1 = qj , w0 = wJ = 0,

where qk = 1 − µ, qk+1 = qk−1 = 1
2µ, and qj = 0 otherwise.
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Suppose that the mesh is sufficiently fine, and that the point xk

is sufficiently far from the boundary that both k and J − k are
large. Explain why a good approximation to wj may be written

wj = Ap|j−k|, j �= k,

wk = A + B,

where p = (1 + µ − √
(1 + 2µ))/µ. Write down and solve two

equations for the constants A and B, and show that wk =
2/

√
(1 + 2µ) − 1. Deduce that (i) wk < 1 for all µ > 0; (ii)

wk > 0 if and only if µ < 3
2 ; and (iii) wk ≥ wk+1 if and only if

µ ≤ (7 − √
17)/4.

2.12 Show that the (Hermitian) difference scheme

(1 + 1
12δ2

x)(Un+1 − Un) = 1
2µδ2

x(Un+1 + Un)

+ 1
2∆t[fn+1 + (1 + 1

6δ2
x)fn]

for approximating ut = uxx +f , for a given function f and with
fixed µ = ∆t/(∆x)2, has a truncation error which is O((∆t)2).
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Parabolic equations in two and three
dimensions

3.1 The explicit method in a rectilinear box

The natural generalisation of the one-dimensional model problem in two
dimensions is the equation

ut = b∇2u (b > 0)

= b [uxx + uyy] , (3.1)

where b is a positive constant. We shall consider the rectangular domain
in the (x, y)-plane

0 < x < X, 0 < y < Y,

and assume Dirichlet boundary conditions, so that u(x, y, t) is given at
all points on the rectangular boundary, for all positive values of t. In
addition, of course, an initial condition is given, so that u(x, y, 0) is
given on the rectangular region. The region is covered with a uniform
rectangular grid of points, with a spacing ∆x in the x-direction and ∆y

in the y-direction, where

∆x =
X

Jx
, ∆y =

Y

Jy
, Jx, Jy ∈ Z.

The approximate solution is then denoted by

Un
r,s ≈ u(xr, ys, tn), r = 0, 1, . . . , Jx, s = 0, 1, . . . , Jy.

The simplest explicit difference scheme is the natural extension of the
explicit scheme in one dimension, and is given by

Un+1 − Un

∆t
= b

[
δ2
xUn

(∆x)2
+

δ2
yUn

(∆y)2

]
. (3.2)

62
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Here we have omitted the subscripts (r, s) throughout, and used the
notation of (2.28) for the second order central differences in the x- and
y-directions. This is an explicit scheme, since there is only one unknown
value Un+1

r,s on the new time level. This unknown value is calculated
from five neighbouring values on the previous time level,

Un
r,s, Un

r+1,s, Un
r−1,s, Un

r,s+1 and Un
r,s−1. (3.3)

Most of the analysis of this scheme in one dimension is easily extended
to the two-dimensional case; the details are left as an exercise. The
truncation error is

T (x, t) = 1
2∆t utt − 1

12b
[
(∆x)2uxxxx + (∆y)2uyyyy

]
+ · · · , (3.4)

from which a bound on the truncation error can be obtained in terms of
bounds on the derivatives of u, written in the same notation as before
as Mtt, Mxxxx and Myyyy. The proof of convergence follows in a similar
way, leading to

En ≤
[ 1
2∆t Mtt + 1

12b
(
(∆x)2Mxxxx + (∆y)2Myyyy

)]
tF , (3.5)

provided that the mesh sizes satisfy the condition

µx + µy ≤ 1
2 , (3.6)

where

µx =
b∆t

(∆x)2
, µy =

b∆t

(∆y)2
. (3.7)

The stability of the scheme can also be analysed by Fourier series,
assuming that b is constant, and ignoring the effect of boundary condi-
tions, for which a justification will be given in Chapter 5. We construct
solutions of the difference equation of the form

Un ∼ (λ)n exp (i [kxx + kyy]) (3.8)

to obtain the amplification factor λ as

λ ≡ λ(k) = 1 − 4
[
µx sin2 1

2kx∆x + µy sin2 1
2ky∆y

]
(3.9)

where k = (kx, ky). Just as in the one-dimensional problem it is clear
that the stability condition is

µx + µy ≤ 1
2 . (3.10)

The sufficiency of this condition in establishing |λ(k)| ≤ 1 follows just
as in the one-dimensional case: its necessity follows from the fact that
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all the components of k can be chosen independently to give the worst
mode, for which kx∆x = ky∆y = π.

Calculating the approximation from (3.2) is clearly just as easy as
in the one-dimensional case. However the stability condition is more
restrictive; and when b is variable we need to apply the condition (3.10)
at each point so that any local peak in b will cut down the time step that
can be used. Thus this simple explicit scheme is generally impractical
and we must introduce some implicitness to avoid, or relax, the stability
restriction. This is even more true in three dimensions, to which all of
the above is readily extended.

3.2 An ADI method in two dimensions

The natural extension of our study of the one-dimensional problem
would now be to suggest an extension of the θ-method . In particu-
lar, the Crank–Nicolson method becomes(

1 − 1
2µxδ2

x − 1
2µyδ2

y

)
Un+1 =

(
1 + 1

2µxδ2
x + 1

2µyδ2
y

)
Un. (3.11)

In one dimension the great advantage of this type of method was the
lifting of the stability restriction with little extra computational labour.
In two or more dimensions this is no longer true; the method is still stable
without restriction on the time step, but the extra labour involved is now
very considerable. We have to solve a system of (Jx − 1)(Jy − 1) linear
equations for the unknown values Un+1

r,s . The equations have a regular
structure, each equation involving at most five unknowns; the matrix of
the system consists very largely of zeros, but it does not have tridiagonal
form; moreover there is no way of permuting the rows and columns so
that the non-zero elements form a narrow band. The solution of such a
system of equations is by no means out of the question, as we shall see
when we come to elliptic equations in Chapter 6, but it requires so much
extra sophistication that it suggests we should look for other numerical
schemes for parabolic equations in two dimensions.

Since an implicit method in one dimension can be very efficient, it is
natural to look for methods which are implicit in one dimension, but not
both. Consider, for example, the scheme(

1 − 1
2µxδ2

x

)
Un+1 =

(
1 + 1

2µxδ2
x + µyδ2

y

)
Un. (3.12)

If we examine the equations of the system corresponding to a particular
row of mesh points or value of s, we see that they form a tridiagonal
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system of order Jx − 1, as they do not involve any unknowns with dif-
ferent values of s. The complete system thus involves a set of Jy − 1
tridiagonal systems, each of which can be solved very efficiently by the
Thomas algorithm of Section 2.9. This scheme will require roughly three
times as much computational labour as the explicit scheme. Unfortu-
nately, although the stability of the scheme has been improved, there is
still a restriction. We easily find, still assuming b is constant, that the
amplification factor is

λ(k) =
1 − 2µx sin2 1

2kx∆x − 4µy sin2 1
2ky∆y

1 + 2µx sin2 1
2kx∆x

and the scheme will be unstable if µy > 1
2 . As might be expected, there

is no restriction on µx.
Successful methods can be obtained by combining two such schemes,

each of which is implicit in one direction. The first such scheme was
proposed by Peaceman and Rachford in 19551 and used by them in oil
reservoir modelling. We begin by writing a modification of the Crank–
Nicolson scheme in the form(

1 − 1
2µxδ2

x

) (
1 − 1

2µyδ2
y

)
Un+1 =

(
1 + 1

2µxδ2
x

) (
1 + 1

2µyδ2
y

)
Un. (3.13)

Noticing that we can expand the product of the difference operators as(
1 + 1

2µxδ2
x

) (
1 + 1

2µyδ2
y

)
=

(
1 + 1

2µxδ2
x + 1

2µyδ2
y + 1

4µxµyδ2
xδ2

y

)
,

(3.14)
we see that (3.13) is not exactly the same as the Crank–Nicolson scheme,
but introduces extra terms which are of similar order to some in the
truncation error – see (3.19) below. Introducing an intermediate level
Un+1/2, (3.13) can be written in the equivalent form(

1 − 1
2µxδ2

x

)
Un+1/2 =

(
1 + 1

2µyδ2
y

)
Un, (3.15a)(

1 − 1
2µyδ2

y

)
Un+1 =

(
1 + 1

2µxδ2
x

)
Un+1/2, (3.15b)

the equivalence being seen by operating on (3.15a) with
(
1 + 1

2µxδ2
x

)
and on (3.15b) with

(
1 − 1

2µxδ2
x

)
.

In (3.15a) the terms on the right-hand side are known from the previ-
ous step; having computed Un+1/2, the terms on the right-hand side of
(3.15b) are then also known. Just as for the singly implicit scheme (3.12)
the solution of each of the systems involves sets of tridiagonal equations.

1 Peaceman, D.W. and Rachford, H.H. Jr (1955), The numerical solution of
parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math. 3, 28.
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Fig. 3.1. Boundary points for an ADI method.

The total work involved in one time step amounts to solving Jy −1 tridi-
agonal systems (for points such as those marked by crosses in Fig. 3.1),
each of order Jx−1, followed by solving Jx−1 similar systems (for points
such as those marked by dots in Fig. 3.1), each of order (Jy − 1). This
whole process can be carried out very much faster than the solution of
the full system of order (Jx − 1)(Jy − 1) in the Crank–Nicolson method;
we need approximately 10(add)+8(mult)+6(div) operations per mesh
point as compared with 4(add)+3(mult) for the explicit scheme (3.2):
that is about three times as much computation. Boundary conditions
for Un+1/2 are needed at all the points marked with � in Fig. 3.1 and
for Un at the points marked with �.

When b is constant we can again analyse the stability of (3.13) by
substituting the Fourier mode (3.8). From either form we obtain

λ(k) =

(
1 − 2µx sin2 1

2kx∆x
) (

1 − 2µy sin2 1
2ky∆y

)
(
1 + 2µx sin2 1

2kx∆x
) (

1 + 2µy sin2 1
2ky∆y

) (3.16)

from which the scheme’s unconditional stability follows immediately.
We can also apply maximum principle arguments to (3.15). In the

first half-step an individual equation takes the form

(1+µx)Un+1/2
r,s = (1−µy)Un

r,s + 1
2µy

(
Un

r,s−1+ Un
r,s+1

)
+ 1

2µx

(
U

n+1/2
r+1,s +U

n+1/2
r−1,s

)
. (3.17)

Thus, provided that µy ≤ 1, the value of U
n+1/2
r,s is expressed as a

linear combination, with nonnegative coefficients summing to unity, of
neighbouring values of Un and Un+1/2. The same is evidently also true of
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the equation in the second half-step. Thus the maximum principle shows
that the numerical values are bounded by the maximum and minimum
values on the boundaries, provided that

max {µx, µy} ≤ 1 (3.18)

which is a natural generalisation of the condition for the one-dimensional
Crank–Nicolson method.

The truncation error is most readily calculated from the unsplit form
(3.13). Taking all terms to the left and dividing by ∆t we fairly readily
deduce that the leading terms are

Tn+1/2 ≈ 1
24 (∆t)2uttt − 1

12 (∆x)2uxxxx − 1
12 (∆y)2uyyyy

− 1
8 (∆t)2uxxtt − 1

8 (∆t)2uyytt + 1
4 (∆t)2uxxyyt (3.19)

= O
(
(∆t)2 + (∆x)2 + (∆y)2

)
,

the first five terms being as for the Crank–Nicolson scheme in two dimen-
sions (cf. (2.85) for the one-dimensional case) and the last coming from
the product term δ2

xδ2
y

(
Un+1 − Un

)
.

As an example we consider the heat equation

ut = uxx + uyy (3.20)

on the unit square 0 < x < 1, 0 < y < 1, with homogeneous Dirichlet
boundary conditions u = 0 on the boundary of the unit square. The ini-
tial condition is u(x, y, 0) = f(x, y), where f(x, y) = 1 within the region
shaped like the letter M, as in Fig. 3.2, and f(x, y) = 0 in the rest of
the square. In a narrow band surrounding the M, the function increases
linearly from 0 to 1, so that f(x, y) is continuous; its derivatives are not
continuous, being zero everywhere outside this narrow band and being
large inside the band.

Results of an explicit numerical calculation are shown in Fig. 3.3,
Fig. 3.4 and Fig. 3.5; they illustrate the way in which this initial func-
tion diffuses throughout the square. It is possible in principle to deter-
mine the error in the numerical solution by comparison with a Fourier
series expansion of the exact solution, as in Chapter 2. The coefficients
in this Fourier series would be extremely complicated, and instead we
have estimated the accuracy of the numerical solution by repeating the
calculations with different mesh sizes. Using ∆x = ∆y = 1/100, 1/200
and 1/400 indicated good agreement, and gives us confidence that the
solutions illustrated in the graphs are more accurate than the resolution
available in the graphical representation.
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Fig. 3.2. Initial data for a heat flow calculation on the unit
square.

Fig. 3.3. The numerical solution at t = 0.001 for the
data of Fig. 3.2.
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Fig. 3.4. As for Fig. 3.3 at t = 0.004.

Fig. 3.5. As for Fig. 3.3 at t = 0.01.
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3.3 ADI and LOD methods in three dimensions

There are many other ADI methods similar to (3.15), as well as alterna-
tive ways of achieving the advantages of implicitness while solving only
tridiagonal systems. Sometimes variants of a scheme differ only in the
intermediate values calculated, which affects the ways that boundary
conditions are imposed. For example D’yakonov1 proposed that (3.13)
could be split as follows :

(
1 − 1

2µxδ2
x

)
Un+∗ =

(
1 + 1

2µxδ2
x

) (
1 + 1

2µyδ2
y

)
Un, (3.21a)(

1 − 1
2µyδ2

y

)
Un+1 = Un+∗. (3.21b)

Then, as indicated by the notation, Un+∗ is not a consistent approxima-
tion at an intermediate time so that care has to be taken with boundary
conditions: but these are needed for Un+∗ only on the left and right
(marked with � in Fig. 3.1) and can be obtained from (3.21b) at these
points. Some of these variants have advantages when one considers gen-
eralisations to three dimensions.

A commonly used ADI scheme is due to Douglas and Rachford2 which
in two dimensions takes the form

(
1 − µxδ2

x

)
Un+1∗ =

(
1 + µyδ2

y

)
Un, (3.22a)(

1 − µyδ2
y

)
Un+1 = Un+1∗ − µyδ2

yUn; (3.22b)

after elimination of Un+1∗ it leads to

(
1 − µxδ2

x

) (
1 − µyδ2

y

)
Un+1 =

(
1 + µxµyδ2

xδ2
y

)
Un. (3.23)

While (3.15) was motivated by the Crank–Nicolson scheme, (3.22, 3.23)
is clearly motivated more by the fully implicit scheme. It is readily
shown that (3.22b) is consistent with the differential equation if Un+1∗

is regarded as an approximation to un+1 and that for the whole scheme

1 D’yakonov, E.G. (1964), Difference schemes of second order accuracy with a
splitting operator for parabolic equations without mixed partial derivatives, Zh.
Vychisl. Mat. i Mat. Fiz., 4, 935–41.

2 Douglas, J. Jr and Rachford, H.H. Jr (1956), On the numerical solution of the
heat conduction problems in two and three variables, Trans. Amer. Math. Soc.
82, 421–39.
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the truncation error is O
(
∆t + (∆x)2

)
. It is also easily generalised to

three dimensions as(
1 − µxδ2

x

)
Un+1∗ =

(
1 + µyδ2

y + µzδ
2
z

)
Un, (3.24a)(

1 − µyδ2
y

)
Un+1∗∗ = Un+1∗ − µyδ2

yUn, (3.24b)(
1 − µzδ

2
z

)
Un+1 = Un+1∗∗ − µzδ

2
zUn. (3.24c)

The same remarks as above apply to this.
A Fourier analysis applied to (3.22), (3.23) or (3.24) easily shows

that they are unconditionally stable, as in the one-dimensional case.
However, maximum principle arguments are much more difficult to apply
in either the form (3.22) or (3.23).

An alternative, much favoured by Russian authors, is to use the locally
one-dimensional (LOD) schemes in which only one variable is dealt with
at a time. Thus based on the Crank–Nicolson scheme we have, using
two intermediate levels,(

1 − 1
2µxδ2

x

)
Un+∗ =

(
1 + 1

2µxδ2
x

)
Un, (3.25a)(

1 − 1
2µyδ2

y

)
Un+∗∗ =

(
1 + 1

2µyδ2
y

)
Un+∗, (3.25b)(

1 − 1
2µzδ

2
z

)
Un+1 =

(
1 + 1

2µzδ
2
z

)
Un+∗∗. (3.25c)

Since the intermediate values are not at all consistent with the full dif-
ferential equation, special care needs to be taken with their boundary
conditions. For example, suppose we denote by V n, V n+∗ the values
obtained by the equivalent of (3.25) in two dimensions and compare
with the Peaceman–Rachford scheme (3.15). Eliminating V n+∗ we have(

1 − 1
2µyδ2

y

)
V n+1 =

(
1 + 1

2µyδ2
y

) (
1 − 1

2µxδ2
x

)−1 (
1 + 1

2µxδ2
x

)
V n

(3.26)
from which by comparison with (3.13) we deduce that the LOD scheme
is equivalent to the Peaceman–Rachford scheme if we write

V n =
(
1 − 1

2µxδ2
x

)
Un, V n+∗ =

(
1 + 1

2µxδ2
x

)
Un. (3.27)

This relationship can be exploited in various ways to obtain reasonably
good boundary conditions.

3.4 Curved boundaries

Another important new problem in two or more dimensions is that the
region will usually be more complicated. In one dimension it is neces-
sary to consider only a finite interval, which can be standardised to be
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Fig. 3.6. Model problem with curved boundary.

the interval [0, 1]. So far in two dimensions we have considered only the
natural extension of this, which is the unit square; but in general the
region will have curved boundaries, and may well not be simply con-
nected. An obvious example of physical interest could be a square plate
with a round hole in it. Some of the difficulties which now arise will
be mainly computational, concerning the way in which the calculation
is organised; for example, if we cover a general region with a square or
rectangular grid the numbers of grid points along the grid lines will no
longer be all the same. Here we shall not consider such issues, but we
must discuss the way in which the boundary conditions are incorporated
into the finite difference equations.

We take as an example the problem illustrated in Fig. 3.6. The region
Ω lies between the unit square and the circle with centre at ( 1

2 , 1
2 ) and

radius 0.33 which form the boundary ∂Ω; we wish to solve the heat
equation

ut = uxx + uyy (3.28)

in this region. On the part of the region above the line x + y = 1 the
boundary condition specifies that u = 0 on the two straight sides of the
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region, and also on this half of the interior circle. On the other parts of
the boundary, where x + y < 1, the boundary condition specifies that
the normal derivative is zero. Thus

u(x, y, t) = 0 on {x + y ≥ 1} ∩ ∂Ω, (3.29)
∂u

∂n
= 0 on {x + y < 1} ∩ ∂Ω. (3.30)

The initial condition requires that u(x, y, 0) = 0 except in two small
symmetrically placed regions near the North-East and South-West cor-
ners. Physically this problem models the flow of heat in a square plate
with a round hole in it. Half of the boundary of the plate is maintained
at zero temperature, and the other half is insulated; initially the plate
is at zero temperature, except for two hot spots.

As shown in Fig. 3.6 the square is covered with a uniform square
grid of size ∆x = ∆y = 1/J . At many of the points of this grid the
standard difference approximations are used, but when the points are
near the boundaries we need to apply some special formulae. Consider
the point P ; its two neighbours on the East and West are ordinary grid
points, and there is no difficulty about δ2

xU , but its neighbour on the
South would be inside the circle. The situation is shown enlarged in
Fig. 3.7.

Here we need an approximation to uyy which uses values at P and N ,
and at the boundary point B. Such an approximation is quite easily con-
structed; it generalises the standard form involving three neighbouring
points to the situation in which these points are not equally spaced.

There are various ways in which the result can be derived. One of the
most straightforward is to write

uN − uP

yN − yP
≈ ∂u

∂y
(P+),

uP − uB

yP − yB
≈ ∂u

∂y
(P−)

as approximations to the first partial derivative at the two points P+ and
P−, one half-way between P and N , and one half-way between P and
B. Since the distance between these two half-way points is (yN −yB)/2,
we obtain the required approximation

uyy ≈ 2
yN − yB

(
uN − uP

yN − yP
− uP − uB

yP − yB

)
. (3.31a)
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Fig. 3.7. Dirichlet condition on curved boundary.

In this example yP − yS = ∆y, and we can write yP − yB = α∆y,
where 0 < α < 1. The approximation then becomes

uyy ≈ 2
(α + 1)(∆y)2

uN − 2
α(∆y)2

uP +
2

α(α + 1)(∆y)2
uB . (3.31b)

A similar approximation is used at a point like Q, where one of the
neighbours is replaced by the point D on the boundary, and we need
to approximate the derivative uxx. There will also be points like R

where two of the neighbours are outside the region, and both x- and
y- derivatives need special treatment.

It is worth noting here that these formulae are equivalent to extrap-
olating from interior and boundary points to a fictitious exterior point,
and then applying the standard difference scheme. For example, the
quadratic extrapolation

uS =
α(1 − α)uN + 2uB − 2(1 − α2)uP

α(α + 1)
(3.32)

would lead to (3.31b).
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If we are using the explicit method, in general we may obtain a dif-
ference scheme of the form

Un+1
r,s − Un

r,s

∆t
=

2
(1 + α)(∆x)2

Un
r+1,s +

2
α(1 + α)(∆x)2

uB

+
2

(1 + β)(∆y)2
Un

r,s+1 +
2

β(1 + β)(∆y)2
uD

−
(

2
α(∆x)2

+
2

β(∆y)2

)
Un

r,s, (3.33)

where uB and uD are given values of the solution on the boundary.
The expression for Un+1

r,s , in terms of the values on the previous time
level, thus retains the important property that the coefficients of the
neighbouring values are all nonnegative, provided that the time step
∆t is not too large. The stability restriction for the explicit method is
similar to the standard case, and the error analysis is largely unaltered.
However, the restriction on the time step is likely to be much more
serious than for the rectangular boundary, since the condition is now

2
(

µx

α
+

µy

β

)
≤ 1; (3.34)

α and β are both less than 1 and may be quite small. For example,
for the present problem when we use ∆x = ∆y = 1/50 we find that
the maximum permitted time step is 0.000008; while without the hole
the maximum time step would be 0.00001, which is not very different.
However, if we double the number of mesh points in both the x- and
y-directions the maximum time step without the hole is reduced by a
factor of 4; while with the hole this puts one of the mesh points rather
close to the boundary, and the time step is reduced by a factor of 800,
to 10−7. Such problems drive home the requirement to use implicit
methods, or more appropriate meshes – see below.

Normal derivative boundary conditions can be handled in a similar
way but are considerably more difficult. For example, in Fig. 3.8 sup-
pose that we are given the outward normal derivative at the point B.
The normal at B meets the horizontal mesh line WPE at Z and suppose
the lengths are

ZP = p∆x, PB = α∆y, BZ = q∆y,

where 0 ≤ p ≤ 1, 0 < α ≤ 1 and 0 < q ≤ √
[1 + (∆x)2/(∆y)2]. The

normal derivative can be approximated by

uB − uZ

q∆y
≈ ∂u

∂n
= g(B), (3.35)
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Fig. 3.8. Neumann condition on curved boundary.

and the value of uZ can be obtained by linear interpolation between uW

and uP ,

uZ ≈ puW + (1 − p)uP . (3.36)

As before we approximate uxx in terms of uW , uP , uE , and uyy in terms
of uS , uP , uB ; we then eliminate uB and uZ to give the scheme

Un+1
P − Un

P

∆t
=

UE − 2UP + UW

(∆x)2

+
1

(∆y)2

{
2

α(α + 1)
UB − 2

α
UP +

2
α + 1

US

}

=
UE − 2UP + UW

(∆x)2
+

1
(∆y)2

{
− 2

α
UP +

2
α + 1

US

}

+
2

α(α + 1)(∆y)2

{
pUW + (1 − p)UP + qgB∆y

}

=
1

(∆x)2
UE +

{
1

(∆x)2
+

2p

α(α + 1)(∆y)2

}
UW

+
2

(α + 1)(∆y)2
US −

{
2

(∆x)2
+

2(α + p)
α(α + 1)(∆y)2

}
UP

+
2q

α(α + 1)∆y
gB . (3.37)
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Notice how once again this expression involves positive coefficients for
the values of U at the neighbouring points. The same expressions can
be incorporated into a Crank–Nicolson or ADI scheme, for which a max-
imum principle will hold with appropriate limits on ∆t. We see again,
by equating the right-hand side of (3.37) to the standard scheme using
UN and deducing an extrapolation formula for UN , that the scheme is
equivalent to extrapolation for UN first and then applying the standard
formula.

The various forms of ADI method are very little changed in these sit-
uations; the main difference in practice is the extra calculation involved
in forming the elements of the tridiagonal matrices near the boundary,
and the fact that these matrices will now have different sizes.

These methods for approximating the curved boundary lead to trun-
cation errors of lower order than those at ordinary internal points, espe-
cially where normal derivatives are involved. Just as we found in the
one-dimensional case in Section 2.13, the truncation error may not tend
to zero at these points when the mesh is refined. It is difficult to produce
higher order approximations with the desirable properties. For exam-
ple, we have used the simplest approximation to the normal derivative,
incorporating just the two points UB and UZ . Now suppose we extend
the normal at B to the point R in Fig. 3.8, where ZR = (q/α)∆y. Then
a higher order approximation to the derivative is

gB =
∂u

∂n
≈ (1 + 2α)uB + α2uR − (1 + α)2uZ

(1 + α)q∆y
. (3.38)

It will now be more awkward to interpolate for the value uR, and more-
over the coefficients of uZ and uR have opposite signs. The resulting
scheme will not satisfy a maximum principle. It seems likely that such
a higher order scheme will be unsatisfactory in practice unless further
restrictions are imposed.

The results of a typical calculation using the Peaceman–Rachford ADI
method are shown in Figs. 3.9–3.12. These used a grid of size 50 in
the x- and y-directions. The diagrams are not to the same scale, and
correspond to an approximately North-East viewing point so that the
smaller peak is in the foreground; the two initial peaks in u diffuse
over the region, and become much smaller, so each figure is scaled to
show the same maximum height. The actual maximum value of u is also
given. The results show clearly how one of the peaks diffuses through
the boundary, while the other spreads round the hole, as it cannot
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Fig. 3.9. Initial data for a heat flow calculation on the
domain of Fig. 3.6; maximum u = 1.

Fig. 3.10. Numerical solution at t = 0.005 for the
data of Fig. 3.9; maximum U = 0.096.

diffuse through the insulated part of the boundary. Eventually it diffuses
round the hole and out of the other half of the boundary. In Fig. 3.11
this is beginning to happen, and the other peak has almost completely
disappeared.
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Fig. 3.11. As for Fig. 3.10 at t = 0.02; maximum U = 0.060.

Fig. 3.12. As for Fig. 3.10 at t = 0.05; maximum U = 0.038.
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3.5 Application to general parabolic problems

In several dimensions (3.1) may take the form

e
∂u

∂t
= ∇ · (b∇u − au) + cu + d, x ∈ Ω, (3.39)

where all the coefficients may depend on x, t and in nonlinear problems
on u as well. The region Ω may be quite complicated in shape rather
than rectilinear, and boundary conditions will be of the general form

α0u + α1∂u/∂n = α2 on ∂Ω (3.40)

where ∂/∂n represents differentiation along the outward normal and
α0 ≥ 0, α1 ≥ 0 and α0 + α1 > 0. As indicated in Chapter 1, we have
tried to emphasise in the above account those methods and ideas that
will still be valid for such more general problems. Here we will just
comment on some of the extra difficulties that will arise.

In setting up the difference schemes we can often still use a regular mesh,
and with local values of the coefficients we use essentially the same schemes
as given above. The main problems occur at curved boundaries where the
boundary conditions have to be applied using an irregularly arranged set
of points; and both the variation in mesh size that results and the variation
of coefficients make it more necessary to use implicit methods.

Alternative approaches may be based on the use of irregular meshes
which are better adapted to the boundary. An extension of the tech-
nique for the cylindrically symmetric scheme of (2.156) can be applied to
a mesh in which one set of curved co-ordinate lines is roughly parallel to
the boundary and one roughly normal, leading to so-called ‘boundary-
fitted meshes’ and what are called finite volume methods. Another
approach is to use a completely unstructured mesh of triangles and adopt
a finite element formulation. Both of these approaches are beyond the
scope of the present book, although more will be said about finite vol-
ume methods in Chapters 4 and 5, and about finite element methods in
Chapter 6.

The two-time-level schemes we have concentrated upon are an advan-
tage for large problems because they minimise the computer storage
requirements: not much more than U at one time level is required for
most of the schemes. To solve the difference equations on a rectan-
gular mesh we can use the ADI or LOD methods, requiring only the
use of a tridiagonal solver many times over. Again there will need to
be adjustments at the boundary in order to obtain accurate boundary
conditions; this will be particularly true at re-entrant corners. These
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remarks assume that the equations are linear. If they are nonlinear in
not too severe a way, we can linearise about the earlier time level so
that implicit methods may be used, and still hope to obtain reasonable
accuracy. So far as the analysis of the scheme’s behaviour is concerned
we cannot of course carry out a complete Fourier analysis unless the
scheme is linear, has constant coefficients and is in a rectangular region
with a uniform mesh and periodic boundary conditions. However, one
can show that the stability conditions obtained by a localised Fourier
analysis are still necessary: this is essentially because the most unstable
modes in all the cases we have encountered are of high frequency and
therefore grow locally. Thus for linear problems we substitute Fourier
modes into the difference equations with the coefficients held constant
at local values in order to seek out unstable solutions: for nonlinear
problems we do the same to the linearised equations. These topics will
be discussed further in Chapter 5.

To establish convergence for linear problems the sharpest tool has
to be the maximum principle. Provided a correct choice of difference
scheme is used, particularly for problems involving derivative boundary
conditions, a maximum principle will still hold, but we must expect gaps
between the conditions where we can prove convergence and when we
can demonstrate instability. This will be particularly true with general
derivative boundary conditions on a curved boundary. In particular, the
analysis of ADI methods is more complicated for these problems. We
have so far relied on the equality of the two factorisations(

1 − 1
2µxδ2

x

) (
1 − 1

2µyδ2
y

)
U =

(
1 − 1

2µyδ2
y

) (
1 − 1

2µxδ2
x

)
U,

because the two difference operators commute. At the irregular grid
points near the boundaries this type of factorisation is only approximate,
and the missing terms are not the same when the order of factorisation
is reversed. The performance of these methods may then deteriorate,
reflecting the fact that the Fourier analysis that established their key
properties is no longer valid.

As we shall discuss in Chapter 7, during the last 20 to 30 years there
have been enormous developments in methods and software to solve
large systems of algebraic equations – particularly in multigrid methods
following the work of Brandt.1 These allow one to adopt the viewpoint
that, for an implicit approximation to a parabolic problem, one has to
solve a succession of elliptic problems, with each set of data provided
1 Brandt, A. (1977) Multilevel adaptive solutions to boundary-value problems.

Math. Comp. 31, 333–90.



82 2-D and 3-D parabolic equations

from the previous time step. So the problems of this chapter may be
treated by the methods described in Chapters 6 and 7. Then ADI and
LOD methods may play no role, or a very subsidiary role, as precondi-
tioners for the algebraic solvers. If finite element methods are used, this
will also mean that variation principles will provide the framework for
analysing the methods.

So far we have not commented on the effect of the form of the equation
(3.39). Inclusion of the term in a, which corresponds to convective effects
in contrast to the diffusive effects arising from the leading term, will
often make the equations less stable and we shall study this effect in
the next two chapters and in Section 6.8. We have assumed that the
diffusion coefficient b is a scalar and this is partly why so many of the
methods and so much of the analysis have generalised easily. We could
introduce a diagonal tensor, so that the diffusion coefficient is different
in each of the co-ordinate directions, and this would also make very little
change; but such anisotropy in practical applications is unlikely to line
up neatly with our co-ordinate axes as it will represent real physical
effects in, for example, stratified rock. Then the diffusion tensor has
off-diagonal terms, and the equation will look like

eut = b11uxx + 2b12uxy + b22uyy − a1ux − a2uy + cu + d (3.41)

with a mixed second order derivative; and our difference schemes in two
dimensions will involve nine rather than five points and twenty-seven in
three dimensions.

These cause very much greater difficulties, and a proper discussion is
beyond the scope of this book; but some remarks regarding nine-point
schemes should be made here. Suppose the mixed derivative uxy is approx-
imated on a square mesh by the divided difference ∆0x∆0yU/(∆x)2. This
will always give a negative coefficient at one of the points NE, NW, SE or
SW in the compass-point notation of Figs. 3.7 and 3.8 and so invalidate
the maximum principle. However, diagonal second differences could be
used to approximate the uxx and uyy terms and these will make pos-
itive contributions to these coefficients. For example, suppose that in
(3.41) we have b11 > b22: then we can approximate b22(uxx + uyy)
by second differences in the two diagonal directions, providing positive
contributions equal to b22/2(∆x)2. This will then ensure that the max-
imum principle is satisfied if b22 ≥ |b12|. Note, though, that this does
not provide a remedy in all cases since the operator in (3.41) is elliptic
provided only that b11b22 > b2

12. As this observation illustrates, the
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most difficult practical cases occur when diffusion is much greater in
one direction than in others.

Bibliographic notes and recommended reading

The further reading recommended for Chapter 2 is equally relevant for
this chapter, as well as much of that recommended in Chapter 6 for ellip-
tic problems and in Chapter 7 for solving the linear systems of equations
arising from their discretisation.

ADI and related methods are discussed fully in the book by Mitchell
and Griffiths (1980); and many of the contributions to the subject from
Russian authors are well covered in the book by Yanenko (1971).

Exercises

3.1 Show that the truncation error of the explicit scheme

Un+1 − Un

∆t
= b

[
δ2
xUn

(∆x)2
+

δ2
yUn

(∆y)2

]

for the solution of the equation ut = b(uxx + uyy), where b =
b(x, y) > 0, has the leading terms

Tn = 1
2∆tutt − 1

12b[(∆x)2uxxxx + (∆y)2uyyyy].

If the boundary conditions prescribe the values of u(x, y, t)
at all points on the boundary of the rectangle [0, X] × [0, Y ] for
all t > 0, and the resulting solution is sufficiently smooth, show
that the error in the numerical solution satisfies a bound, over
0 ≤ t ≤ tF , of the form

|Un
rs − u(xr, ys, tn)| ≤ tF { 1

2∆tM1 + 1
12 [(∆x)2M2 + (∆y)2M3]}

provided that b∆t[(∆x)−2+(∆y)−2] ≤ 1
2 ; identify the constants

M1, M2 and M3.
3.2 Show that the leading terms in the truncation error of the

Peaceman–Rachford ADI method for ut = ∇2u are

Tn+1/2 = (∆t)2[ 1
24uttt − 1

8 (uxxtt + uyytt) + 1
4uxxyyt]

− 1
12 [(∆x)2uxxxx + (∆y)2uyyyy].

How is this changed when a variable diffusivity b is introduced?
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3.3 Show that the Douglas–Rachford scheme

(1 − µxδ2
x)Un+1∗ = (1 + µyδ2

y + µzδ
2
z)Un,

(1 − µyδ2
y)Un+1∗∗ = Un+1∗ − µyδ2

yUn,

(1 − µzδ
2
z)Un+1 = Un+1∗∗ − µzδ

2
zUn

for the heat equation ut = uxx + uyy + uzz in three dimensions
has unrestricted stability when applied on a rectilinear box.

3.4 The explicit method on a uniform mesh is used to solve the
heat equation ut = uxx + uyy in a two-dimensional region with
a curved boundary; Dirichlet boundary conditions are given at
all points of the boundary. At points near the boundary the
scheme is modified to a form such as

Un+1
rs − Un

rs

∆t
=

2
(1 + α)(∆x)2

Un
r+1,s +

2
α(1 + α)(∆x)2

Un
B

+
2

(1 + β)(∆y)2
Un

r,s+1 +
2

β(1 + β)(∆y)2
Un

D

−
(

2
α(∆x)2

+
2

β(∆y)2

)
Un

rs,

where B and D are points on the boundary which are neighbours
of (xr, ys) and the distances from these points to (xr, ys) are
α∆x and β∆y. Find the leading terms in the truncation error
at this point, and show that the truncation error everywhere
has a bound of the form

|Tn
rs| ≤ T := 1

2∆tMtt + 1
3 (∆xMxxx + ∆yMyyy)

+ 1
12 [(∆x)2Mxxxx + (∆y)2Myyyy].

State the restriction on the size of ∆t required for a maximum
principle to apply, and show that, if this condition is satisfied,
the error in the solution over the range 0 ≤ t ≤ tF is bounded
by tF T .

3.5 The explicit method on a uniform mesh is used to solve the
heat equation ut = uxx + uyy in the square region 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. The boundary conditions specify that ux = 0
on the side x = 0 of the square, and Dirichlet conditions are
given on the rest of the boundary. At mesh points on x = 0
an additional line of mesh points with x = −∆x is included,
and the extra values Un

−1,s are then eliminated by use of the
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boundary condition. The scheme becomes, at points on the
boundary x = 0,

Un+1
0,s − Un

0,s

∆t
=

2
(∆x)2

(Un
1,s − Un

0,s) +
1

(∆y)2
δ2
yUn

0,s.

Show that the leading terms of the truncation error at this mesh
point are

Tn∗
0,s = 1

2∆tutt − 1
12 [(∆x)2uxxxx + (∆y)2uyyyy] − 1

3∆xuxxx

and deduce that if the usual stability condition is satisfied the
error in the solution satisfies en

r,s ≡ Un
r,s−u(xr, ys, tn) = O(∆t)+

O(∆x) + O
(
(∆y)2

)
.

3.6 The diffusion equation ut = b∇2u on a rectangular region is
to be approximated by a fractional-step method based on the
Crank–Nicolson scheme over a uniform square mesh. Show that
if b is constant the Peaceman–Rachford ADI method is exactly
equivalent to the LOD method

(1 − 1
2µδ2

y)V n+1
2 = (1 + 1

2µδ2
y)V n,

(1 − 1
2µδ2

x)V n+1 = (1 + 1
2µδ2

x)V n+1
2 ,

where µ = b∆t/(∆x)2. If b is a function of (x, y) and Un denotes
the solution of the ADI scheme, show that the schemes can
still be related by setting V 0 = (1 − 1

2µδ2
y)U0, and find the

relationship between U and V both at the end of a full time
step, and at the intermediate stage.
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Hyperbolic equations in one space dimension

4.1 Characteristics

The linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0, (4.1)

must surely be the simplest of all partial differential equations. Yet to
approximate it well on a fixed (x, t)-mesh is a far from trivial problem
that is still under active discussion in the numerical analysis literature.
Of course, the exact solution is obtained from observing that this is a
hyperbolic equation with a single set of characteristics and u is constant
along each such characteristic: the characteristics are the solutions of
the ordinary differential equation

dx

dt
= a(x, t), (4.2a)

and along a characteristic curve the solution u(x, t) satisfies

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
= 0. (4.2b)

Thus from initial data

u(x, 0) = u0(x), (4.3)

where u0(x) is a given function, we can construct an approximate solu-
tion by choosing a suitable set of points x0, x1, . . ., as in Fig. 4.1, and
finding the characteristic through (xj , 0) by a numerical solution of
(4.2a) with the initial condition x(0) = xj . At all points on this curve we
then have u(x, t) = u0(xj). This is called the method of characteristics.
Note that for this linear problem in which a(x, t) is a given function, the
characteristics cannot cross so long as a is Lipschitz continuous in x and
continuous in t.

86
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x0 x1 x2 x3 x4 x5 x

t

Fig. 4.1. Typical characteristics for ut + a(x, t)ux = 0.

When a is a constant the process is trivial. The characteristics are
the parallel straight lines x − at = constant, and the solution is simply

u(x, t) = u0(x − at). (4.4a)

Moreover, in the nonlinear problem in which a is a function only of u, a =
a(u), the characteristics are also straight lines because u is constant
along each, although they are not now parallel. Thus again we are able
to write the solution in the form

u(x, t) = u0(x − a(u(x, t))t), (4.4b)

until the time when this breaks down because the characteristics can now
envelope or cross each other in some other manner – see Section 4.6.

Consideration of the characteristics of the equation, or system of equa-
tions, is essential in any development or study of numerical methods for
hyperbolic equations and we shall continually refer to them below. We
shall want to consider systems of conservation laws of the form

∂u
∂t

+
∂f(u)
∂x

= 0 (4.5)

where u = u(x, t) is a vector of unknown functions and f(u) a vector
of flux functions. For example, if the vector u has two components
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u and v, and f has two components f(u, v) and g(u, v), we can write out
the components of (4.5) as

∂u

∂t
+

∂

∂x
f(u, v) = 0, (4.6a)

∂v

∂t
+

∂

∂x
g(u, v) = 0, (4.6b)

or in matrix form
∂u

∂t

∂v

∂t

 +


∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v




∂u

∂x

∂v

∂x

 =


0

0

 . (4.7)

If we define

A(u) :=
∂f
∂u

, (4.8)

the Jacobian matrix formed from the partial derivatives of f, we can
write the system as

ut + A(u)ux = 0, (4.9)

and the characteristic speeds are the eigenvalues of A. The hyperbolicity
of the system is expressed by the fact that we assume A has real eigenval-
ues and a full set of eigenvectors. Suppose we denote by Λ the diagonal
matrix of eigenvalues and by S = S(u) the matrix of left eigenvectors,
so that

SA = ΛS. (4.10)

Then premultiplying (4.9) by S gives the characteristic normal form of
the equations

Sut + ΛSux = 0. (4.11)

If it is possible to define a vector of Riemann invariants r = r(u) such
that rt = Sut and rx = Sux, then we can write

rt + Λrx = 0 (4.12)

which is a direct generalisation of the scalar case whose solution we have
given in (4.4b). However, now each component of Λ will usually depend
on all the components of r so that the characteristics will be curved.
Moreover, although these Riemann invariants can always be defined for
a system of two equations, for a larger system this is not always possible.
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To apply the method of characteristics to problems like (4.5), where
the characteristic speeds depend on the solution, one has to integrate
forward simultaneously both the ordinary differential equations for the
characteristic paths and the characteristic normal form (4.11) of the dif-
ferential equations. This is clearly a fairly complicated undertaking, but
it will give what is probably the most precise method for approximating
this system of equations.

However, to use such a technique in a direct way in two space dimen-
sions does become excessively complicated: for there we have charac-
teristic surfaces and many more complicated solution phenomena to
describe. Thus, even though this chapter is only on one-dimensional
problems, in line with our general philosophy set out in the first chap-
ter, we shall not consider the method of characteristics in any more
detail. Instead we shall confine our considerations to methods based on
a fixed mesh in space: and although the length of the time step may
vary from step to step it must be the same over all the space points. We
shall start with explicit methods on a uniform mesh.

4.2 The CFL condition

Courant, Friedrichs and Lewy, in their fundamental 1928 paper1 on dif-
ference methods for partial differential equations, formulated a neces-
sary condition now known as the CFL condition for the convergence of a
difference approximation in terms of the concept of a domain of depen-
dence. Consider first the simplest model problem (4.1), where a is a pos-
itive constant; as we have seen, the solution is u(x, t) = u0(x−at), where
the function u0 is determined by the initial conditions. The solution at
the point (xj , tn) is obtained by drawing the characteristic through this
point back to where it meets the initial line at Q ≡ (xj − atn, 0) – see
Fig. 4.2.

Now suppose that we compute a finite difference approximation by
using the explicit scheme

Un+1
j − Un

j

∆t
+ a

Un
j − Un

j−1

∆x
= 0. (4.13)

1 Courant, R., Friedrichs, K.O. and Lewy, H. (1928), Über die partiellen Differen-
zengleichungen der mathematischen Physik, Math. Ann. 100, 32–74.
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t

P

Q

.........................
x

Fig. 4.2. Typical domain of dependence.

Then the value on the new time level will be calculated from

Un+1
j = Un

j − a∆t

∆x
(Un

j − Un
j−1)

= (1 − ν)Un
j + νUn

j−1, (4.14)

where

ν =
a∆t

∆x
. (4.15)

The value of Un+1
j depends on the values of U at two points on the

previous time level; each of these depends on two points on the time level
tn−1, and so on. As illustrated in Fig. 4.2, the value of Un+1

j depends on
data given in a triangle with vertex (xj , tn+1), and ultimately on data
at the points on the initial line

xj−n−1, xj−n, . . . , xj−1, xj .

For an inhomogeneous equation in which a source term hn
j replaces the

zero on the right-hand side of (4.13), Un+1
j depends on data given at all

points of the triangle. This triangle is called the domain of dependence
of Un+1

j , or of the point (xj , tn+1), for this particular numerical scheme.
The corresponding domain of dependence of the differential equation

is the characteristic path drawn back from (xj , tn+1) to the initial line,
for in the inhomogeneous case ut+aux = h data values h(x, t) are picked
up along the whole path as well as the initial data at x = xj − atn+1.
The CFL condition then states that for a convergent scheme the domain
of dependence of the partial differential equation must lie within the
domain of dependence of the numerical scheme.
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t

P

Q R

..............................

.....................
x

Fig. 4.3. Violation of the CFL condition.

Figure 4.3 illustrates two situations in which this condition is violated.
Either of the characteristics PQ or PR lies outside the triangle. Sup-
pose that we consider a refinement path on which the ratio ∆t/∆x is
constant; then the triangular domain of dependence remains the same.
But suppose we alter the given initial conditions in a small region of the
initial line t = 0 around the point Q. This will then alter the solution
of the differential equation at P , since the solution is constant along
the characteristic QP . The numerical solution at P , however, remains
unaltered, since the numerical data used to construct the solution are
unchanged. The numerical solution therefore cannot converge to the
required result at P . The same argument of course applies in the same
way to the characteristic RP .

The CFL condition shows in this example that the scheme cannot
converge for a differential equation for which a < 0, since this would
give a characteristic like RP . And if a > 0 it gives a restriction on the
size of the time step, for the condition that the characteristic must lie
within the triangle of dependence requires that a∆t/∆x ≤ 1.

What we have thus obtained can also be regarded as a necessary
condition for the stability of this difference scheme, somewhat similar
to the condition for the stability of the explicit scheme for the parabolic
equation in Chapter 2, but more obviously applicable to problems with
variable coefficients, or even nonlinear problems. So far it is only a
necessary condition. In general the CFL condition is not sufficient for
stability, as we shall show in some examples. Its great merit lies in its
simplicity; it enables us to reject a number of difference schemes with a
trivial amount of investigation. Those schemes which satisfy the CFL
condition may then be considered in more detail, using a test which is
sufficient for stability.
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t

j

n + 1

n

x

Fig. 4.4. General three-point scheme; the points marked ×
are used for the two-step Lax–Wendroff method.

Now suppose that we approximate the advection equation (4.1) by a
more general explicit scheme using just the three symmetrically placed
points at the old time level. The CFL condition becomes

|a|∆t ≤ ∆x, (4.16)

as we see from Fig. 4.4; ν := |a|∆t/∆x is often called the CFL number.
If a > 0, the difference scheme must use both Un

j−1 and Un
j to obtain

Un+1
j : and if a < 0 it must use Un

j and Un
j+1. To cover both cases we

might be tempted to use a central difference in space together with a
forward difference in time to obtain

Un+1
j − Un

j

∆t
+ a

Un
j+1 − Un

j−1

2∆x
= 0. (4.17)

If we satisfy (4.16) the CFL condition holds for either sign of a.
But now in the case where a is constant, and ignoring the effect of the

boundary conditions, we can investigate the stability of the scheme by
Fourier analysis, as we did for parabolic equations in Chapter 2. The
Fourier mode

Un
j = (λ)neik(j∆x) (4.18)

satisfies the difference scheme (4.17) provided that the amplification fac-
tor λ satisfies

λ ≡ λ(k) = 1 − (a∆t/∆x)i sin k∆x. (4.19)

Thus |λ| > 1 for all mesh ratios (and almost all modes) and the scheme
is unstable for any refinement path along which a∆t/∆x is fixed. Note
that this is a case when the highest frequency mode, k∆x = π or
Uj ∝ (−1)j , does not grow: but the mode with k∆x = 1

2π, or where
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Uj takes successive values . . . ,−1, 0, 1, 0,−1, . . ., grows in magnitude by
[1 + (a∆t/∆x)2]1/2 at each step while shifting to the right. This central
difference scheme thus satisfies the CFL condition but is nevertheless
always unstable, illustrating the earlier comment that the CFL condi-
tion is necessary, but not sufficient, for stability.

The simplest and most compact stable scheme involving these three
points is called an upwind scheme because it uses a backward difference
in space if a is positive and a forward difference if a is negative:

Un+1
j =


Un

j − a
∆t

∆x
∆+xUn

j if a < 0,

Un
j − a

∆t

∆x
∆−xUn

j if a > 0.

(4.20)

If a is not a constant, but a function of x and t, we must specify which
value is used in (4.20). We shall for the moment assume that we use
a(xj , tn), but still write a without superscript or subscript and ν =
a∆t/∆x as in (4.15) when this is unambiguous.

This scheme clearly satisfies the CFL condition when (4.16) is sat-
isfied, and a Fourier analysis gives for the constant a > 0 case the
amplification factor

λ ≡ λ(k) = 1 − (a∆t/∆x)(1 − e−ik∆x) ≡ 1 − ν(1 − e−ik∆x). (4.21)

This leads to

|λ(k)|2 = [(1 − ν) + ν cos k∆x]2 + [ν sin k∆x]2

= (1 − ν)2 + ν2 + 2ν(1 − ν) cos k∆x

= 1 − 2ν(1 − ν)(1 − cos k∆x)

which gives

|λ|2 = 1 − 4ν(1 − ν)sin2 1
2k∆x. (4.22)

It follows that |λ(k)| ≤ 1 for all k provided that 0 ≤ ν ≤ 1. The same
analysis for the case where a < 0 shows that the amplification factor
λ(k) is the same, but with a replaced by |a|. Thus in this case the CFL
condition gives the correct stability limits, in agreement with the von
Neumann condition as introduced in (2.56).
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4.3 Error analysis of the upwind scheme

We notice that the scheme (4.20) can be written

Un+1
j =

{
(1 + ν)Un

j − νUn
j+1 if a < 0,

(1 − ν)Un
j + νUn

j−1 if a > 0.
(4.23)

This can be interpreted as follows. In Fig. 4.5 for the case a > 0, the
characteristic through the point P = (xj , tn+1) meets the previous line
t = tn at the point Q, which by the CFL condition must lie between
the points A = (xj , tn) and B = (xj−1, tn). Moreover the exact solu-
tion u(x, t) is constant along the characteristic, so that u(P ) = u(Q).
Knowing an approximate numerical solution at all the points on the line
tn, we can therefore interpolate the value of U(Q) and use this to give
the required value Un+1

j . If we use linear interpolation, approximating
u(x, tn) by a linear function of x determined by the approximations at
the two points A and B, we obtain (4.23) exactly when a is constant
because AQ = ν∆x and QB = (1 − ν)∆x; when a varies smoothly this
still gives a good approximation.

Notice also that all the coefficients in (4.23) are nonnegative so that a
maximum principle applies, provided that |ν| ≤ 1 at all mesh points. We
can therefore obtain an error bound for the linear, variable coefficient
problem just as we have done for parabolic equations. We must first
consider more carefully what domain is given, and what conditions
should be specified at the boundaries of the domain: although the phys-
ical problem may be given on the whole line, for all values of x, a numer-
ical solution must be confined to a finite region. Suppose, for example,
that the region of interest is 0 ≤ x ≤ X, so that we have boundaries
at x = 0 and x = X. Since the differential equation is hyperbolic and
first order, we will usually have only one boundary condition; this is a
fundamental difference from the parabolic equations of Chapter 2, where
we were always given a boundary condition at each end of the domain.
The direction of the characteristics shows that we need a boundary con-
dition at x = 0 if a > 0 there, and at x = X if a < 0 there; in the
straightforward situation where a has the same sign everywhere, we
therefore have just the one boundary condition. The exact solution
of the differential equation would then be determined by drawing the
characteristic backwards from the point P , until it reaches either the
initial line t = 0, or a boundary on which a boundary condition is
given.

For simplicity we shall first suppose that a > 0 on [0, X] × [0, tF ]; we
consider the general case later. The truncation error of the scheme is
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t

j

n + 1

n

P

QB A C

.........................
x

Fig. 4.5. Construction of a scheme by linear or quadratic
interpolation.

defined as usual and expansion about (xj , tn) gives, if u is sufficiently
smooth,

Tn
j :=

un+1
j − un

j

∆t
+ an

j

un
j − un

j−1

∆x
∼ [ut + 1

2∆tutt + · · · ]nj + [a(ux − 1
2∆xuxx + · · · )]nj

= 1
2 (∆tutt − a∆xuxx) + · · · . (4.24)

Even if a is constant so that we have utt = a2uxx, we still find

Tn
j = − 1

2 (1 − ν)a∆xuxx + · · · ;

hence generally the method is first order accurate. Suppose the differ-
ence scheme is applied for j = 1, 2, . . . , J , at the points xj = j∆x with
J∆x = X, and the boundary value Un

0 = u(0, tn) is given. Then for the
error en

j = Un
j − un

j we have as usual

en+1
j = (1 − ν)en

j + νen
j−1 − ∆tTn

j (4.25)

and en
0 = 0, from which we deduce that if 0 ≤ ν ≤ 1 at all points

En+1 := max
j

|en+1
j | ≤ En + ∆t max

j
|Tn

j |.

If we suppose that the truncation error is bounded, so that

|Tn
j | ≤ T (4.26)

for all j and n in the domain, the usual induction argument shows that

En ≤ n∆t T ≤ tF T (4.27)

if U0
j = u0(xj). This result is sufficient to prove first order convergence

of the upwind scheme along a refinement path which satisfies the CFL
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condition everywhere, provided that the solution has bounded second
derivatives.

Now let us consider a completely general set of values

{an
j := a(xj , tn); j = 0, 1, . . . , J}.

It is clear that an equation similar to (4.25) holds at each point: if
an

j ≥ 0 and j > 0, then (4.25) holds; if an
j ≤ 0 and j < J then a

corresponding upwind equation with en
j−1 replacing en

j+1 holds; and the
remaining cases, an

0 > 0 or an
J < 0, correspond to the inflow boundary

data being given so that either en+1
0 = 0 or en+1

J = 0. The rest of the
argument then follows as above.

We mentioned in Chapter 2 the difficulties which arise quite commonly
in the analysis of parabolic equations when the given data function is
discontinuous, or has discontinuous derivatives. In that case the solution
itself had continuous derivatives in the interior of the region, and our
difficulty lay in finding bounds on the derivatives. For hyperbolic equa-
tions the situation is quite different. We have seen that the solution of
our model problem is constant along the characteristics. Suppose that
the initial function u(x, 0) = u0(x) has a jump discontinuity in the first
derivative at x = ξ. Then clearly the solution u(x, t) also has a similar
discontinuity at all points on the characteristic passing through the point
(ξ, 0); the discontinuity is not confined to the boundary of the domain.
Such a solution satisfies the differential equation everywhere except along
the line of the discontinuity, while satisfying (4.4b) everywhere; thus the
latter can be regarded as defining a generalised solution of the differen-
tial equation, as distinct from a classical solution where the differential
equation is satisfied at every point. Indeed, in this way we can define a
solution for initial data u0(x) which itself has a jump discontinuity.

Most practical problems for hyperbolic systems involve discontinuities
of some form in the given data, or arising in the solution; for such
problems the analysis given above in terms of the global truncation error
and the maximum norm is of little use, since the derivatives involved do
not exist everywhere in the domain. For this reason, the truncation
error is mainly of use for a local analysis, where in any case it would
be better done by drawing the characteristic back to replace un+1

j by
the value at its foot at time level tn, i.e., u(Q). The overall behaviour
of a method, and its comparison with other methods, is often more
satisfactorily carried out by means of Fourier analysis, an analysis of
its conservation properties or a modified equation analysis – see later
sections of this chapter and the next chapter.
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4.4 Fourier analysis of the upwind scheme

Because hyperbolic equations often describe the motion and develop-
ment of waves, Fourier analysis is of great value in studying the accuracy
of methods as well as their stability. The modulus of λ(k) describes the
damping and the argument describes the dispersion in the scheme, i.e.,
the extent to which the wave speed varies with the frequency. We must,
for the present and for a strict analysis, assume that a is a (positive)
constant. The Fourier mode

u(x, t) = ei(kx+ωt) (4.28)

is then an exact solution of the differential equation (4.1) provided that
ω and k satisfy the dispersion relation

ω = −ak. (4.29)

The mode is completely undamped, as its amplitude is constant; in one
time step its phase is changed by −ak∆t. By contrast, the Fourier mode
(4.18) satisfies the upwind scheme provided that (4.21) holds. This leads
to (4.22), showing that except in the special case ν = 1 the mode is
damped. The phase of the numerical mode is given by

arg λ = − tan−1
[

ν sin k∆x

(1 − ν) + ν cos k∆x

]
(4.30)

and we particularly need to evaluate this when k∆x is small, as it is
such modes that can be well approximated on the mesh. For this, and
subsequent schemes, it is useful to have a simple lemma:

Lemma 4.1 If q has an expansion in powers of p of the form

q ∼ c1p + c2p
2 + c3p

3 + c4p
4 + · · ·

as p → 0, then

tan−1 q ∼ c1p + c2p
2 + (c3 − 1

3c3
1)p

3 + (c4 − c2
1c2)p4 + · · · .

The proof of this lemma is left as an exercise.
We can now expand (4.30) and apply the lemma, giving

arg λ ∼ − tan−1 [ν(ξ − 1
6ξ3 + · · · )(1 − 1

2νξ2 + · · · )−1]
= − tan−1 [νξ − 1

6ν(1 − 3ν)ξ3 + · · ·
]

= −νξ[1 − 1
6 (1 − ν)(1 − 2ν)ξ2 + · · · ], (4.31)
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where we have written

ξ = k∆x. (4.32)

The case ν = 1 is obviously very special, as the scheme then gives the
exact result. Apart from this, we have found that the upwind scheme
always has an amplitude error which, from (4.22), is of order ξ2 in one
time step, corresponding to a global error of order ξ; and from (4.31) it
has a relative phase error of order ξ2, with the sign depending on the
value of ν, and vanishing when ν = 1

2 . The amplitude and relative phase
errors are defined in more detail and plotted in Section 4.11, where they
are compared with those of alternative schemes.

Some results obtained with the upwind scheme are displayed in Fig. 4.6.
The problem consists of solving the equation

ut + a(x, t)ux = 0, x ≥ 0, t ≥ 0, (4.33a)

where

a(x, t) =
1 + x2

1 + 2xt + 2x2 + x4 , (4.33b)

with the initial condition

u(x, 0) =
{

1 if 0.2 ≤ x ≤ 0.4,

0 otherwise,
(4.34a)

and the boundary condition

u(0, t) = 0. (4.34b)

The exact solution of the problem is

u(x, t) = u(x∗, 0) (4.35a)

where

x∗ = x − t

1 + x2 . (4.35b)

Since a(x, t) ≤ 1 the calculations use ∆t = ∆x, and the CFL stability
condition is satisfied. The solution represents a square pulse moving
to the right. It is clear from the figures how the damping of the high
frequency modes has resulted in a substantial smoothing of the edges of
the pulse, and a slight reduction of its height. However, the rather small
phase error means that the pulse moves with nearly the right speed. The
second set of results, with a halving of the mesh size in both co-ordinate
directions, shows the expected improvement in accuracy, though the
results are still not very satisfactory.
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At t = 1

At t = 0.5

At t = 0.1

At t = 0

∆x = 0.02 ∆x = 0.01

Fig. 4.6. Linear advection by the upwind method: problem
(4.33), (4.34).
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4.5 The Lax–Wendroff scheme

The phase error of the upwind scheme is actually smaller than that
of many higher order schemes: but the damping is very severe and
quite unacceptable in most problems. One can generate more accu-
rate explicit schemes by interpolating to higher order. We have seen
how the upwind scheme can be derived by using linear interpolation to
calculate an approximation to u(Q) in Fig. 4.5. A more accurate value
may be found by quadratic interpolation, using the values at the three
points A, B and C and assuming a straight characteristic with slope ν.
This gives the Lax–Wendroff scheme, which has turned out to be of cen-
tral importance in the subject and was first used and studied by those
authors in 1960 in their study1 of hyperbolic conservation laws; it takes
the form

Un+1
j = 1

2ν(1 + ν)Un
j−1 + (1 − ν2)Un

j − 1
2ν(1 − ν)Un

j+1 (4.36)

which may be written

Un+1
j = Un

j − ν∆0xUn
j + 1

2ν2δ2
xUn

j . (4.37)

The usual Fourier analysis gives the amplification factor

λ(k) = 1 − iν sin k∆x − 2ν2sin2 1
2k∆x. (4.38)

Separating the real and imaginary parts we obtain, after a little manip-
ulation,

|λ|2 = 1 − 4ν2(1 − ν2) sin4 1
2k∆x. (4.39)

Thus we see that the scheme is stable for |ν| ≤ 1, the whole range allowed
by the CFL condition. We also find

arg λ = − tan−1

[
ν sin k∆x

1 − 2ν2sin2 1
2k∆x

]
∼ −νξ

[
1 − 1

6 (1 − ν2)ξ2 + · · ·
]
. (4.40)

Compared with the upwind scheme we see that there is still some
damping, as in general |λ| < 1, but the amplitude error in one time
step is now of order ξ4 when ξ is small, compared with order ξ2 for the
upwind scheme; this is a substantial improvement. Both the schemes
have a relative phase error of order ξ2, which are equal when ν ∼ 0; but

1 Lax, P.D. and Wendroff, B. (1960), Systems of conservation laws, Comm. Pure
and Appl. Math. 13, 217–37.
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the error is always of one sign (corresponding to a phase lag) for Lax–
Wendroff while it goes through a zero at ν = 1

2 for the upwind scheme.
However, the much smaller damping of the Lax–Wendroff scheme often
outweighs the disadvantage of the larger phase error.

In deriving the Lax–Wendroff scheme above we assumed a was con-
stant. To deal with variable a in the linear equation (4.1) we derive it
in a different way, following the original derivation. We first expand in
a Taylor series in the variable t, giving

u(x, t+∆t) = u(x, t)+∆t ut(x, t)+ 1
2 (∆t)2utt(x, t)+O

(
(∆t)3

)
. (4.41)

Then we convert the t-derivatives into x-derivatives by using the differ-
ential equation, so that

ut = −aux, (4.42a)

utt = −atux − auxt, (4.42b)

uxt = utx = −(aux)x, (4.42c)

which give

utt = −atux + a(aux)x. (4.43)

Approximating each of these x-derivatives by central differences gives
the scheme

Un+1
j = Un

j − an
j ∆t

∆0xUn
j

∆x

+ 1
2 (∆t)2

[
−(at)n

j

∆0xUn
j

∆x
+ an

j

δx(an
j δxUn

j )
(∆x)2

]
. (4.44)

This scheme involves evaluating the function a(x, t) at the points x =
xj ± 1

2∆x as well as a and at at xj . Note, however, that the scheme can
be simplified by replacing an

j + 1
2∆t(at)n

j by a
n+1/2
j in the coefficient of

∆0xUn
j ; see also the next section for conservation laws with aux ≡ fx,

and also the following section on finite volume schemes.
The results in Fig. 4.7 are obtained by applying this scheme to the

same problem (4.33), (4.34) used to test the upwind scheme, with the
same mesh sizes. Comparing the results of Fig. 4.6 and Fig. 4.7 we see
that the Lax–Wendroff scheme maintains the height and width of the
pulse rather better than the upwind scheme, which spreads it out much
more. On the other hand, the Lax–Wendroff scheme produces oscil-
lations which follow behind the two discontinuities as the pulse moves
to the right. Notice also that the reduction in the mesh size ∆x does
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∆x = 0.02 ∆�x = 0.01

At t = 1

At t = 0.5

At t = 0.1

At t = 0

Fig. 4.7. Linear advection by the Lax–Wendroff method:
problem (4.33), (4.34).

improve the accuracy of the result, but not by anything like the fac-
tor of 4 which would be expected of a scheme for which the error is
O
(
(∆x)2

)
. The analysis of truncation error is only valid for solutions

which are sufficiently smooth, while this problem has a discontinuous
solution. In fact the maximum error in this problem is O

(
(∆x)1/2

)
for
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the upwind scheme and O
(
(∆x)2/3

)
for the Lax–Wendroff scheme. The

error therefore tends to zero rather slowly as the mesh size is reduced.
The oscillations in Fig. 4.7 arise because the Lax–Wendroff scheme

does not satisfy a maximum principle. We see from (4.36) that with
ν > 0 the coefficient of Un

j+1 is negative, since we require that ν ≤ 1
for stability. Hence Un+1

j is given as a weighted mean of three values
on the previous time level, but two of the weights are positive and one
is negative. It is therefore possible for the numerical solution to have
oscillations with internal maxima and minima.

As an example of a problem with a smooth solution, we consider
the same equation as before, (4.33a,b), but replace the initial condition
(4.34) by

u(x, 0) = exp[−10(4x − 1)2]. (4.45)

The results are illustrated in Fig. 4.8. As before, the solution consists of
a pulse moving to the right, but now the pulse has a smooth Gaussian
shape, instead of a discontinuous square wave. Using the same mesh
sizes as before, the results are considerably more accurate. There is still
some sign of an oscillation to the left of the pulse by the time that t = 1,
but it is a good deal smaller than in the discontinuous case. Moreover,
the use of the smaller mesh size has reduced the size of the errors and
this oscillation becomes nearly invisible.

4.6 The Lax–Wendroff method for conservation laws

In practical situations a hyperbolic equation often appears in the form

∂u

∂t
+

∂f(u)
∂x

= 0 (4.46)

which may be written in the form we have considered above,

ut + aux = 0, (4.47)

where a = a(u) = ∂f/∂u. It is then convenient to derive the Lax–
Wendroff scheme directly for the conservation form (4.46). The function
f does not involve x or t explicitly but is a function of u only. The
t-derivatives required in the Taylor series expansion (4.41) can now be
written

ut = −(f(u))x (4.48a)

and

utt = −fxt = −ftx = −(aut)x = (afx)x. (4.48b)
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∆x = 0.02 ∆x = 0.01

At t = 0

At t = 0.1

At t = 0.5

At t = 1

Fig. 4.8. Linear advection by the Lax–Wendroff method:
(4.33) with the data (4.45).

Replacing the x-derivatives by central differences as before we now
obtain

Un+1
j = Un

j − ∆t

∆x
∆0xf(Un

j )

+ 1
2

(
∆t

∆x

)2

δx

[
a(Un

j )δxf(Un
j )
]
. (4.49)

It is clear that this reduces to (4.37) when f(u) = au where a is constant.
If we expand the last term in (4.49) we see that it involves the values
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of a(Un
j−1/2) and a(Un

j+1/2); in evaluating these we could set Un
j±1/2 :=

1
2 (Un

j + Un
j±1), but a commonly used alternative is to replace them by

∆±xf(Un
j )/∆±xUn

j . Then writing Fn
j for f(Un

j ) and An
j±1/2 for either

choice of the characteristic speeds, the scheme becomes

Un+1
j = Un

j − 1
2

∆t

∆x

{[
1 − An

j+1/2
∆t

∆x

]
∆+xFn

j

+
[
1 + An

j−1/2
∆t

∆x

]
∆−xFn

j

}
. (4.50)

As an example of the use of this scheme we consider the limiting case
of Burgers’ equation, for inviscid flow,

ut + u ux = 0, (4.51)

or in conservation form

ut + ( 1
2u2)x = 0. (4.52)

The general solution when it is smooth is easily obtained by the method
of characteristics, or it is sufficient to verify that the solution is given
implicitly by

u ≡ u(x, t) = u0(x − tu(x, t)). (4.53)

The characteristics are straight lines, and the solution u(x, t) is constant
along each of them. Given the initial condition u(x, 0) = u0(x), they
are obtained by drawing the straight line with slope dt/dx = 1/u0(x0)
through the point (x0, 0), for each value of x0.

If we use the smooth initial data given by (4.45), we find a typical
example of a common difficulty in nonlinear hyperbolic equations. Since
the solution is constant along each characteristic, a singularity will arise
wherever two characteristics cross; they must have different slopes at a
point where they cross, and so the solution will have different values on
the two characteristics, and must become multivalued. This situation
must arise whenever the initial function u0(x) has a decreasing deriva-
tive. Some typical characteristics are illustrated in Fig. 4.9; in problems
like this there will be a critical value tc such that the solution exists and
is single-valued for 0 ≤ t < tc, but a singularity appears at t = tc.

This behaviour is a simple model for the formation of shocks in the flow
of a gas. Not only does the classical solution of (4.51) break down when
the characteristics cross, but so too does the mathematical model of the



106 Hyperbolic equations in one space dimension

1

Fig. 4.9. Typical characteristics for the inviscid Burgers’
equation.

physical situation. Viscosity becomes important in the steep gradients
that occur and the full, viscous, Burgers’ equation ut + uux = νvuxx

should be used. A thorough description of the situation is beyond the
scope of this book but some key points are very pertinent to our emphasis
on the use of the conservation law forms of equations.

What one can hope to approximate beyond the point of breakdown is
the limit of the solution to the viscous equation as the viscosity νv tends
to zero. This will have a discontinuity, representing a shock, which for
the conservation law ut + fx = 0 will move at the shock speed

S :=
[f(u)]

[u]
, (4.54)

where [u] denotes the jump in the variable u; thus if the limiting value
of u on the left is uL and on the right is uR, the shock moves at a speed

f(uR) − f(uL)
uR − uL

,

which clearly tends to a(uL) as uR → uL, i.e., in the limit of a ‘weak’
shock. Such a relation can be deduced by integrating the equation over
a small box in the (x, t)-plane, aligned with and covering a portion of
the shock, and then applying the Gauss divergence theorem. Solutions
of the differential equation which are only satisfied in this averaged way
are called weak solutions.
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Note, however, that the speed obtained in this way depends on the
form of the conservation law and, for example, from the non-conservative
form (4.51) we could deduce any law of the form

(
(m + 1)um

)
t
+
(
mum+1)

x
= 0. (4.55)

Only one choice correctly models the more complicated physical situa-
tion. In the present case m = 1 is correct, namely (4.52), and thus this is
not equivalent to, but is more general than, (4.51). A shock from uL to
uR therefore moves at the mean speed 1

2 (uL + uR), and not for instance
at 2

3 (u2
L + uLuR + u2

R)/(uL + uR) which it would if we had m = 2.
In Fig. 4.10 are shown early results obtained from the conservation

law (4.52) using the initial data (4.45). A shock develops at tc = 0.25
approximately and grows in strength, though the whole solution will
eventually decay to zero. This weak solution of the equation is shown
as a dotted line, with its approximation by the Lax–Wendroff scheme
shown on the left. For comparison we have also shown on the right of
Fig. 4.10 the approximation obtained with the upwind scheme, which
we write in the form

Un+1
j = Un

j − 1
2

∆t

∆x

{[
1 − sgn An

j+ 1
2

]
∆+xFn

j

+
[
1 + sgn An

j− 1
2

]
∆−xFn

j

}
(4.56)

where the preferred choice is An
j± 1

2
:= ∆±xFn

j /∆±xUn
j , reducing to

a(Un
j ) when Un

j = Un
j±1; this form clearly generalises (4.20) and is

directly comparable with (4.50). The greater accuracy of the Lax–
Wendroff method away from the shock is apparent from these figures;
but the oscillations that develop behind the shock, in contrast to their
absence with the upwind method, prompt the idea of adaptively switch-
ing between the two schemes, as pioneered in the work of van Leer.1

One of the great strengths of the Lax–Wendroff method is that it can
be extended quite easily to systems of equations. Instead of (4.46) and
(4.48a,b) we have

ut = −fx, utt = −ftx = −(Aut)x = (Afx)x (4.57)

1 van Leer, B. (1974), Towards the ultimate conservative difference scheme. II
monotonicity and conservation combined in a second order scheme, J. of Comput.
Phys. 14, 361–70.
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At t = 0.15

At t = 0.3

Upwind methodLax−Wendroff

At t = 0

Fig. 4.10. Burgers’ equation with initial data (4.45), approx-
imated by the Lax–Wendroff method (on the left) and the
upwind method (on the right).

where A is the Jacobian matrix as in (4.8); then (4.49) simply becomes

Un+1
j = Un

j −
(

∆t

∆x

)
∆0xf(Un

j )

+ 1
2

(
∆t

∆x

)2

δx

[
A(Un

j )δxf(Un
j )
]
, (4.58)

and (4.50) is exactly the same except for the use of vectors Un
j and Fn

j .
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In the special case where f(u) = Au and A is a constant matrix, this
reduces to

Un+1
j = Un

j −
(

∆t

∆x

)
A∆0xUn

j + 1
2

(
∆t

∆x

)2

A2δ2
xU

n
j . (4.59)

For this problem a Fourier analysis is possible. Each of the components
of the vector U will be a multiple of the same Fourier mode, and we
look for a solution of (4.59) which is of the form

Un
j = λneikj∆xÛ (4.60)

where Û is a constant vector. This is a solution provided that{
λI −

[
I − i

(
∆t

∆x

)
sin k∆xA − 2

(
∆t

∆x

)2

sin2 1
2k∆xA2

]}
Û = 0.

(4.61)
For this to hold Û has to be an eigenvector of A; if µ is the corre-

sponding eigenvalue we write ν = µ∆t/∆x and obtain

λ = 1 − iν sin k∆x − 2ν2sin2 1
2k∆x (4.62)

which is precisely the same as (4.38). Thus we can deduce a necessary
condition for the scheme to be stable as

ρ∆t

∆x
≤ 1 (4.63)

where ρ is the spectral radius of A, the largest of the magnitudes of
the eigenvalues of A, which is a generalisation of our earlier concept
of stability to systems of equations. We leave until the next chapter
a consideration of whether this necessary von Neumann condition is a
sufficient condition for stability.

It is an important advantage of the Lax–Wendroff scheme that the
stability condition involves only the magnitudes of the eigenvalues, not
their signs, so that its form does not have to be changed with a switch
in sign. We have seen in (4.20) and (4.56) how the upwind scheme for a
single equation uses either a forward or backward difference, according
to the sign of a. This is much more difficult for a system of equations. It
requires that, at each point, we find the eigenvalues and eigenvectors of
an approximate Jacobian matrix Ã, express the current vector in terms
of the eigenvectors, and use forward or backward differences for each
eigenvector according to the sign of the corresponding eigenvalue; the
eigenvectors are then combined together again to give the solution at
the new time level. The Lax–Wendroff method avoids this considerable
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complication, but at the cost of the oscillations shown in Figs. 4.7 and
4.10. There has thus been considerable development of methods which
combine the advantages of the two approaches, as has already been
mentioned and as we will discuss further in the next section. Although
well beyond the scope of this book, it is worth noting here that the
generalisation of the shock relation (4.54) – and of the characteristic
speeds An

j±1/2 used in the upwind scheme (4.56) – which the approximate
Jacobian Ã is usually made to satisfy, is given by

Ãn
j±1/2∆±xUn

j = ∆±xFn
j . (4.64)

Following the work of Roe1 for the gas dynamics equations, this is an
important relation in the development of many modern methods for
conservation laws.

Lastly, a convenient and often-used variant of the Lax–Wendroff
scheme is the two-step method. Values are predicted at points (xj+1/2,

tn+1/2) and then a centred scheme used to obtain the final values at
tn+1 (see Fig. 4.4):

Un+1/2
j+1/2 = 1

2

(
Un

j + Un
j+1

)
− 1

2 (∆t/∆x)
[
f
(
Un

j+1

)
− f

(
Un

j

)]
, (4.65a)

Un+1
j = Un

j − (∆t/∆x)
[
f
(
Un+1/2

j+1/2

)
− f

(
Un+1/2

j−1/2

)]
. (4.65b)

For the linear case where f = Au with constant A, we leave it as an
exercise to show that on elimination of the intermediate value Un+1/2

j+1/2 we
obtain exactly the same result as the standard one-step Lax–Wendroff
method (4.59). For nonlinear problems and variable coefficients the
two variants do not yield the same results. One of the most important
advantages of (4.65) is that it avoids the need to calculate the Jacobian
matrix A.

4.7 Finite volume schemes

Many of the methods that are used for practical computation with con-
servation laws are classed as finite volume methods, and that in (4.65) is
a typical example. Suppose we take the system of equations ut + fx = 0

1 Roe, P.L. (1981), Approximate Riemann solvers, parameter vectors, and difference
schemes, J. of Comput. Phys. 43, 357–72.
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in conservation law form and integrate over a region Ω in (x, t)-space;
using the Gauss divergence theorem this becomes a line integral,∫ ∫

Ω
(ut + fx) dxdt ≡

∫ ∫
Ω

div(f ,u) dxdt

=
∮

∂Ω
[f dt − udx]. (4.66)

In particular, if we take the region to be a rectangle of width ∆x and
height ∆t and introduce averages along the sides, such as utop etc., we
obtain

(utop − ubottom)∆x + (fright − fleft)∆t = 0. (4.67)

(a) (b)

∆t ∆t

∆xj ∆xj

Fig. 4.11. Two finite volume schemes: (a) with mid-point
quadrature; (b) with trapezoidal quadrature.

Then to obtain a specific numerical scheme these averages need to be
approximated by some form of quadrature. For instance, we can use
mid-point quadrature on all four sides – see Fig. 4.11(a): if we denote
by Un

j the approximate solution at time level n at the centre of cell j

of width ∆xj , and by Fn+1/2
j+1/2 the flux value halfway up a cell side, we

obtain the scheme

Un+1
j = Un

j − (∆t/∆xj)
(
Fn+1/2

j+1/2 − Fn+1/2
j−1/2

)
. (4.68)

It remains to calculate the fluxes from the set of Un
j values, for example

by the Taylor expansion used in the two-step Lax–Wendroff method:
that is, solution values on the cell sides are calculated by the formula
(4.65a) and these are substituted into equation (4.65b), which is exactly
of the form (4.68).

Note, however, that in (4.68) we have allowed for the cell widths to
be quite arbitrary. This is a great advantage of this formulation, and
is very useful in practical calculations – even more so in more space
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dimensions. Thus, for instance, we can sum the integrals over a set of
contiguous cells to obtain from (4.68)

l∑
j=k

∆xj

(
Un+1

j − Un
j

)
+ ∆t

(
Fn+1/2

l+1/2 − Fn+1/2
k−1/2

)
= 0, (4.69)

which exactly mirrors the conservation property of the differential equa-
tion. In the case of the Lax–Wendroff scheme, though, if Un

j is taken
to represent the solution at the cell centre then we need to use a Taylor
expansion at a cell edge xj+1/2 to give, to the required first order
accuracy,

u(xj+1/2, tn + ∆t/2) = u(xj+1/2, tn)

− 1
2∆tfx(xj+1/2, tn) + O

(
(∆t)2

)
;

this can be combined with expansions for the cell centre values on either
side to give the formula

Un+1/2
j+1/2 =

∆xj+1Un
j + ∆xjUn

j+1 − ∆t
[
f
(
Un

j+1

)
− f

(
Un

j

)]
∆xj + ∆xj+1

(4.70)

which generalises (4.65a) to a general mesh. We will normally avoid this
extra complexity in what follows and revert to our usual assumption of
uniform mesh spacing.

As we have already noted and demonstrated, a major disadvantage of
the Lax–Wendroff method is its proneness to produce oscillatory solu-
tions. The problem has prompted much of the development of finite
volume methods, and can be fully analysed for scalar conservation laws.
The guiding principle is provided by controlling the total variation of
the solution: on a finite domain [0, X] divided into J cells, with Un

taking the value Un
j in cell j at time level n, we can define the total

variation as

TV(Un) :=
J−1∑
j=1

∣∣Un
j+1 − Un

j

∣∣ ≡
J−1∑
j=1

∣∣∆+xUn
j

∣∣ . (4.71)

More generally, for the exact solution u(x, t), TV(u(·, t)) can be defined
by taking the supremum, over all subdivisions of the [0, X] interval such
as 0 = ξ0 < ξ1 < · · · < ξK = X, of the sum of the corresponding
differences |u(ξj+1, t)−u(ξj , t)|. Clearly, these are consistent definitions
when Un is regarded as a piecewise constant approximation to u(·, tn).
To simplify the subsequent discussion, however, by leaving aside the
specification of boundary conditions, we will assume that both u(·, t)
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and Un are extended by constant values to the left and right so that the
range of the summation over j will not be specified.

A key property of the solution of a conservation law such as (4.46) is
that TV(u(·, t)) is a nonincreasing function of t – which can be deduced
informally from the constancy of the solution along the characteristics
described by (4.4b). Thus we define TVD(total variation diminishing)
schemes as those for which we have TV(Un+1) ≤ TV(Un). This concept
is due to Harten1 who established the following useful result:

Theorem 4.1 (Harten) A scheme is TVD if it can be written in the
form

Un+1
j = Un

j − Cj−1∆−xUn
j + Dj∆+xUn

j , (4.72)

where the coefficients Cj and Dj, which may be any functions of the
solution variables {Un

j }, satisfy the conditions

Cj ≥ 0, Dj ≥ 0 and Cj + Dj ≤ 1 ∀j. (4.73)

Proof Taking the forward difference of (4.72), and freely using the iden-
tity ∆+xUj ≡ ∆−xUj+1, we get

Un+1
j+1 − Un+1

j = ∆+xUn
j − Cj∆+xUn

j + Cj−1∆−xUn
j

+ Dj+1∆+xUn
j+1 − Dj∆+xUn

j

= (1 − Cj − Dj)∆+xUn
j + Cj−1∆−xUn

j

+ Dj+1∆+xUn
j+1.

By the hypotheses of (4.73), all the coefficients on the right of this last
expression are nonnegative. So we can take absolute values to obtain∣∣∆+xUn+1

j

∣∣ ≤ (1 − Cj − Dj)
∣∣∆+xUn

j

∣∣
+ Cj−1

∣∣∆−xUn
j

∣∣ + Dj+1
∣∣∆+xUn

j+1

∣∣ ,
then summing over j leads to cancellation and hence the result
TV(Un+1) ≤ TV(Un).

Suppose we attempt to apply this theorem to both the Lax–Wendroff
method and the upwind method. We consider the latter first, in the
form given in (4.56) with An

j±1/2 := ∆±xFn
j /∆±xUn

j . This corresponds
to the scalar case of the scheme due to Roe,referred to in the sentence

1 Harten, A. (1984), On a class of high resolution total-variation-stable finite-
difference schemes, SIAM J. Numer. Anal. 21, 1–23.
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following (4.64), and is best considered as a finite volume scheme in
which the fluxes of (4.68) are given by

F
n+1/2
j+1/2 =

{
f(Un

j ) when An
j+1/2 ≥ 0,

f(Un
j+1) when An

j+1/2 < 0;
(4.74)

or, equivalently,

F
n+1/2
j+1/2 = 1

2

[(
1 + sgn An

j+1/2

)
Fn

j +
(
1 − sgnAn

j+1/2

)
Fn

j+1

]
. (4.75)

Then, comparing (4.56) with (4.72) after replacing the flux difference
∆−xFn

j by An
j−1/2∆−xUn

j , we are led to setting

Cj−1 = 1
2

∆t

∆x

(
1 + sgn An

j−1/2

)
An

j−1/2.

This is clearly always nonnegative, thus satisfying the first condition of
(4.73). Similarly, we set

Dj = − 1
2

∆t

∆x

(
1 − sgn An

j+1/2

)
An

j+1/2,

which is also nonnegative. Moreover, adding the two together and
remembering the shift of subscript in the former, we get

Cj + Dj = 1
2

∆t

∆x

[(
1 + sgn An

j+1/2

)
An

j+1/2 +
(
1 − sgn An

j+1/2

)
An

j+1/2

]
≡
∣∣∣An

j+1/2

∣∣∣ ∆t

∆x
,

which is just the CFL number. Hence the last condition of (4.73) corre-
sponds to the CFL stability condition; we have shown that the Roe first
order upwind scheme is TVD when ∆t is chosen so that it is stable.

On the other hand, if we attempt to follow similar arguments with
the Lax–Wendroff scheme in the corresponding form of (4.50) and write
νn

j±1/2 for An
j±1/2∆t/∆x, we are led to setting

Cj = 1
2νn

j+1/2(1+νn
j+1/2), and Dj = − 1

2νn
j+1/2(1−νn

j+1/2), (4.76)

both of which have to be nonnegative. Then the third condition of (4.73)
requires that the CFL condition (νn

j+1/2)
2 ≤ 1 be satisfied, and the

only values that νn
j+1/2 can take to satisfy all three conditions are −1, 0

and +1; this is clearly impractical for anything other than very special
cases.
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The TVD property of the Roe upwind scheme has made it a very
important building block in the development of more sophisticated finite
volume methods, and it is particularly successful in modelling shocks.
However, it needs modification for the handling of some rarefaction
waves. For instance, suppose that the inviscid Burgers equation (4.52)
is given the initial data {U0

j = −1, for j ≤ 0; U0
j = +1, for j > 0}, which

should lead to a spreading rarefaction wave. Then it is clear from (4.74)
that in Roe’s scheme all the fluxes would be equal to 1

2 so that the solu-
tion would not develop at all. The problem is associated with the sonic
points which occurs for u = 0 where the characteristic speed a is zero –
more precisely, with the transonic rarefaction wave that we have here in
which the characteristic speeds are negative to the left of this point and
positive to the right. For a general convex flux function f(u), suppose
that it has a (unique) sonic point at u = us. Then an alternative finite
volume scheme has a form that replaces the flux function of (4.75) by

F
n+1/2
j+1/2 = 1

2

[(
1 + sgn An

j

)
Fn

j +
(
sgn An

j+1 − sgn An
j

)
f(us)

+
(
1 − sgn An

j+1
)
Fn

j+1
]
. (4.77)

This scheme, which uses the signs of the characteristic speeds {An
j =

a(Un
j )} rather than those of the divided differences {An

j+1/2}, is due
to Engquist and Osher1 and has been very widely used and studied; it
differs from the Roe scheme only when a sonic point occurs between Un

j

and Un
j+1, it is also TVD (see Exercise 11) and it correctly resolves the

transonic rarefaction wave.
However, these two schemes are only first order accurate and it is

no easy matter to devise TVD schemes that are second order accurate.
To consider why this is so let us consider an explicit TVD three-point
scheme in the form (4.72) and satisfying the conditions (4.73). For the
linear advection equation ut + aux = 0 we suppose that C and D are
constants. Then it is easy to see, following the argument that led to
the Lax–Wendroff method in (4.36), that second order accuracy leads
directly to these coefficients, as in (4.76), and hence the violation of
the TVD conditions except in very special cases. From another view-
point, in our two successful TVD schemes we have constructed the fluxes
from just the cell average values Un

j in each cell, and we cannot expect

1 Engquist, B. and Osher, O. (1981), One-sided difference approximations for non-
linear conservation laws, Math. Comp. 36, 321–52.
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to approximate the solution to second order accuracy with a piecewise
constant approximation.

This observation points the way to resolving the situation: an inter-
mediate stage, variously called recovery or reconstruction, is introduced
to generate a higher order approximation Ũn(·) to u(·, tn) from the
cell averages {Un

j }. Probably the best known approach is that used
by van Leer1 to produce his MUSCL schemes (Monotone Upstream-
centred Schemes for Conservation Laws). This uses discontinuous piece-
wise linear approximations to generate second order approximations.
Another well-established procedure leads to the Piecewise Parabolic
Method (PPM) scheme of Colella and Woodward,2 which can be third
order accurate. In all cases the recovery is designed to preserve the cell
averages. So for the recovery procedure used in the MUSCL schemes,
for each cell we need only calculate a slope to give a straight line through
the cell average value at the centre of the cell, and this is done from the
averages in neighbouring cells. The PPM, however, uses a continuous
approximation based on cell-interface values derived from neighbouring
cell averages: so a parabola is generated in each cell from two interface
values and the cell average. In all such schemes only the interface fluxes
are changed in the finite volume update procedure of (4.68). How this
is done using the recovered approximation Ũn(·) is beyond the scope
of this book; we merely note that it is based on solving local evolution
problems in the manner initiated by the seminal work of Godunov.3

However, we must observe that to obtain a TVD approximation in this
way it is necessary to place restrictions on the recovery process. A typ-
ical constraint is that it is monotonicity preserving ; that is, if the {Un

j }
are monotone increasing then so must be Ũn(·).

4.8 The box scheme

To give some indication of the range of schemes that are used in practice
we will describe two other very important schemes. The box scheme
is a very compact implicit scheme often associated with the names of

1 van Leer, B. (1979), Towards the ultimate conservative difference scheme V.
A second order sequel to Godunov’s method, J. of Comput. Phys. 32, 101–36.

2 Colella, P. and Woodward, P.R. (1984), The piecewise parabolic method (PPM)
for gas-dynamical simulations, J. of Comput. Phys. 54, 174–201.

3 Godunov, S.K. (1959), A finite difference method for the numerical computation of
discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–306.



4.8 The box scheme 117
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P

xj + 1

n + 1

Fig. 4.12. The box scheme.

Thomée1 and, in a different context, Keller:2 for the simplest model
problem ut + aux = 0 with constant a it takes the form

δt

(
U

n+1/2
j + U

n+1/2
j+1

)
2∆t

+
aδx

(
Un

j+1/2 + Un+1
j+1/2

)
2∆x

= 0. (4.78)

By introducing the averaging operator

µxUj+1/2 := 1
2 (Uj + Uj+1) , (4.79)

and similarly µt, we can write the scheme in the very compact form

(µxδt + νµtδx)Un+1/2
j+1/2 = 0, (4.80)

where ν = a∆t/∆x is the CFL number.
If we expand all the terms in Taylor series about the central point

(xj+1/2, tn+1/2) as origin, it is easy to see that the symmetry of the
averaged differences will give an expansion in even powers of ∆x or
∆t, so that the scheme is second order accurate. When the coefficient
a is a function of x and t, it is sensible to replace it by a

n+1/2
j+1/2 :=

a(xj+1/2, tn+1/2) in (4.78); this will leave the Taylor series unaltered, so
that the truncation error remains second order.

When applied to the nonlinear problem in conservation form (4.46),
it is written

δt

(
U

n+1/2
j + U

n+1/2
j+1

)
2∆t

+
δx

(
Fn

j+1/2 + Fn+1
j+1/2

)
2∆x

= 0 (4.81)

1 Thomée, V. (1962), A stable difference scheme for the mixed boundary value
problem for a hyperbolic first order system in two dimensions, J. Soc. Indust.
Appl. Math. 10, 229–45.

2 Keller, H.B. (1971), A new finite difference scheme for parabolic problems,
in B. Hubbard (ed.), Numerical Solution of Partial Differential Equations II,
SYNSPADE 1970, Academic Press, pp. 327–50.
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where Fn
j := f(Un

j ). In this form it is clear that it corresponds to a finite
volume scheme, using a box formed from four neighbouring mesh nodes
in a square, and applying the trapezoidal rule to evaluate the integral
along each edge – see Figs. 4.12 and 4.11(b); and in common with other
finite volume schemes it can be readily applied on a nonuniform mesh.

The scheme is implicit as it involves two points on the new time level,
but for the simplest model problem this requires no extra computation;
and when used properly it is unconditionally stable. We can write (4.78)
in the form

Un+1
j+1 = Un

j +
(
1 + ν

n+1/2
j+1/2

)−1 (
1 − ν

n+1/2
j+1/2

) (
Un

j+1 − Un+1
j

)
(4.82)

where

ν
n+1/2
j+1/2 = a

n+1/2
j+1/2

∆t

∆x
.

When a(x, t) is positive, so that the characteristic speed is positive, we
must be given a boundary condition on the left of the region. This will
define Un+1

0 , the first value of U on the new time level, and (4.82) will
give directly the values of U in succession from left to right. If the speed
is negative, and we are given a boundary condition on the right, a similar
formula is used in the direction from right to left. When the equation
is nonlinear and in conservation form the scheme is not quite so easy to
use, as (4.81) now represents a nonlinear equation which must be solved
for Un+1

j+1 .
One of the serious difficulties in using the scheme is the possibility of

a chequerboard mode of the form (−1)j+n contaminating the solution.
Because of the averaging in both space and time in equation (4.78) this
is a spurious solution mode of this equation. It is only the boundary
condition and the initial condition that control its presence; as we see
in Fig. 4.13, it is much more evident with square pulse data than with
smooth data.

For a system of equations, such as (4.5), the calculation becomes more
elaborate, as the scheme is now truly implicit. We will have a set of
simultaneous equations to solve on the new time level, and in general it
will not be possible to solve them by a simple sweep in one direction, as
it was for a single equation, since there will normally be some boundary
conditions given at each end of the range of x. The situation is rather
like that for implicit methods for the heat equation in Chapter 2, but
not quite so straightforward. The matrix of the system will be typi-
cally block tridiagonal, with the block dimension equal to the order of
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(a) (b)

At t = 0

At t = 1

At t = 0.5

At t = 0.1

Fig. 4.13. Linear advection by the box scheme with ∆t =
∆x = 0.02 for (a) a square pulse and (b) Gaussian initial
data.

the system, but the detailed structure will depend on the number of
boundary conditions imposed at each end.

For the scalar problem the CFL condition is satisfied for any value of
the ratio ∆t/∆x if we use the scheme in the correct direction, that is,
in the form (4.82) when a is positive; as we see from Fig. 4.12, the char-
acteristic always passes among the three points used in the construction
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of Un+1
j+1 . However, the three coefficients are not all positive, so there

is no maximum principle; nor does the scheme have any natural TVD
properties, being prone as we have seen to oscillatory solutions. Because
we have neither the whole real line as our domain nor periodic bound-
ary conditions, a rigorous Fourier analysis is not straightforward even
for constant a. However, we can substitute a Fourier mode to consider
its possible damping and its phase accuracy. We easily find

λ(k) =
cos 1

2k∆x − iν sin 1
2k∆x

cos 1
2k∆x + iν sin 1

2k∆x
, (4.83)

from which we deduce

|λ(k)| = 1 (4.84)

for any value of ν, and

arg λ = −2 tan−1 (ν tan 1
2k∆x

)
∼ −νξ

[
1 + 1

12 (1 − ν2)ξ2 + · · ·
]
. (4.85)

Thus the scheme has no damping of modes and, comparing (4.85) with
(4.40), we see that it has the same second order accuracy and that
its phase error is asymptotically half that of the Lax–Wendroff scheme;
moreover, for |ν| ≤ 1, while the latter has a predominant phase lag error,
the box scheme has a phase advance error; this becomes a phase lag for
|ν| > 1. See Section 4.11 for comparative plots of the phase error; note
too that because of its unconditional stability it is feasible to aim to set
|ν| close to unity in order to obtain high phase accuracy.

For a nondissipative scheme such as this, we can exploit the illuminat-
ing concept of group velocity. This is the speed at which energy travels in
a dispersive PDE: if ω = g(k) is the dispersion relation that generalises
the relation (4.29) that holds for the linear advection equation, then the
group velocity C(k) is given by

C(k) := − dω/ dk. (4.86)

So this reduces to C(k) = a for linear advection. But for a difference
scheme the group velocity is not so simple even in this case. If we write
ωh for (arg λ)/(∆t), then the relation given by (4.85) is the discrete
dispersion relation

tan 1
2ωh∆t = −ν tan 1

2k∆x.
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Hence we can deduce a group velocity Ch for the scheme, corresponding
to (4.86), given by

Ch = ν∆x sec2 1
2k∆x/(∆t sec2 1

2ωh∆t)

= a sec2 1
2k∆x/(1 + ν2 tan2 1

2k∆x)

=
a

cos2 1
2ξ + ν2 sin2 1

2ξ
. (4.87)

We could expand this directly in powers of ξ = k∆x to obtain the error
in the discrete group velocity for small ξ. However, it is more direct and
more illuminating to use the expansion (4.85) that we already have for
ωh: differentiating this with respect to ξ we see immediately that the rel-
ative error is 1

4 (1−ν2)ξ2. This factor three increase, compared with the
error in the relative phase speed, clearly comes from the second order
accuracy of the scheme; and this simple relationship means that the
group velocity adds little to our understanding of the behaviour of the
scheme at low frequencies. However, there are general arguments that
errors in a numerical scheme are composed of a range of frequencies so
that the group velocity should be a better guide to a scheme’s behaviour.
In particular, if we look at the other end of the spectrum, at the oscil-
lations for which ξ = π, we find that Ch = a/ν2. This again shows that
these oscillations move ahead of the main wave when 0 < ν < 1 but the
speed is more accurately predicted than is possible from the phase speed.

As regards stability, the box scheme is often regarded as uncondition-
ally stable because of (4.84). But such a statement has to be made on
the understanding that the equations are solved in the correct direction:
clearly for ν < 0 there would be an unbounded build-up of errors in
applying the recursion (4.82); also such a form of calculation would then
violate the CFL condition on domains of dependency. In practice, of
course, this pitfall is readily avoided in most cases and the unconditional
stability together with its compactness has commended the scheme to
hydraulics engineers where it is widely used for river modelling.

We have already referred to the illustrative results that are displayed
in Fig. 4.13(a,b). These are for the same linear advection problem (4.33)
as before, with initial conditions, respectively, the square pulse and the
Gaussian pulse. The discontinuities produce oscillations in the numerical
solution that are considerably larger than those from the Lax–Wendroff
scheme; but the accuracy is very similar for the smooth data. Notice the
phase advance error in both cases since |ν| < 1, and that the oscillations
generated by the square pulse move at the speed predicted above by
the group velocity. The oscillations are worse because of the lack of
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damping, but in practical problems where this might occur it is avoided
by using the averaging θUn+1 + (1 − θ)Un for the spatial difference in
(4.78) with θ > 1

2 .
From what has been said so far it may not be obvious why the scheme

is so closely associated with river modelling, where it is generally called
the Preissmann box scheme.1 By integrating across a river channel, and
introducing as dependent variables the cross-section area A(x, t) and the
total discharge Q(x, t), one can derive the St Venant equations of river
flow:

At + Qx = 0

Qt + (Q2/A + 1
2gA2/b)x = S, (4.88)

where x measures the distance along the river, S is a term that models
the effect of the bed slope and frictional resistance, g is the gravitational
constant and b the river breadth. The first equation just expresses mass
conservation, and the second is the momentum equation. It is clear that
conditions along the river will vary greatly with x. So one of the first
attractions of the scheme is that the river can be divided into section,
of different lengths, over each of which the river parameters are fairly
constant. For example, the breadth may have considerable variations;
also it may in general be related to A through the cross-section shape,
though here we will assume a rectangular channel of breadth indepen-
dent of A so that A/b = h, the river height. With this assumption the
Jacobian matrix of the fluxes is easily calculated: in terms of h and the
flow speed u = Q/A, it is just

A =
(

0 1
gh − u2 2u

)
, (4.89)

and is easily seen to have eigenvalues u ± c where c =
√

(gh). In a
normal slow-moving river the flow is sub-critical, i.e., u < c. Hence
one characteristic speed is positive and one negative so that the pair
of equations require one boundary condition on the left and one on
the right; assuming the flow is from left to right, it is common for the
discharge Q to be specified at the inflow on the left and the river height
h at the outflow on the right. The system of equations to be solved is
nonlinear and is solved by Newton iteration; as already mentioned, the
resulting linear system is block tridiagonal with 2 × 2 blocks and can be
solved by a matrix version of the Thomas algorithm.
1 Preissmann, A. (1961), Propagation des intumescences dans les canaux et rivières.

Paper presented at the First Congress of the French Association for Computation,
Grenoble, France.
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However, even with its compactness and the relatively straightforward
procedure for solving the nonlinear system, it is still not clear why this
implicit scheme should be used; and in view of the unremarkable phase
accuracy indicated in (4.85) why is it that it is prized for the accuracy
of its flood wave predictions? The answer lies in the structure of flood
wave flows, and in particular the balance of the terms in the momentum
equation. The forcing term on the right is usually written S = g(S0−Sf ),
where S0 = S0(x) represents the bed slope and Sf = Sf (x, A, Q) the bed
friction. Then the three terms in the equation which are multiplied by g

are almost in balance. So this gives a relationship Q = Qg(x, A); indeed,
in simpler models it is common to combine the mass balance equation
with an experimentally observed relation of this kind to predict the flow.
We can therefore deduce that a flood wave will move at a speed given
by ∂Qg/∂A, which is typically not much larger than u and very much
less than u + c. So the time step is chosen on the basis of this speed
(with ν close to unity in (4.85) and hence giving accurate phase speeds)
and the stability with respect to the characteristic speed u + c is fully
exploited. Also it is usual to take θ > 1

2 in the time averaging so as to
damp the spurious mode oscillations, in a manner that will be studied
in Section 5.8.

4.9 The leap-frog scheme

The second important scheme is called the leap-frog scheme because it
uses two time intervals to get a central time difference and spreads its
‘legs’ to pick up the space difference at the intermediate time level; the
values used are shown in Fig. 4.14. For (4.46) or (4.47) it has the form

Un+1
j − Un−1

j

2∆t
+

f(Un
j+1) − f(Un

j−1)
2∆x

= 0, (4.90)

or

Un+1
j = Un−1

j − (a∆t/∆x)
[
Un

j+1 − Un
j−1

]
. (4.91)

Thus it is an explicit scheme that needs a special technique to get it
started. The initial condition will usually determine the values of U0,
but a special procedure is needed to give U1. Then the leap-frog scheme
can be used to give U2, U3, . . . in succession. The additional starting
values U1 can be obtained by any convenient one-step scheme, such as
Lax–Wendroff.
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Fig. 4.14. The leap-frog scheme: (a) unstaggered;
(b) staggered, × = V and o = W.

It is clear from Fig. 4.14(a) that the CFL condition requires that
|ν| ≤ 1, as for the Lax–Wendroff scheme. When f = au with constant a

the usual Fourier analysis leads to a quadratic for λ(k):

λ2 − 1 + 2iνλ sin k∆x = 0 (4.92)

with solutions

λ(k) = −iν sin k∆x ±
[
1 − ν2 sin2 k∆x

]1/2
. (4.93)

Since the product of these roots is −1, we must require both roots to
have modulus 1 for the scheme to be stable. It is easy to verify that
the roots are complex and equal in modulus for all k if and only if
|ν| ≤ 1: so for this scheme the Fourier analysis gives the same result as
the CFL condition; and when the stability condition is satisfied there is
no damping.

The result of the Fourier analysis leading to two values of λ(k) is
a serious problem for this scheme, as it means that it has a spurious
solution mode. It arises from the fact that the scheme involves three
time levels and so needs extra initial data, and it is this that determines
the strength of this mode. Taking the positive root in (4.93) we obtain
a mode that provides a good approximation to the differential equation,
namely the ‘true’ mode λT given by

arg λT = − sin−1 (ν sin k∆x)

∼ −νξ
[
1 − 1

6 (1 − ν2)ξ2 + · · ·
]
. (4.94)
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Note that the phase error here has the same leading term as the Lax–
Wendroff scheme – see (4.40). On the other hand, taking the negative
root gives the spurious mode

λS ∼ (−1)
[
1 + iνξ − 1

2ν2ξ2 + · · ·
]
, (4.95)

which gives a mode oscillating from time step to time step and travelling
in the wrong direction. In practical applications, then, great care has to
be taken not to stimulate this mode, or in some circumstances it may
have to be filtered out.

The discrete dispersion relation for the scheme can be derived from
(4.91), or from (4.92), as

sin ωh∆t = −ν sin k∆x.

Differentiating this gives the group velocity, corresponding to (4.86),

Ch = ν∆x cos k∆x/∆t cos ωh∆t

=
a cos k∆x

(1 − ν2 sin2 k∆x)1/2
. (4.96)

As with the box scheme, by expanding this expression or by differenti-
ating (4.94), we deduce that the group velocity error of the true mode,
i.e., for small k∆x, is three times the phase speed error given by (4.94).
At the other extreme, the group velocity of the spurious or parasitic
mode is obtained as −a by setting k∆x = π in this expression. Note
that this is equivalent to considering the negative root of (4.93) in the
limit k∆x = 0, since the two roots switch their roles when k∆x passes
through π as it traverses its allowed range [0, 2π).

The results displayed in Fig. 4.15 illustrate the application of the leap-
frog method for a square pulse and for Gaussian initial data; the first
time step used the Lax–Wendroff scheme. The results clearly show the
oscillating wave moving to the left. In some respects the results are
similar to those for the box scheme; but the oscillations move at a speed
independent of the mesh and cannot be damped, so in this case they
have to be countered by some form of filtering.

The real advantage of the leap-frog method occurs when it is applied
to a pair of first order equations such as those derived from the familiar
second order wave equation

utt = a2uxx, (4.97)
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At t = 0

At t = 1

At t = 0.5

At t = 0.1

Fig. 4.15. Linear advection by the leap-frog scheme with
∆t = ∆x = 0.02 for (a) a square pulse and (b) Gaussian
initial data.

where a is a constant: if we introduce variables v = ut and w = −aux,
it is clear that they satisfy the system

vt + awx = 0,

wt + avx = 0.
(4.98)

Because of the pattern of differentials here, a staggered form of the leap-
frog method can be used that is much more compact than (4.91): as
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indicated in Fig. 4.14(b) we have V and W at different points and a
staggered scheme can be written

V
n+1/2
j − V

n−1/2
j

∆t
+ a

Wn
j+1/2 − Wn

j−1/2

∆x
= 0, (4.99a)

Wn+1
j+1/2 − Wn

j+1/2

∆t
+ a

V
n+1/2
j+1 − V

n+1/2
j

∆x
= 0, (4.99b)

or

δtV + νδxW = 0, δtW + νδxV = 0, (4.100)

where we have taken advantage of the notation to omit the common
superscripts and subscripts. With constant a, we can construct a Fourier
mode by writing

(V n−1/2, Wn) = λneikx(V̂ , Ŵ ) (4.101)

where V̂ and Ŵ are constants. These will satisfy the equations (4.99) if(
λ − 1 2iν sin 1

2k∆x

2iλν sin 1
2k∆x λ − 1

)(
V̂

Ŵ

)
=

(
0

0

)
. (4.102)

This requires the matrix in (4.102) to be singular, so that

λ2 − 2(1 − 2ν2sin2 1
2k∆x)λ + 1 = 0 (4.103)

with solutions given by

λ±(k) = 1 − 2ν2s2 ± 2iνs[1 − ν2s2]1/2, (4.104)

where s = sin 1
2k∆x. Again, for the scheme to be stable we need λ+,

λ− to be a complex conjugate pair so that stability requires |ν| ≤ 1, in
which case |λ±| = 1. The phases are given by

arg λ± = ± sin−1
(
2νs[1 − ν2s2]1/2

)
∼ ±νξ

[
1 − 1

24 (1 − ν2)ξ2 + · · ·
]
. (4.105)

Note that the two roots of (4.103) are just the squares of the roots
of (4.92) with ∆x replaced by 1

2∆x; hence the expansion in (4.105)
corresponds to that in (4.94) with ξ replaced by 1

2ξ. Both modes are
now true modes which move to left and right at equal speeds, correctly
approximating the behaviour of solutions to the wave equation. Note
too that the accuracy is now better than that of the box scheme.
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Substituting

V
n+1/2
j = (Un+1

j − Un
j )/∆t, Wn

j+1/2 = −a(Un
j+1 − Un

j )/∆x

into the equations (4.99), (4.100) gives

(δ2
t − ν2δ2

x)Un
j = 0, (4.106)

the simplest central difference representation of the second order wave
equation (4.97) for U , together with a consistency relation. Note, too,
that if we eliminate either V or W from the equations we find that both
satisfy this second order equation. Some of the very attractive properties
of this scheme will be derived, and put in a wider context, in the next
section.

4.10 Hamiltonian systems and symplectic
integration schemes

There are two important structural properties that lie behind the attrac-
tive features of the staggered leap-frog scheme applied to the wave
equation: first, the wave equation (4.97) is the simplest example of a
Hamiltonian PDE ; and secondly, the staggered leap-frog scheme is one
of the most common examples of a symplectic integration scheme. The
importance of combining these two ideas has been most fully worked out
over the last several years in the approximation of ordinary differential
equation systems; but as they have recently been introduced into the
area of PDEs we shall here outline what is involved, by means of the
staggered leap-frog example. We will also show that the box scheme
can share some of these properties. In doing so we shall mainly use the
terminology and notation of Leimkuhler and Reich (2004).

Hamiltonian systems of ODEs have their origins in Hamilton’s 1834
formulation of the equations of motion for a dynamical system, but have
since been much generalised and their key properties widely studied.
Let q ∈ R

d and p ∈ R
d be ‘position’ and ‘momentum’ variables, which

together we will denote by z, and H(q,p) ≡ H(z) : R
d × R

d → R, a
smooth Hamiltonian function that defines the ODE system

ż ≡
(

q̇
ṗ

)
= J

(
Hq

Hp

)
≡ J∇zH, (4.107)

where the canonical structure matrix J has the form

J =
(

0 Id

−Id 0

)
with J−1 =

(
0 −Id

Id 0

)
,
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in which Id is the d-dimensional identity matrix. It is clear that H
is constant along any trajectory; its value represents the energy of the
system, which we shall sometimes denote by E(z). Indeed, consider
an arbitrary function G : R

2d → R, for which we will have, along any
trajectory

dG(z)
dt

= (∇zG)T ż = (∇zG)T J∇zH =:
{
G,H

}
. (4.108)

The expression
{
G,H

}
is called the Poisson bracket of G and H. It is

clearly antisymmetric, and hence zero when G = H: and whenever it
is identically zero the quantity G(q,p) is constant along the trajectory.
Then G is called a constant of the motion, with the energy being such a
constant for any Hamiltonian system.

The best-known example of a Hamiltonian system is the simple plane
pendulum, in which d = 1 and H = 1

2p2 − (g/L) cos q. The trajectories
are given by q̇ = p, ṗ = −(g/L) sin q, and from H(q, p) = const. along
each, it is easy to deduce that in the (q, p)−phase plane they form the
familiar closed curves around centres at p = 0, q = 2mπ separated by
saddle points at p = 0, q = (2m + 1)π.

Of even greater significance than the existence of constants of the
motion are the structural properties of the flow map formed from a set
of trajectories of a Hamiltonian system: for example, in the scalar d = 1
case it is area-preserving ; more generally it is said to be symplectic. To
see what is involved in these ideas we need a few more definitions. A
general mapping Ψ : R

2d → R
2d is said to be symplectic, with respect

to the canonical structure matrix J, if its Jacobian Ψz is such that

ΨT
z J−1Ψz = J−1. (4.109)

In the scalar case it is then easy to calculate that

if Ψz =
(

a b

c d

)
then ΨT

z J−1Ψz =
(

0 −ad + bc

ad − bc 0

)
,

so that Ψ is simplectic iff det Ψz ≡ ad − bc = 1. Hence if this holds, and
if z ∈ Ω ⊂ R

2 is mapped into ẑ = Ψ(z) ∈ Ω̂ ⊂ R
2, we have∫

Ω̂
dẑ =

∫
Ω

det Ψz dz =
∫

Ω
dz,

i.e., the mapping is area-preserving. So the symplectic property gen-
eralises the area preserving property to d > 1.

To apply this concept to the mapping produced by integrating a dif-
ferential equation we define, in the language of differential geometry,
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the differential one-form of a function f : R
2d → R, in the direction

ξ∈ R
2d,

df(ξ) := ∇zf ·ξ ≡
2d∑

i=1

∂f

∂zi
ξi. (4.110)

Then for two such functions, f and g, we can define a differential two-
form, called the wedge product, as

( df ∧ dg)(ξ,η) := dg(ξ) df(η) − df(ξ) dg(η). (4.111)

In particular, we can apply (4.110) to the components zi of z ≡ (q,p) to
obtain dzi(ξ) = ξi and write these as a vector dz ≡ ( dq, dp)T = ( dz1,

dz2, . . . , dz2d)T . It is also easy to see that if we apply (4.110) to the
components of the transformed variable ẑ = Ψ(z) we obtain

dẑ(ξ) = Ψz dz(ξ) ≡ Ψzξ. (4.112)

Furthermore, we can apply (4.111) to these components and then define
the wedge product

dq ∧ dp :=
d∑

i=1

dqi ∧ dpi. (4.113)

It is the conservation of this quantity that turns out to be the key char-
acterisation of Hamiltonian systems.

First of all, with a calculation as in the scalar case, we see that

ξT J−1η = ( dqT (ξ), dpT (ξ))J−1( dq(η), dp(η))T

=
d∑

i=1

[ dpi(ξ) dqi(η) − dqi(ξ) dpi(η)]

=
d∑

i=1

dqi ∧ dpi ≡ dq ∧ dp. (4.114)

Then if we premultiply (4.109) by ξT and postmultiply by η, and com-
pare the result with the combination of (4.114) with (4.112), we deduce
immediately that a mapping from (q,p) to (q̂, p̂) is symplectic iff

dq̂ ∧ dp̂ = dq ∧ dp. (4.115)

The fundamental result that the flow map of a Hamiltonian system is
symplectic can be derived directly from (4.109), but (4.115) is crucially
important in characterising the behaviour of the flow.
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Numerical methods for approximating ODE systems that retain these
properties are called symplectic integration schemes or, more generally,
geometric integrators – see Hairer, Lubich and Wanner (2002). The
simplest of these share the staggered structure of the leap-frog scheme.
For simplicity we start with the scalar d = 1 case, where we alternate
between the pair of equations

qn+1 = qn + ∆t Hp(qn, pn+1/2)

pn+1/2 = pn−1/2 − ∆t Hq(qn, pn+1/2). (4.116)

If, as in the pendulum case, Hp depends only on p and Hq only on q this
is an explicit method; more generally, it is implicit. In either case, if we
take the differentials of these equations we obtain

dqn+1 = dqn + ∆t[Hpq dqn + Hpp dpn+1/2]

dpn+1/2 = dpn−1/2 − ∆t[Hqq dqn + Hqp dpn+1/2], (4.117)

where we have omitted the arguments from the common Hamiltonian in
(4.116). Now when we take the wedge product of these two equations,
its antisymmetry implies that terms dqn ∧ Hqq dqn and Hpp dpn+1/2 ∧
dpn+1/2 are zero. So we take the wedge product of the first equation
with dpn+1/2 and substitute from the second equation in the dqn term
to get, after omitting these null terms,

dqn+1 ∧ dpn+1/2 = dqn ∧ [ dpn−1/2 − ∆tHqp dpn+1/2]

+ ∆tHpq dqn ∧ dpn+1/2. (4.118)

The two terms in ∆t cancel and we have the discrete symplectic property

dqn+1 ∧ dpn+1/2 = dqn ∧ dpn−1/2. (4.119)

If the whole procedure is repeated for a system with d > 1 the same
result is obtained: this is because, from the definitions of (4.111) and
(4.113), it is easy to see that for any matrix A we have

da ∧ (A db) = (AT da) ∧ db,

so that if A is symmetric and a = b the antisymmetry of the wedge
product again implies that the result is zero.

In theODE literature this staggered leap-frogmethod is usually referred
to as the Störmer-Verlet method; and the commonly used Asymmetrical
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Euler methods differ from it only in their superscript labelling. Their
effectiveness in the long time integration of Hamiltonian ODE systems
is amply demonstrated in the references already cited.

The transfer of these ideas to PDEs is relatively recent; and there
are several alternative approaches. One is to discretise in space so as
to obtain a Hamiltonian system of ODEs to which the above ideas can
be applied directly: there is increasing interest in mesh-free or particle
methods to achieve this step, but as we have hitherto excluded particle
methods we shall continue to do so here; alternatively, one may first
make a discretisation in space and then apply the ‘method of lines’ to
integrate in time, but we will not consider this here either. A more fun-
damental formulation is due to Bridges.1 This leads to a multi-symplectic
PDE which generalises the form of (4.107) to

Kzt + Lzx = ∇zS(z), (4.120)

where K and L are constant skew-symmetric matrices. Unfortunately,
these matrices and linear combinations of them are often singular, and
the formulation of a given system in this way not very obvious. We will
therefore apply a more straightforward approach to a wave equation
problem that generalises (4.97) and (4.98).

Suppose we have a Hamiltonian H(u, v) which is now an integral over
the space variable(s) of a function of u, v and their spatial derivatives.
Then to derive a Hamiltonian PDE we define a variational derivative of
H. For example, consider

H(u, v) =
∫

E(x, t) dx ≡
∫

[f(u) + g(ux) + 1
2v2] dx, (4.121)

where we have not specified the interval on which u and v are defined
and the equations are to hold; the integrand E(x, t) is called the energy
density. The variational derivative of a functional G(u) is defined by the
relation ∫

δuG(u)(δu) dx = lim
ε→0

G(u + εδu) − G(u)
ε

;

1 Bridges, T.J. (1997), Multi-symplectic structure and wave propagation, Math.
Proc. Camb. Philos. Soc. 121, 147–90.
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and applying this to (4.121), with boundary conditions that ensure any
boundary terms are zero, gives∫

δuH(u, v)(δu) dx = lim
ε→0

ε−1
∫

[f(u + εδu) − f(u)

+ g((u + εδu)x) − g(ux)] dx

=
∫

[f ′(u)δu + g′(ux)(δu)x] dx

=
∫

[f ′(u) − ∂xg′(ux)]δu dx. (4.122)

Comparing the two sides we deduce that

δuH(u, v) = f ′(u) − ∂xg′(ux). (4.123)

The the resulting Hamiltonian PDE is given as(
ut

vt

)
=
(

0 +1
−1 0

)(
δuH
δvH

)
. (4.124)

That is,

ut = v, vt = ∂xg′(ux) − f ′(u). (4.125)

Moreover, from these equations we can deduce a local energy conserva-
tion law of the form Et + Fx = 0: from differentiation of the terms in
the energy density of (4.121) and substitution from (4.125) we get, after
cancellation and collection of terms,

Et = f ′(u)v + g′(ux)vx + v[∂xg′(ux) − f ′(u)]

= [vg′(ux)]x =: −Fx. (4.126)

The quantity F (x, t) = −vg′(ux) is called the energy flux.
For example, let f = 0 and g(ux) = 1

2 (aux)2 with constant a. Then
(4.125) becomes

ut = v, vt = a2uxx, (4.127)

which is equivalent to the second order wave equation (4.97). If we set
w = −aux we get the first order pair of equations (4.98) to which we ap-
plied the staggered leap-frog method in Section 4.9. Furthermore, since
vg′(ux) = va2ux = −avw the local energy conservation law becomes

[ 12v2 + 1
2w2]t + [avw]x = 0, (4.128)

which we could deduce directly from (4.98). It is this local property
that we shall now show is preserved in a discrete form by the staggered
leap-frog scheme. It can be regarded as the simplest consequence of
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the symplectic character of the method, and corresponds to the energy
being a constant of the motion in the ODE case. Consideration of wedge
product relations of the form (4.119), which now have to be integrated
or summed over the space variables, is beyond the scope of this account.

Using the compact notation of (4.100) and the averaging operator as
defined in (4.79), we note that

(µtV )(δtV ) ≡ 1
2 (V + + V −)(V + − V −) = δt( 1

2V 2).

Hence we obtain from this pair of equations

δt[ 12 (V 2 + W 2)] + ν[(µtV )(δxW ) + (µtW )(δxV )] = 0. (4.129)

The first term clearly represents a time-step difference of the discrete
energy, with a division by ∆t being provided from the factor ν multiply-
ing the second term, and the second has terms proportional to a, V, W

and (∆x)−1; but it is not at all obviously a difference of energy fluxes.
To see that it actually is so, we need to go back to the full form of the
equations (4.99), restore the superscripts and subscripts and refer to
the staggered mesh of Fig. 4.14(b). First we write out the terms in
the energy difference ∆E in (4.129). It is given by

∆E = 1
2

[
(V n+1/2

j )2 + (Wn+1
j+1/2)

2]
− 1

2

[
(V n−1/2

j )2 + (Wn
j+1/2)

2]. (4.130)

Then the corresponding flux difference ∆F in the equation can be
written, after cancellation of the terms V

n+1/2
j Wn

j+1/2 and rearrange-
ment of the others, as

a−1∆F ≡ 1
2

(
V

n+1/2
j + V

n−1/2
j

)(
Wn

j+1/2 − Wn
j−1/2

)
+ 1

2

(
Wn+1

j+1/2 + Wn
j+1/2

)(
V

n+1/2
j+1 − V

n+1/2
j

)
= 1

2

[
V

n−1/2
j Wn

j+1/2 + V
n+1/2
j+1 Wn

j+1/2 + V
n+1/2
j+1 Wn+1

j+1/2

]
− 1

2

[
V

n+1/2
j Wn+1

j+1/2 + V
n+1/2
j Wn

j−1/2 + V
n−1/2
j Wn

j−1/2

]
.

(4.131)

This looks fearfully complicated, but when one refers to Fig. 4.14(b) it
has a very neat interpretation: if in each product one joins the mesh
point corresponding to the V factor with that corresponding to the W

factor, one sees that the terms in the first bracket give two sides of the
‘diagonal’ rectangle from (j, n − 1

2 ) round to (j + 1
2 , n + 1), while the

other bracket gives the other two sides of the rectangle (shown by dotted
lines in the figure).
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Indeed, not only is (4.129) in the required local conservation form in
terms of the difference (4.130) and (4.131), but it is best written as

∆E∆x + ∆F∆t = 0 : (4.132)

for then it represents an integral of the conservation law Et + Fx = 0
over the diagonal rectangle, after application of the Gauss divergence
theorem to give a line integral of F dt−E dx around its perimeter. For
instance, the integral of 1

2υ2 from (j+ 1
2 , n+1) to (j− 1

2 , n) and then on to
(j + 1

2 , n) gives the difference of (V )2 terms in (4.130); while continuing
the integral back to (j + 1

2 , n + 1) gives no contribution because there
is no net change in x. Similarly, the integral of avw from (j + 1

2 , n) to
(j + 1

2 , n + 1) gives the 1
2V

n+1/2
j+1 (Wn

j+1/2 + Wn+1
j+1/2) terms in (4.131),

while the earlier section from (j − 1
2 , n) to (j + 1

2 , n) gives the combined
first and last terms 1

2V
n−1/2
j (Wn

j+1/2 − Wn
j−1/2).

The box scheme has also been shown to have multisymplectic prop-
erties.1 So we will conclude this section by showing that it possesses a
compact energy conservation law when applied to the wave equation sys-
tem. In the compact notation used in (4.80) we can write the scheme as

δtµxV + νδxµtW = 0, δtµxW + νδxµtV = 0. (4.133)

Then, in the same way as in (4.129), we can deduce that

δt
1
2 [(µxV )2 + (µxW )2)] + ν[(µtµxV )(δxµtW ) + (µtµxW )(δxµtV )] = 0.

(4.134)
Now it is easy to check that

(µxA)(δxB) + (µxB)(δxA) ≡ 1
2

[
(A+ + A−)(B+ − B−)

+ (B+ + B−)(A+ − A−)

= A+B+ − A−B− ≡ δx(AB). (4.135)

Hence we deduce that

δt
1
2 [(µxV )2 + (µxW )2)] + νδx[(µtV )(µtW )] = 0, (4.136)

which is the natural energy conservation law over the original mesh box.

4.11 Comparison of phase and amplitude errors

We return now to the use of Fourier analysis by which means we can
compare all of the methods we have introduced in this chapter. As we
1 Zhao, P.F. and Quin, M.Z. (2000), Multisymplectic geometry and multisymplectic

Preissmann scheme for the KdV equation, J. Phys. A 33, 3613–26.
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Fig. 4.16. Amplification factor |λ| of Fourier modes, plotted
against ξ, for ν = 0.25, 0.5, 0.75 and 1.25. Note that for the
upwind scheme the curves with ν = 0.25 and ν = 0.75 are
identical.

have seen, the Fourier mode u(x, t) = ei(kx+ωt) is an exact solution of the
equation ut +aux = 0, for a a positive constant, provided that ω = −ak.
The amplitude of this mode is undamped, and in one time step its phase
increases by ω∆t = −ak∆t. A numerical scheme for this equation will
have a solution of the form λneikj∆x where λ(k) is a function of k, ∆t

and ∆x. In one time step this mode is multiplied by the amplification
factor λ, which is complex. The modulus of λ determines the stability
of the scheme: if |λ| > 1 + O(∆t) it will be unstable, and if |λ| < 1 the
mode will be damped. The relative phase of the numerical solution to
that of the exact solution is the ratio

arg λ

−ak∆t
= −arg λ

νξ
,

where ξ = k∆x and ν = a∆t/∆x.
Figure 4.16 shows graphs of |λ| as a function of ξ for two of the four

schemes which we have discussed, and Fig. 4.17 shows graphs of the
relative phase for each of the four schemes. Both these quantities are
close to unity when ξ is small, and their departure from it is a measure
of the numerical errors in the schemes. We show the graphs over the
range 0 ≤ ξ ≤ π, though the phase error is important only for the
interval [0, 1

2π] as the more rapidly oscillating modes are not properly
represented on the mesh. The box scheme and the leap-frog scheme are
undamped when ν < 1, so these two graphs of |λ| are omitted. For the
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Fig. 4.17. Relative phase of Fourier modes, plotted against
ξ, for ν = 0.25, 0.5 and 0.75. The three curves shown for the
leap-frog scheme are very close together; they increase with
increasing ν.

upwind and Lax–Wendroff schemes we have included a curve with ν > 1
to illustrate the behaviour in an unstable case.

Figure 4.17 shows clearly the phase advance of the box scheme for
ν < 1, and the phase lag of the Lax–Wendroff and leap-frog schemes.
For small values of ξ the relative phases of the Lax–Wendroff and leap-
frog schemes are very nearly the same; one can also see that the phase
error of the box scheme is about half as large in magnitude, but it grows
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Upwind scheme Lax−Wendroff scheme

Fig. 4.18. Locus of the complex amplification factors, for
ν = 0.75; the dotted line corresponds to the exact solution.

more rapidly with increasing ξ unless ν is near unity. Note that for the
leap-frog scheme the relative phase is very little affected by the value of ν.

In Fig. 4.18 we show polar diagrams of the locus of the complex ampli-
fication factor λ as a function of ξ for two of the schemes. The true factor
is e−iνξ, the locus of which in the complex plane is the unit circle. The
diagrams show the locus of each of the factors over the range 0 ≤ ξ ≤ π,
with points marked at intervals of 1

8π. Curves are shown for the upwind
scheme and the Lax–Wendroff scheme for ν = 0.75.

For the box scheme and the leap-frog scheme this type of diagram is
less useful, as all the points lie on the unit circle; but instead we can
plot their relative group velocities Ch/a, given respectively by (4.87) and
(4.96). Fig. 4.19 plots each for various values of ν.

5

10

16

−1

0

1

0 0
Box scheme Leap-frog scheme

π π

Fig. 4.19. Relative group velocity for the box and leap-frog
schemes, for ν = 0.25, 0.5, 0.75.
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4.12 Boundary conditions and conservation properties

Both the Lax–Wendroff method and the unstaggered leap-frog method
require an extra boundary condition over and above that associated
with the differential equation. To calculate Un+1

j requires values at
j − 1 and j + 1 on the previous time level, which are only available
when xj is an internal point. Thus for the advection equation on the
interval (0, 1) with a > 0 they need a condition on the right as well as
that provided for the differential equation on the left. For systems of
equations they need two boundary conditions for each equation rather
than the one that would normally be given for the differential system.
One of the advantages of the box scheme and the leap-frog method when
it can be used in its staggered form is that they do not need these extra
boundary conditions. Thus for the wave equation, which would have one
boundary condition on the left and one on the right, the staggered leap-
frog method is perfectly arranged if one of these specifies v and the other
specifies w.

The question then arises as to how these extra boundary conditions
should be derived when they are needed, and how they affect the proper-
ties of the scheme. Generally speaking, there are two ways of generating
the boundary conditions and two ways of assessing their effect on the
stability and accuracy of the difference scheme. The discrepancy in the
need for boundary conditions on the part of the difference and differential
systems is nearly always accounted for by the number of characteristics
in the latter case that are pointing out of the domain. Thus the best
way to derive the extra numerical boundary conditions is to approx-
imate the corresponding characteristic equations. For example, with
the advection equation one can always use the upwind scheme (4.20)
to calculate the last point in a Lax–Wendroff or unstaggered leap-frog
scheme.

For a system of equations, however, such a procedure would require
finding the characteristic normal form of the system, which involves
finding the eigenvalues and eigenvectors of the Jacobian matrix at the
boundary point. An alternative, simpler, technique is just to set the
first (or a higher order) difference of each unspecified variable equal to
zero. A typical choice then on the right would be Un

J = Un
J−1.

The most precise means of analysing the effect of these extra boundary
conditions is to consider their effect on the reflection and transmission of
waves that move towards the boundary. We have seen how the unstag-
gered leap-frog method has spurious wave modes. Thus one wants to
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ensure that true modes travelling towards the boundary do not give rise
to these spurious modes reflected back into the domain. Such analysis
is very effective but rather complicated and a full discussion is beyond
the scope of this book. We will, however, conclude this section with a
description of a particular example of the technique.

An alternative approach is to try to choose boundary conditions so
that conservation principles for the differential problem have analogues
for the difference scheme. Thus if the differential equation (4.46) is
solved on the unit interval with u(0, t) = 0 we obtain

d
dt

∫ 1

0
u(x, t) dx =

∫ 1

0
ut dx = −

∫ 1

0
fx dx

= f(u(0, t)) − f(u(1, t)). (4.137)

For the two-step form of the Lax–Wendroff scheme (4.65), a correspond-
ing relation would be

∆x
J−1∑

1

(Un+1
j − Un

j ) = ∆t
[
f(Un+1/2

1/2 ) − f(Un+1/2
J−1/2 )

]
(4.138)

and the boundary conditions at both ends should be chosen so that
(4.138) is a close analogue of (4.137). More will be said about these
ideas in the next chapter.

The example of wave reflection and transmission at a boundary which
we present is for the pair of equations ut + avx = 0, vt + aux = 0,
with a > 0, approximated by the unstaggered leap-frog method, with
a boundary on the left at x = 0. The wave equation system has two
sets of solution modes, one corresponding to waves moving to the right,
which we can write as

uR = e−ik(x−at), vR = e−ik(x−at); (4.139)

and the other corresponds to waves moving to the left, which we can
write as

uL = eik(x+at), vL = −eik(x+at). (4.140)

If the boundary condition at x = 0 is v = 0, then we satisfy the differ-
ential equations and boundary condition with any solution of the form
u = A(uR + uL), v = A(vR + vL). Now we attempt to construct similar
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solutions to the leap-frog difference equations together with appropriate
boundary conditions.

We cannot presume an exponential form for the mode and write
instead

Un
j = λnµjÛ , V n

j = λnµj V̂ , (4.141)

for some pair (λ, µ). Substituting these into the difference scheme,

Un+1
j − Un−1

j + ν(V n
j+1 − V n

j−1) = 0, (4.142a)

V n+1
j − V n−1

j + ν(Un
j+1 − Un

j−1) = 0, (4.142b)

where ν = a∆t/∆x, gives the pair of algebraic equations(
(λ2 − 1)µ νλ(µ2 − 1)
νλ(µ2 − 1) (λ2 − 1)µ

)(
Û

V̂

)
= 0. (4.143)

For these to have non-trivial solutions the pair (λ, µ) must be related by
the determinantal equation

(λ2 − 1)2µ2 − ν2λ2(µ2 − 1)2 = 0. (4.144)

For fixed µ, both (4.143) and (4.144) are generalisations of what is
obtained in a Fourier stability analysis, as for example in (4.102) and
(4.103) for the staggered leap-frog scheme for the same pair of equa-
tions. However, in order to study the situation at the boundary, it is
more useful to fix λ (and hence the variation with t) and consider the
spatial modes given by the corresponding values for µ. From (4.144) we
see that there are four solutions, arranged very symmetrically: rewriting
(4.144) as

µ4 − 2
[
1 +

(λ2 − 1)2

2ν2λ2

]
µ2 + 1 = 0, (4.145)

we have a quadratic in µ2 with roots whose product is unity; hence by
writing γ = (λ2 − 1)/νλ we obtain

µ = ±
[
1 + 1

2γ2 − γ(1 + 1
4γ2)1/2

]±1/2
. (4.146)

Suppose now we consider a low frequency mode that can be well approxi-
mated on the mesh and, by comparing with (4.139), we set λ ≈ eika∆t ≈
1 + ika∆t and hence get γ ≈ 2ik∆x. For small values of γ, (4.146)
gives

µ ∼ ±(1 − γ)±1/2 as γ → 0. (4.147)
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Thus (1 − γ)1/2 ≈ e−ik∆x and corresponds to a true right-moving wave,
(1 − γ)−1/2 corresponds to a true left-moving wave, and the two waves
−(1 − γ)±1/2 are the two spurious modes that are associated with the
leap-frog method. For each λ, we denote these roots by µRT , µLT , µRS ,

µLS respectively, and have the relations

µRS = −µRT , µLS = −µLT = −1/µRT . (4.148)

We can construct solutions with a given time variation from combina-
tions of these four.

The eigenvectors corresponding to each µ are given from (4.143) as

Û : V̂ = (1 − µ2) : µγ, (4.149)

and if the amplitudes of the two left-moving waves are given, the two
required boundary conditions determine the amplitudes of the two right-
moving waves. So suppose the true left-moving wave has unit amplitude
and is uncontaminated by any spurious mode; then we have a solution
to (4.142) of the form(

Un
j

V n
j

)
= λn

{
µj

LT

(
ÛLT

V̂LT

)
+ αµj

RT

(
ÛRT

V̂RT

)
+ βµj

RS

(
ÛRS

V̂RS

)}
,

(4.150)

with α and β to be determined from the boundary conditions. The
outcome that best matches the exact solution is to have α = 1, β =
0 so that no spurious mode is generated by the wave reflection; this
is achieved by a scheme introduced by Matsuno1 in connection with
numerical weather forecasting. As with the scheme (2.109) used for
the Neumann condition applied to heat flow, and used to obtain heat
conservation properties in Section 2.14, we set

Un
0 − Un

1 = 0, V n
0 + V n

1 = 0. (4.151)

The second condition approximates the given boundary condition v = 0,
while the first is of the type which sets a difference to zero. Normalising
to ÛLT = ÛRT = ÛRS = 1 in (4.150), the first condition gives

(1 − µLT ) + α(1 − µRT ) + β(1 − µRS) = 0, (4.152)

and substitution from (4.148) then gives

(1 − 1/µRT ) + α(1 − µRT ) + β(1 + µRT ) = 0. (4.153)

1 Matsuno, T. (1966), False reflection of waves at the boundary due to the use of
finite differences, J. Meteorol. Soc. Japan 44(2), 145–57.
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Similarly, the second boundary condition gives

(1 + 1/µRT )V̂LT + α(1 + µRT )V̂RT + β(1 − µRT )V̂RS = 0. (4.154)

In this second equation, we substitute for V̂ from (4.149), making use
of the identities

1/µ

1 − (1/µ)2
= − µ

1 − µ2 ,
−µ

1 − (−µ)2
= − µ

1 − µ2 , (4.155)

to get, after cancellation of the common factor γµRT /(1 − µ2
RT ),

−(1 + 1/µRT ) + α(1 + µRT ) − β(1 − µRT ). (4.156)

Finally, combining (4.153) with (4.156) gives

α = 1/µRT , β = 0, (4.157)

which shows that no spurious right-moving wave is generated. Note that
the true modes have the same amplitude at j = 1

2 , because µ
1/2
LT = αµ

1/2
RT

follows from (4.153) and (4.148).
We have given this example in some detail partly because it is an anal-

ysis that can be carried out for other schemes (such as Lax–Wendroff,
where the boundary conditions (4.151) are again very effective) and for
other problems, but also because it is of the same type as that which
is used for a general analysis of instabilities that can be generated by a
poor choice of boundary conditions – see the Bibliographic notes of this
chapter and Section 5.10 for references.

4.13 Extensions to more space dimensions

In some ways there is less difficulty in extending the methods of this
chapter to two and three space dimensions than there was with the
parabolic problems of Chapter 2 and Chapter 3. This is because it is
less common and less necessary to use implicit methods for hyperbolic
problems, since the stability condition ∆t = O(∆x) is less severe and
to have ∆t and ∆x of similar magnitude is often required to maintain
the accuracy of the schemes; also for important classes of problems,
such as numerical weather prediction, the domain is periodic with no
difficult curved boundaries to deal with. However, the theory of multi-
dimensional hyperbolic equations is much less well developed and quite
often the attractive properties that particular difference schemes have
in one-dimension cannot be extended to two or more. Also, when it is
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advantageous to use implicit methods, the techniques for the fast solu-
tion of the resulting algebraic equations are much less easy to devise –
see Chapter 7.

A typical system of equations can be written in a natural extension
of (4.5) and (4.9) as

∂u

∂t
+

∂f(u)
∂x

+
∂g(u)

∂y
= 0, (4.158)

and

ut + A(u)ux + B(u)uy = 0, (4.159)

where the Jacobian matrices A = ∂f/∂u, B = ∂g/∂u are derived from
the flux functions f and g. The unstaggered leap-frog method which
extends (4.90) can be written down immediately; and for the scalar case
a Fourier analysis readily yields the stability condition∣∣∣∣a∆t

∆x

∣∣∣∣ +
∣∣∣∣b∆t

∆y

∣∣∣∣ ≤ 1. (4.160)

A staggered leap-frog scheme can be arranged in various ways, giving
different stability conditions – see Exercise 10.

Similarly, the Lax–Wendroff method is easily extended and the way
in which this is done will affect the stability conditions. For example, a
widely used form of the two-step scheme can be written as follows, where
we introduce the convenient averaging notation µxUi,j := 1

2 (Ui+1/2,j +
Ui−1/2,j):

U
n+1/2
i+1/2,j+1/2 =

[
µxµyU − 1

2

(
∆t

∆x
µyδxF +

∆t

∆y
µxδyG

)]n

i+1/2,j+1/2
,

(4.161)

Un+1
i,j = Un

i,j −
[

∆t

∆x
µyδxF +

∆t

∆y
µxδyG

]n+1/2

i,j

. (4.162)

In the scalar case this has the stability condition(
a∆t

∆x

)2

+
(

b∆t

∆y

)2

≤ 1, (4.163)

which is the most natural multi-dimensional generalisation of a CFL
condition for a wave with velocity vector (a, b).
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As we have seen in Section 4.7 this scheme is a good example of a
finite volume scheme; and the update (4.162) – which is of more gen-
eral value than just for the Lax–Wendroff method – is readily gener-
alised to a quadrilateral mesh such as those in Figs. 1.1 and 1.2. On
such a mesh Un

i,j is regarded as a cell average associated with the cen-
troid of a cell and the fluxes in (4.162) need to be evaluated at the cell
vertices. Suppose we denote these by a cyclic subscript α running in
counter-clockwise order round the cell and apply the Gauss divergence
theorem as in (4.66) to integrate the flux terms in (4.158) over the (i, j)
cell. Using the trapezoidal rule for the edge integrals, the result is

|Ωi,j |
(
Un+1

i,j − Un
i,j

)
+ 1

2∆t
∑
α

{[Fα+1 + Fα] (yα+1 − yα)

− [Gα+1 + Gα] (xα+1 − xα)}n+1/2 = 0.

(4.164)

Here the cell area |Ωi,j | is given (by integrating div(x, 0) over the
cell) as

|Ωi,j | = 1
2

∑
α

(xα+1 + xα)(yα+1 − yα).

Note, too, that a similar formula could be derived for a triangular cell.
So one could use a mesh composed of both quadrilaterals and triangles.

The more difficult step is that of calculating the vertex fluxes at the
intermediate time level n+ 1

2 . One could do so by generalising the Lax–
Wendroff calculation given in (4.161) by integrating over a quadrilateral
formed from the four cell centres around the vertex. But because of
the oscillations associated with the use of Lax–Wendroff fluxes it is not
clear that this would be very effective: one would rather extend to two
dimensions the TVD flux constructs described in Section 4.7. However,
for most cases of hyperbolic systems the matrices A and B do not com-
mute. So they cannot be put into diagonal form simultaneously; and
thus genuinely multi-dimensional forms of the upwind methods based
on solving local Riemann problems are very difficult to construct.

Hence most multi-dimensional upwind schemes use fluxes calculated
at interior points of the edges, rather than the vertices. Then one can
use the fluxes in the normal direction, exploiting the property of hyper-
bolicity that every linear combination αA+βB, where α and β are real,
has real eigenvalues. The one-dimensional algorithms can therefore be
applied directly, and the update step (4.164) has only to be modified by
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replacing the trapezoidal rule used on each edge by the mid-point rule
or a Gauss rule.

Methods depend very much on the application and objectives being
considered, and more detailed discussion is beyond the scope of the
present book. Related difficulties arise at boundaries, where the correct
form for boundary conditions cannot be deduced simply from the ideas
of ingoing and outgoing characteristics as in one dimension.

Bibliographic notes and recommended reading

For an exposition of the basic theory of hyperbolic equations, character-
istics, Riemann invariants and shocks see the classic texts by Courant
and Hilbert (1962) and Courant and Friedrichs (1948), or rather more
recent books by Carrier and Pearson (1976), Smoller (1983) and Evans
(1998). For thorough expositions on nonlinear waves and waves in fluids
see Whitham (1974) and Lighthill (1978).

Texts which combine a theoretical treatment of conservation laws and
problems involving shocks with more details on their numerical mod-
elling include those by LeVeque (1992, 2002) and by Kreiss and Lorenz
(1989). The latter also contains an authoritative account of the well-
posedness of initial-boundary-value problems for hyperbolic equations,
and the closely related issue of numerical boundary conditions and their
stability; an earlier text which pioneered the analysis exemplified in Sec-
tion 4.12 is that by Godunov and Ryabenkii (1964).

Recent accounts of geometric and symplectic integration methods
for Hamiltonian systems can be found in Hairer et al. (2002) and
Leimkuhler and Reich (2004).

Exercises

4.1 Sketch the characteristics for the equation ut + aux = 0 for
0 ≤ x ≤ 1 when a ≡ a(x) = x − 1

2 . Set up the upwind scheme
on a uniform mesh {xj = j∆x, j = 0, 1, . . . , J}, noting that
no boundary conditions are needed, and derive an error bound;
consider both even and odd J . Sketch the development of the
solution when u(x, 0) = x(1−x) and obtain explicit error bounds
by estimating the terms in the truncation error.

Repeat the exercise with a(x) = 1
2 − x, but with boundary

conditions u(0, t) = u(1, t) = 0.
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4.2 If q has an expansion in powers of p of the form

q ∼ c1p + c2p
2 + c3p

3 + c4p
4 + · · · ,

show that

tan−1 q ∼ c1p + c2p
2 + (c3 − 1

3c3
1)p

3 + (c4 − c2
1c2)p4 + · · ·

as in Lemma 4.1 in Section 4.4.
Use this result to derive the leading terms in the phase expan-

sions of the following methods for approximating ut + aux = 0:

Upwind −νξ + 1
6ν(1 − ν)(1 − 2ν)ξ3;

Lax–Wendroff −νξ + 1
6ν(1 − ν2)ξ3;

Box −νξ − 1
12ν(1 − ν2)ξ3;

leap-frog −νξ + 1
6ν(1 − ν2)ξ3;

where ν = a∆t/∆x and ξ = k∆x.

4.3 Verify that the function u(x, t) defined implicitly by the equation

u = f(x − ut)

is the solution of the problem

ut + uux = 0, u(x, 0) = f(x),

and that u(x, t) has the constant value f(x0) on the straight line
x − x0 = tf(x0).

Show that the lines through the points (x0, 0) and (x0 + ε, 0),
where ε is small, meet at a point whose limit as ξ → 0 is (x0 −
f(x0)/f ′(x0),−1/f ′(x0)). Deduce that if f ′(x) ≥ 0 for all x the
solution is single-valued for all positive t. More generally, show
that if f ′(x) takes negative values, the solution u(x, t) is single-
valued for 0 ≤ t ≤ tc, where tc = −1/M and M is the largest
negative value of f ′(x).

Show that for the function f(x) = exp[−10(4x−1)2] the crit-
ical value is tc = exp(1

2 )/8
√

5, which is about 0.092. [Compare
with Fig. 4.10.]

4.4 Determine the coefficients c0, c1, c−1 so that the scheme

Un+1
j = c−1U

n
j−1 + c0U

n
j + c1U

n
j+1

for the solution of the equation ut + aux = 0 agrees with the
Taylor series expansion of u(xj , tn+1) to as high an order as
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possible when a is a positive constant. Verify that the result is
the Lax–Wendroff scheme.

In the same way determine the coefficients in the scheme

Un+1
j = d−2U

n
j−2 + d−1U

n
j−1 + d0U

n
j .

Verify that the coefficients d correspond to the coefficients c in
the Lax–Wendroff scheme, but with ν replaced by ν−1. Explain
why this is so, by making the change of variable ξ = x−λt in the
differential equation, where λ = ∆x/∆t. Hence, or otherwise,
find the stability conditions for the scheme.

4.5 For the scalar conservation law ut + f(u)x = 0, where f(u) is a
function of u only, the Lax–Wendroff scheme may be written

Un+1
j = Un

j − ∆t

∆x
Pn

j +
(

∆t

∆x

)2

Qn
j ,

where

Pn
j = 1

2

[
f(Un

j+1) − f(Un
j−1)

]
,

Qn
j = 1

2

[
An

j+1
2
(f(Un

j+1) − f(Un
j )) − An

j− 1
2
(f(Un

j ) − f(Un
j−1))

]
and

An

j+1
2

= f ′( 1
2Un

j+1 + 1
2Un

j ).

Expanding in Taylor series about the point (xj , tn) verify that
the expansions of P and Q involve only odd and even powers of
∆x respectively. Deduce that the leading terms in the trunca-
tion error of the scheme are

Tn
j = 1

6 (∆t)2uttt + (∆x)2[ 16uxxxf ′ + 1
2uxuxxf ′′ + 1

6u3
xf ′′′].

4.6 For the linear advection equation ut + aux = 0, where a is a
positive constant, a generalised upwind scheme on a uniform
mesh is defined by

Un+1
j = (1 − θ)Un

k + θUn
k−1

where xk − θ∆x = xj − a∆t and 0 ≤ θ < 1. Verify that
the CFL condition requires no restriction on ∆t, and that the
von Neumann stability analysis also shows that stability is
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unrestricted. What is the truncation error of this scheme, and
how does it behave as ∆t increases?

4.7 Derive an explicit central difference scheme for the solution of

uxx − (1 + 4x)2utt = 0

on the region 0 < x < 1, t > 0, given

u(x, 0) = x2, ut(x, 0) = 0, ux(0, t) = 0, u(1, t) = 1.

Show how the boundary conditions are included in the numerical
scheme. Find the characteristics of the differential equation, and
use the CFL condition to derive a stability restriction.

4.8 The linearised one-dimensional forms of the isentropic compress-
ible fluid flow equations are

ρt + qρx + wx = 0,

wt + qwx + a2ρx = 0,

where a and q are positive constants. Show that an explicit
scheme which uses central differences for the x-derivatives is
always unstable. By adding the extra terms arising from a Lax–
Wendroff scheme, derive a conditionally stable scheme and find
the stability condition.

4.9 Derive an ‘angled-derivative’ scheme for the advection equation
ut+aux = 0, by combining the differences Un+1

j −Un
j and Un

j+1−
Un+1

j−1 . Use Fourier analysis to study the accuracy and stability
of the scheme. For a > 0, consider the boundary conditions that
are needed to solve a problem on 0 ≤ x ≤ 1 and the behaviour
of the solution process at each time step.

4.10 For the wave equation in two dimensions,

ρt + ux + vy = 0, ut + c2ρx = 0, vt + c2ρy = 0,

set up a staggered leap-frog scheme with ρ at the points x = rh,
y = sh and (u, v) at the points x = (r + 1

2 )h, y = (s + 1
2 )h on a

square grid of size h, and find its stability condition.
Set up an alternative staggered leap-frog scheme in which ρ

is at the same points but u is at the points x = (r+ 1
2 )h, y = sh

while v is at the points x = rh, y = (s + 1
2 )h. Find its stability

condition and compare with that of the former scheme, showing
that one has a stability advantage over the other.
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4.11 Show that the Engquist–Osher scheme of (4.77) is TVD on a
uniform mesh when it is stable.

Show that on a nonuniform mesh the Roe scheme of (4.74) is
TVD if the time step is such that

−∆xj ≤ An
j+1/2∆t ≤ ∆xj+1,

that is, a characteristic cannot travel from the cell edge xj+1/2

beyond the neighbouring cell edges in one time step.



5

Consistency, convergence and stability

5.1 Definition of the problems considered

In this chapter we shall gather together and formalise definitions that
we have introduced in earlier chapters. This will enable us to state and
prove the main part of the key Lax Equivalence Theorem. For simplicity
we will not aim at full generality but our definitions and arguments will
be consistent with those used in a more general treatment.

In the problems which we shall consider, we make the following assump-
tions:

• the region Ω is a fixed bounded open region in a space which may have
one, two, three or more dimensions, with co-ordinates which may be
Cartesian (x, y, . . .), cylindrical polar, spherical polar, etc.;

• the region Ω has boundary ∂Ω;
• the required solution is a function u of the space variables, and of t,

defined on Ω× [0, tF ]; this function may be vector-valued, so that our
discussion can be applied to systems of differential equations, as well
as to single equations;

• the operator L(·) involves the partial derivatives of u in the space
variables; L does not involve t explicitly; for the most part we shall
assume that L is a linear operator, but whenever possible we shall give
definitions and state results which will generalise as easily as possible
to nonlinear operators;

• the boundary conditions will prescribe the values of g(u) on some or
all of the boundary Ω, where g(·) is an operator which may involve
spatial partial derivatives;

• the initial condition prescribes the value of u for t = 0 over the
region Ω.

151
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Thence we write the general form of the problems considered as

∂u

∂t
= L(u) in Ω × (0, tF ], (5.1a)

g(u) = g0 on ∂Ω1 ⊂ ∂Ω, (5.1b)

u = u0 on Ω when t = 0. (5.1c)

We shall always assume that (5.1) defines a well-posed problem, in a sense
which we shall define later; broadly speaking, it means that a solution
always exists and depends continuously on the data.

5.2 The finite difference mesh and norms

Our finite difference approximation will be defined on a fixed mesh,
with the time interval ∆t constant both over the mesh and at successive
time steps. The region Ω is covered by a mesh which for simplicity
we shall normally assume has uniform spacing ∆x, ∆y, . . . in Cartesian
co-ordinates, or ∆r, ∆θ, . . . in polar co-ordinates. Individual values at
mesh points will be denoted by Un

j ; in two or more space dimensions
the subscript j will be used to indicate a multi-index, as a condensed
notation for Un

j,k, Un
j,k,l, etc. We shall assume that a fixed, regular finite

difference scheme is applied to a set of points where Un
j is to be solved

for and whose subscripts j lie in a set JΩ, and it is only these points
which will be incorporated in the norms. Usually this will be just the
interior points of the mesh; and this means that where made necessary by
curved boundaries, derivative boundary conditions etc., extrapolation to
fictitious exterior points is used to extend the regular scheme to as many
points as possible – see, e.g., Section 3.4 and the use of (3.35). There are
other exceptional cases to consider too; when the regular finite difference
operator is used at points on a symmetry boundary, as in Section 6.5
below, and also at points on boundaries where the boundary conditions
are periodic, then these points are also included in JΩ. The values of U

at all such points on time level n will be denoted by Un:

Un := {Un
j , j ∈ JΩ}. (5.2)

To simplify the notation we will consider schemes which involve only
two time levels: for one-step methods this means that each Un

j , if a
vector, has the same dimension as u. However, as we have seen with
the leap-frog method in Section 4.9, we can include multi-step methods
by extending the dimension of Un

j compared with u. For example, if
a scheme involves three time levels, so that Un+1 is given in terms of
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Un and Un−1, we can define a new vector Ũn with twice the dimension,
whose elements are those of Un and Un−1.

To compare U with u we need to introduce norms which can be used
on either, and in particular on their difference. Thus we first denote by
un

j mesh values of the function u(x, t) which will usually be the point
values u(xj , tn). We hope to show that the mesh values of U converge
to these values of u. Then as for the mesh point values Un

j above we
define

un := {un
j , j ∈ JΩ}. (5.3)

We shall consider just two norms. Firstly, the maximum norm is given by

‖Un‖∞ := max{|Un
j | , j ∈ JΩ}. (5.4)

If we evaluate the maximum norm of un the result will approximate the
usual supremum norm ‖u‖∞ with u considered as a function of x at
fixed time tn, but will not in general be equal to it. The norms will only
be equal if the maximum value of the function |u(x, tn)| is attained at
one of the mesh points.

j

Vj

Fig. 5.1. Definition of control volume.

Secondly, we shall use a discrete l2 norm which will approximate
the integral L2 norm. To do so, we introduce a ‘control volume’
with measure Vj associated with each interior mesh point: these will
be non-overlapping elements whose union approximates Ω. Usually,
as shown in Fig. 5.1, a mesh point xj will lie at the centre of the
control volume – see also Section 4.7 on finite volume methods; but
this need not be the case so long as there is a one-to-one correspon-
dence between mesh points and control volumes. In three-dimensional
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Cartesian geometry, Vj = ∆x∆y∆z; in three-dimensional cylindrical
geometry, Vj = rj∆θ∆r∆z, and so on. Then, we define

‖Un‖2 :=




∑
j∈JΩ

Vj |Un
j |2




1/2

. (5.5)

For mesh points near the boundary the control volume may or may not
be modified to lie wholly in Ω. In either case, the sum in (5.5) clearly
approximates an integral so that ‖un‖2 approximates but does not in
general equal the integral L2 norm

‖u(·, tn)‖2 :=
[∫

Ω
|u(x, tn)|2 dV

]1/2

(5.6)

at time tn. However, if we define un
j as the root mean square value

of u(x, tn) averaged over the jth control volume we clearly do have an
exact match; we saw in Section 2.14 the value of making a similar inter-
pretation when modelling heat conservation properties. For a single
differential equation the notation |Un

j | is clear; if we are dealing with a
system of differential equations, Un

j is a vector and |Un
j | denotes a norm

of this vector. The choice of which vector norm to use is immaterial
to the subsequent analysis, but of course it must be used consistently
throughout.

We should perhaps note here some of the techniques in common prac-
tical use that are not included in this general framework. Many of them
have to do with adaptivity: choosing the next time step on the basis of
a current error estimate; choosing a backward or forward difference in a
solution dependent manner as in the upwind scheme of (4.20); or locally
refining the mesh, e.g., to follow a steep gradient. Some of these would
require major changes in the analysis. On the other hand, to cover the
case of a refinement path composed of nonuniform meshes would not be
very difficult.

5.3 Finite difference approximations

The general form of difference scheme we shall consider will be written

B1U
n+1 = B0U

n + Fn. (5.7)

As the notation implies, the difference operators B0, B1 are indepen-
dent of n, corresponding to the assumption that L(·) does not depend
explicitly on t; but, although based on fixed difference operators, they
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may depend on the point where they are applied. Thus at each point
j ∈ JΩ, a linear difference operator B will be written in the form of a
sum over near neighbours also in JΩ:

(BUn)j =
∑

k∈JΩ

bj,kUn
k ∀j ∈ JΩ; (5.8)

while for a nonlinear operator, nonlinear combinations of Un
k would be

involved. The notation bj,k denotes the fact that the coefficients may
depend on j as well as k, for two reasons. Firstly, it enables us to cover
the case when L(·) has spatially variable coefficients, while for a constant
coefficient problem, bj,k would usually just depend on the difference k−j.
Secondly, although the pattern of neighbours involved in (5.8) will be
the same for all points well away from the boundary, at the boundary
we are assuming that the numerical boundary conditions have already
been incorporated in (5.8) so that values of U at all points outside JΩ

have been eliminated. Thus the data term Fn in (5.7) includes not only
data arising from inhomogeneous terms in the differential operator L(u)
but also inhomogeneous boundary data.

We shall always assume that B1 is linear, of the form (5.8), so that
it can be represented by a square matrix. To extend the theory to
nonlinear problems it would be necessary for B0 to be nonlinear but not
necessarily B1; but to cover schemes like the box scheme by such an
extension would require B1 to be nonlinear too.

We shall furthermore assume that B1 is invertible, i.e. its representing
matrix is non-singular. Hence we can write (5.7) as

Un+1 = B−1
1 [B0u

n + Fn] . (5.9)

We shall also assume that (5.7) is so scaled that formally it represents
the differential equation in the limit and hence B1 = O(1/∆t). Thus

B1u
n+1 − [B0u

n + Fn] → ∂u

∂t
− L(u) (5.10)

as the mesh intervals ∆t, ∆x, . . . are refined in some manner which may
depend on consistency conditions being satisfied. For example, in the
θ-method (2.75) for the one-dimensional diffusion equation which we
discussed in Chapter 2, away from the boundaries

B1 =
1

∆t
− θ

δ2
x

(∆x)2
, B0 =

1
∆t

+ (1 − θ)
δ2
x

(∆x)2
. (5.11)

Moreover, we shall combine these two conditions and assume that the
matrix B1 is uniformly well-conditioned in the sense that there is a
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constant K such that, in whichever norm is being used to carry out the
analysis,

‖B−1
1 ‖ ≤ K1∆t, (5.12)

even though B−1
1 is represented by a matrix of ever-increasing dimension

as the limit ∆t → 0 is approached.
For example, it is easy to deduce that in the case of (5.11) and the

maximum norm, we have K1 = 1: for the equation

B1U = F, U = B−1
1 F (5.13)

means, with µ = ∆t/(∆x)2 and at a point away from the boundaries,

−µθUj−1 + (1 + 2µθ)Uj − µθUj+1 = ∆tFj ,

i.e.,

(1 + 2µθ)Uj = ∆tFj + µθ(Uj−1 + Uj+1). (5.14)

With Dirichlet boundary conditions, B1U = F at j = 1 and J − 1
involves only two points of JΩ ≡ {j = 1, 2, . . . , J − 1}, giving

(1 + 2µθ)U1− µθU2 = ∆tF1 and −µθUJ−2 + (1+ 2µθ)UJ−1 = ∆tFJ−1

respectively. Thus for all values of j ∈ JΩ we have

(1 + 2µθ)|Uj | ≤ ∆t‖F‖∞ + 2µθ‖U‖∞

and hence

(1 + 2µθ)‖U‖∞ ≤ ∆t‖F‖∞ + 2µθ‖U‖∞ (5.15)

from which the result follows.

5.4 Consistency, order of accuracy and convergence

All limiting operations or asymptotic results refer (sometimes implicitly)
to an underlying refinement path or set of refinement paths. That is, as
in (2.47), a sequence of choices of the mesh parameters ∆t, ∆x, ∆y, etc.
is made such that they each tend to zero: and there may be inequality
constraints between them. For brevity we shall characterise the whole
of the spatial discretisation by a single parameter h: this may be just
the largest of the mesh intervals ∆x, ∆y, . . ., though this may need to
be scaled by characteristic speeds in each of the co-ordinate directions;
or h may be the diameter of the largest control volume around the mesh
points. Then taking the limit along some designated refinement path
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we shall denote by ‘∆t(h) → 0’, or sometimes just ∆t → 0 or h → 0:
we shall always need ∆t to tend to zero but stability or consistency
may require that it does so at a rate determined by h, for example
∆t = O(h2) being typical in parabolic problems and ∆t = O(h) in
hyperbolic problems.

The truncation error is defined in terms of the exact solution u as

Tn := B1u
n+1 − [B0u

n + Fn] , (5.16)

and consistency of the difference scheme (5.7) with the problem (5.1a)–
(5.1c) as

Tn
j → 0 as ∆t(h) → 0 ∀j ∈ JΩ (5.17)

for all sufficiently smooth solutions u of (5.1a)–(5.1c). Note that this
includes consistency of the boundary conditions through the elimination
of the boundary values of U in the definition of B0 and B1.

If p and q are the largest integers for which

|Tn
j | ≤ C [(∆t)p + hq] as ∆t(h) → 0 ∀j ∈ JΩ (5.18)

for sufficiently smooth u, the scheme is said to have order of accuracy
p in ∆t and q in h: or pth order of accuracy in ∆t, and qth order of
accuracy in h.

Convergence on the other hand is defined in terms of all initial and
other data for which (5.1a)–(5.1c) is well-posed, in a sense to be defined
in the next section. Thus (5.7) is said to provide a convergent approxi-
mation to (5.1a)–(5.1c) in a norm ‖ · ‖ if

‖Un − un‖ → 0 as ∆t(h) → 0, n∆t → t ∈ (0, tF ] (5.19)

for every u0 for which (5.1a)–(5.1c) is well-posed in the norm: here we
mean either of the norms (5.4) or (5.5). From a practical viewpoint the
advantage of this approach is that the effect of round-off errors can be
immediately allowed for: if on the other hand convergence were estab-
lished only for sufficiently smooth data, round-off errors would have to
be accounted for in a separate analysis.

5.5 Stability and the Lax Equivalence Theorem

None of the definitions (5.16)–(5.19) in the last section was limited to
linear problems: they are quite general. In this section (and most of
the rest of the chapter) however we are able to consider only linear
problems. Suppose two solutions V n and Wn of (5.7) or (5.9) have the
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same inhomogeneous terms Fn but start from different initial data V 0

and W 0: we say the scheme is stable in the norm ‖ · ‖ and for a given
refinement path if there exists a constant K such that

‖V n − Wn‖ ≤ K‖V 0 − W 0‖, n∆t ≤ tF ; (5.20)

the constant K has to be independent of V 0, W 0 and of ∆t(h) on the
refinement path, so giving a uniform bound. (In the nonlinear case,
restrictions would normally have to be placed on the initial data con-
sidered.) The assumption that V n and Wn have the same data Fn is
a simplification that mainly stems from our decision to limit the con-
sideration of boundary effects in the evolutionary problems treated in
this and earlier chapters – this is why we have been able to set bound-
ary conditions to zero when applying Fourier analysis to study stability.
We shall study boundary effects much more in Chapter 6 on elliptic
problems. Note too that we can also include the effect of interior data
by application of Duhamel’s principle, as was done in Section 2.11 of
Chapter 2.

Since we are dealing with the linear case (5.20) can be written

‖
(
B−1

1 B0
)n ‖ ≤ K, n∆t ≤ tF . (5.21)

Notice that for implicit schemes the establishment of (5.12) is an impor-
tant part of establishing (5.21); consider, for example, the box scheme
for linear advection, and the effect of having boundary conditions on one
side or the other.

It is now appropriate to formalise our definition of well-posedness. We
shall say that the problem (5.1) is well-posed in a given norm ‖ · ‖ if, for
all sufficiently small h, we can show that (i) a solution exists for all data
u0 for which ‖u0‖ is bounded independently of h, and (ii) there exists a
constant K ′ such that for any pair of solutions v and w,

‖vn − wn‖ ≤ K ′‖v0 − w0‖, tn ≤ tF . (5.22)

This differs from the usual definition in that we are using discrete norms;
but we have chosen each of these so that it is equivalent to the corre-
sponding function norm as h → 0, if this exists for u, and we define un

j

appropriately. An important feature of either definition is the following:
for u to be a classical solution of (5.1a) it must be sufficiently smooth for
the derivatives to exist; but suppose we have a sequence of data sets for
which smooth solutions exist and these data sets converge to arbitrary
initial data u0 in the ‖ · ‖ norm, uniformly in h; then we can define a
generalised solution with this data as the limit at any time tn of the
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solutions with the smooth data, because of (5.22). Thus the existence
of solutions in establishing well-posedness has only to be proved for a
dense set of smooth data (with the definition of denseness again being
uniform in h).

There is clearly a very close relationship between the definition of
well-posedness for the differential problem and that of stability given
by (5.20) for the discrete problem. This definition of stability, first
formulated by Lax in 1953, enabled him to deduce the following key
theorem:

Theorem 5.1 (Lax Equivalence Theorem) For a consistent differ-
ence approximation to a well-posed linear evolutionary problem, which
is uniformly solvable in the sense of (5.12), the stability of the scheme
is necessary and sufficient for convergence.

Proof (of sufficiency). Subtracting (5.16) from (5.7) we have

B1
(
Un+1 − un+1) = B0 (Un − un) − Tn,

i.e.,

Un+1 − un+1 =
(
B−1

1 B0
)
(Un − un) − B−1

1 Tn. (5.23)

Assuming that we set U0 = u0, it follows that

Un − un = −[B−1
1 Tn−1 +

(
B−1

1 B0
)
B−1

1 Tn−2 + · · ·

+
(
B−1

1 B0
)n−1

B−1
1 T 0]. (5.24)

Now in applying the theorem, (5.12) and (5.21) are to hold in the same
norm, for which we shall also deduce (5.19); we can combine these two
to obtain

‖
(
B−1

1 B0
)m

B−1
1 ‖ ≤ KK1∆t (5.25)

from which (5.24) gives

‖Un − un‖ ≤ KK1∆t

n−1∑
m=0

‖Tm‖.

Thus convergence in the sense of (5.19) follows from the consistency of
(5.17), if u is sufficiently smooth for the latter to hold. For less smooth
solutions, convergence follows from the hypotheses of well-posedness and
stability: general initial data can be approximated arbitrarily closely by
data for smooth solutions and the growth of the discrepancy is bounded
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by the well-posedness of the differential problem and the stability (5.19)
of the discrete problem.

The necessity of stability for convergence follows from the principle of
uniform boundedness in functional analysis, working in the framework
of a single Banach space for the continuous and discrete problems; this
is where our simplified approach based on discrete norms has its disad-
vantages, and therefore a consideration of this principle is beyond the
scope of this book – interested readers may find a proof tailored to this
application inRichtmyer and Morton (1967), pp. 34–36, 46.

Thus for any scheme where consistency is readily established, we need
only be concerned with establishing the conditions for stability; that
is, we need only work with the discrete equations. As we have seen,
consistency will usually hold for any sequence ∆t → 0, h → 0; but there
are a few cases where one has to be careful. For example, the Dufort–
Frankel scheme for the one-dimensional heat equation,

Un+1
j − Un−1

j

2∆t
=

Un
j+1 − Un+1

j − Un−1
j + Un

j−1

(∆x)2
, (5.26)

has the advantage of being explicit and yet is unconditionally stable,
something contrary to our experience so far. However, one finds for the
truncation error

T = (ut−uxx)+(∆t/∆x)2utt+O
(
(∆t)2+(∆x)2+((∆t)2/∆x)2

)
. (5.27)

Thus this is consistent with the heat equation only if ∆t = o(∆x) and
is first order accurate only if ∆t = O

(
(∆x)2

)
. As a result, it is the

consistency condition rather than the stability condition that determines
the refinement paths that can be used to obtain convergence.

This serves to emphasise the fact that, in the Lax Equivalence The-
orem, there is implicit not only a choice of norm for defining stability
and convergence but also a choice of refinement path.

5.6 Calculating stability conditions

As we are dealing with linear problems, if in (5.20) V n and Wn are
solutions of the difference equations (5.7), then the difference V n − Wn

is a solution of the homogeneous difference equations with homogeneous
boundary data. That is, establishing stability is equivalent to establish-
ing the following:

B1U
n+1 = B0U

n and n∆t ≤ tF ⇒ ‖Un‖ ≤ K‖U0‖, (5.28)
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which is what is meant by (5.21). The constant K will generally depend
on the time interval tF and allows for the sort of exponential growth
that might occur with ut = ux + u, for example. For simple problems
one will often find: either K = 1, there is no growth and the scheme is
stable; or Un ∼ λnU0, with |λ| > 1 even as ∆t → 0 for some mode, so
the scheme is unstable.

Thus when we established a maximum principle in Section 2.6 and
elsewhere we were also establishing stability in the maximum norm:
strictly speaking, we had also to establish a minimum principle so as to
be able to say not only

Un+1
j ≤ max

k
Un

k ≤ ‖Un‖∞ (5.29)

but also

Un+1
j ≥ min

k
Un

k ≥ −‖Un‖∞ (5.30)

and could then deduce

‖Un+1‖∞ ≤ ‖Un‖∞. (5.31)

For parabolic problems proving stability by this means is very nat-
ural because a maximum (or minimum) principle is a very attractive
and appropriate attribute for a difference scheme to possess over and
above stability. Also, as we have seen in examples, quite general linear
problems with variable coefficients and mixed boundary conditions can
be dealt with: in each case we were able to deduce simple algebraic con-
ditions on ∆t for which a scheme could be shown to have a maximum
principle and hence to be stable in the maximum norm. In many cases
Fourier analysis could then show that, for the corresponding problem
with constant coefficients and periodic boundary conditions, failing to
satisfy these conditions leads to instability which, as we shall see below,
is then in the l2 norm. However, in other cases as with the θ-method,
there was a gap between the two conditions given by the two meth-
ods. In an influential paper in 1952,1 Fritz John showed that, for a
wider class of parabolic problems and corresponding difference approxi-
mations, schemes that satisfy a von Neumann condition obtained from
a locally applied Fourier analysis are also stable in the maximum norm.
Thus, some schemes which do not satisfy a maximum principle are actu-
ally stable in the maximum norm; although see below in Section 5.7 for
more comment on these cases.
1 John, F. (1952) On the integration of parabolic equations by difference methods,

Comm. Pure Appl. Math. 5, 155.
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Furthermore, a maximum principle is seldom available or even appro-
priate for hyperbolic problems. As we have noted, the first order scheme
(4.20) satisfies a maximum principle whenever 0 ≤ ν ≤ 1 so that it
is then stable in the maximum norm: but we can show that this can
never be true of a second order scheme. For example, consider the Lax–
Wendroff method written in the form (4.36). If it were to satisfy a
maximum principle, then for any set of non-positive values for Un one
should never have Un+1 > 0: yet if 0 < ν < 1, setting Un

j−1 = Un
j = 0

and Un
j+1 = −1 gives a positive value for Un+1

j . This does not of course
demonstrate that the scheme is actually unstable in the maximum norm,
merely that we cannot prove such stability by this means.

For this reason, and also because hyperbolic differential equations are
much more commonly well-posed in the L2 norm than in the supremum
norm, for hyperbolic problems we have to adopt the more modest tar-
get of proving stability in the l2 norm (5.5). This gives weaker results
because we have, recalling that Vj is the measure of the jth control
volume,

[
min
j∈JΩ

Vj

]1/2

‖U‖∞ ≤ ‖U‖2 ≤
[ ∑

j∈JΩ

Vj

]1/2

‖U‖∞; (5.32)

in the bounded region we are working with, the coefficient on the right
is a finite constant while that on the left tends to zero as the mesh is
refined. It is clear that we would prefer to derive a maximum norm error
bound from a stability analysis but, if we have only l2 stability and so
obtain a bound for the l2 norm of the error ‖En‖2, then (5.32) gives a
poor result for ‖En‖∞.

However, it is the l2 norm which is appropriate for Fourier analysis
because of Parseval’s relation. Suppose we can assume periodicity on
a normalised region [−π, π]d which is covered by a uniform (Cartesian)
mesh of size ∆x1 = ∆x2 = . . . = ∆xd = π/J . Then the Fourier modes
that can be distinguished on the mesh correspond to wave numbers,
which we denote by the vector k, having components given by

k = 0, ±1, ±2, . . . ,±J, (5.33)

where the last two with k∆x = ±π are actually indistinguishable. Hence
we can expand any periodic function on the mesh as

U(xj) =
1

(2π)d/2

∑′

(k)
Û(k)eik·xj (5.34)
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where the prime on the summation sign means that any term with
ks = ±J has its weight halved, and we have also used a vector notation
xj for mesh points. This discrete Fourier expansion has an inverse which
is the discrete Fourier transform

Û(k) =
1

(2π)d/2

∑′

(j)
(∆x)dU(xj)e−ik·xj , (5.35)

where each component of j runs from −J to J with the mesh points on
the periodic boundaries again having their weights halved so that all the
weights are equal to the Vj introduced in (5.5).

Lemma 5.1 The Fourier modes (2π)−d/2eik·xj with components given
by (5.33) are orthonormal with respect to the l2 inner product used in
(5.35), namely

〈U, W 〉2 := (∆x)d
∑′

(j)
UjW j . (5.36)

Proof It is sufficient to consider d = 1. We first establish the funda-
mental trigonometric identity

1
2e−iJθ + e−i(J−1)θ + · · · + ei(J−1)θ + 1

2eiJθ = sinJθ cot 1
2θ. (5.37)

From the summation

1 + eiθ + ei2θ + · · · + ei(J−1)θ = (eiJθ − 1)/(eiθ − 1),

we obtain by adding 1
2 (eiJθ − 1)

1
2 + eiθ + ei2θ + · · · + ei(J−1)θ + 1

2eiJθ = 1
2 (eiJθ − 1)

(eiθ + 1)
(eiθ − 1)

(5.38)

= 1
2i (e

iJθ − 1) cot 1
2θ. (5.39)

Combining this with a similar sum for −θ gives (5.37). Now apply this
with θ = (k1 − k2)∆x, so that Jθ = (k1 − k2)π. We obtain∑′

(j)
eik1xj e−ik2xj = sin(k1 − k2)π cot 1

2 (k1 − k2)∆x, k1 
= k2,

so that ∑′

(j)
eik1xj e−ik2xj = (2π/∆x)δk1,k2 .
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Hence we have, with Vj the control volume measure,

‖U‖2
2 =

∑
j∈JΩ

Vj |Uj |2 ≡
∑′

(j)
(∆x)d|U(xj)|2

=
(

∆x

2π

)d ∑′

(k)
|Û(k)|2

(
2π

∆x

)d

, (5.40)

i.e.,

‖Û‖2
2 :=

∑′

(k)
|Û(k)|2 = ‖U‖2

2, (5.41)

which is the appropriate form of Parseval’s relation.
For a rectangular region of general dimensions a simple scaling will

reduce the situation to the above case. However, note that not only is
∆x then changed but we will also generally have ∆k 
= 1 and that such a
coefficient will be needed in the definition of ‖Û‖2 for (5.41) to hold. It
is also worth noting that when for example we have a problem on [0, 1]
with u(0) = u(1) = 0 we extend this to a periodic problem on [−1, 1] by
imposing antisymmetry at x = 0 and using a sine series. This is why we
have taken [−π, π] as our standard case above.

To establish (5.28) then, for a constant coefficient problem with peri-
odic boundary conditions, we expand arbitrary initial data in the form
(5.34) and, from the discrete Fourier transform of (5.28), obtain the
same form at successive time levels with the coefficients given by

B̂1(k)Ûn+1(k) = B̂0(k)Ûn(k), (5.42)

where, if the Un are p-dimensional vectors, B̂0 and B̂1 are p×p matrices.
The matrix

G(k) = B̂−1
1 (k)B̂0(k) (5.43)

is called the amplification matrix as it describes the amplification of each
mode by the difference scheme. Because we have assumed that B̂0 and
B̂1 are independent of t we can write

Ûn = [G(k)]nÛ0 (5.44)

and using (5.41) have

sup
U0

‖Un‖2

‖U0‖2
= sup

Û0

[
∑′

(k) |Ûn(k)|2]1/2

[
∑′

(k) |Û0(k)|2]1/2

= sup
k

sup
Û0(k)

|Ûn(k)|
|Û0(k)|

= sup
k

|[G(k)]n|. (5.45)
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Thus stability in the l2 norm is equivalent to showing that

|[G(k)]n| ≤ K ∀k, n∆t ≤ tF . (5.46)

Here |Gn| means the p × p matrix norm subordinate to the vector norm
used for Un

j and Û(k).
Then clearly we have the following result.

Theorem 5.2 (von Neumann Condition) A necessary condition for
stability is that there exist a constant K ′ such that

|λ(k)| ≤ 1 + K ′∆t ∀k, n∆t ≤ tF , (5.47)

for every eigenvalue λ(k) of the amplification matrix G(k).

Proof By taking any eigenvector of G(k) as Û(k) it is obviously nec-
essary that there be a constant K such that|λn| ≤ K: then by taking
n∆t = tF we have

|λ| ≤ K∆t/tF ≤ 1 + (K − 1)∆t/tF for ∆t ≤ tF ,

the last inequality following from the fact that Ks is a convex function
of s.

The von Neumann condition is a sufficient condition for the l2 stability
of any scheme to which the Fourier analysis can be applied, if the scheme
is a one-step scheme for a scalar equation so that G is scalar. It is also
sufficient if G is a normal matrix so that its subordinate norms can
be bounded by its spectral radius. Other more sophisticated sufficient
conditions are given in Richtmyer and Morton (1967), Chapter 4, as well
as necessary and sufficient conditions derived by Kreiss1 and Buchanan2

in 1962 and 1963 respectively. The key result is known as the Kreiss

1 Kreiss, H.O. (1962), Über die Stabilitätsdefinition für Differenzengleichungen die
partielle Differentialgleichungen approximieren, Nordisk Tidskr. Informations-
Behandlung 2, 153–181.

2 Buchanan, M.L. (1963), A necessary and sufficient condition for stability of differ-
ence schemes for second order initial value problems, J. Soc. Indust. Appl. Math.
11, 474–501; and Buchanan, M.L. (1963), A necessary and sufficient condition for
stability of difference schemes for initial value problems, J. Soc. Indust. Appl.
Math. 11, 919–35.
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Matrix Theorem; its consideration is beyond the scope of this book, but
see Section 5.9 below. However, it is worth noting here that, although,
as we have seen, when the von Neumann condition is violated the growth
of Un can be exponential in n, when it is satisfied and G is uniformly
bounded the growth can be at most polynomial in n: indeed at worst it
is O(np−1) where G is a p × p matrix.

5.7 Practical (strict or strong) stability

Clearly the von Neumann condition is very important both practically
and theoretically. Even for variable coefficient problems it can be applied
locally (with local values of the coefficients) and because instability is
a local phenomenon, due to the high frequency modes being the most
unstable, it gives necessary stability conditions which can often be shown
to be sufficient. However, for some problems the presence of the arbitrary
constant in (5.47) is too generous for practical purposes, though being
adequate for eventual convergence.

Consider the following problem which is a mixture of our simple one-
dimensional diffusion and advection problems:

ut + aux = εuxx, ε > 0. (5.48)

Let us approximate it by central differences in space and a forward
difference in time:

Un+1 − Un

∆t
+ a

∆0xUn

∆x
= ε

δ2
xUn

(∆x)2
. (5.49)

We now have two mesh ratios

ν := a∆t/∆x, µ := ε∆t/(∆x)2 (5.50)

and a Fourier analysis gives the amplification factor

λ(k) = 1 − iν sin k∆x − 4µ sin2 1
2k∆x, (5.51a)

|λ|2 = (1 − 4µs2)2 + 4ν2s2(1 − s2), (5.51b)

where as usual s = sin 1
2k∆x. Putting s2 = 1 shows that µ ≤ 1

2 is
necessary for stability; then

ν2 = (a∆t/∆x)2 = (a2/ε)µ∆t

and this implies
|λ|2 ≤ 1 + 1

2 (a2/ε)∆t (5.52)
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so that the von Neumann condition is satisfied. As this is a scalar pure
initial-value problem, and a and ε are constants this is sufficient for
stability. However, if ν = 1, µ = 1

4 and s2 = 1
2 we have |λ|2 = 5

4
giving very rapid growth; by contrast, the differential problem damps
all Fourier modes.

In practice, then, for finite values of ∆x and ∆t, the von Neumann
condition is too weak when the exponential growth that it allows is inap-
propriate to the problem. We therefore introduce the following stricter
definition:

Definition 5.1 A scheme is said to be practically (or strictly or strongly)
stable if, when Fourier mode solutions of the differential problem satisfy

|û(k, t + ∆t)| ≤ eα∆t|û(k, t)| ∀k (5.53)

for some α ≥ 0, then the corresponding amplification factors for the
difference scheme satisfy

|λ(k)| ≤ eα∆t (5.54)

for all k that correspond to discrete modes.

For the above example, we have α = 0 and so require |λ| ≤ 1. From
(5.51b) we have

|λ|2 = 1 − 4(2µ − ν2)s2 + 4(4µ2 − ν2)s4. (5.55)

By considering this expression as a positive quadratic function of s2 on
the interval [0, 1], we obtain the conditions

|λ|2 ≤ 1 ∀k iff ν2 ≤ 2µ ≤ 1. (5.56)

These are very well known and often important restrictions because they
can be very severe if ε is small: apart from the expected condition µ ≤ 1

2 ,
we can write the first inequality as

a.a∆t

ε
≡ ν2

µ
≤ 2. (5.57)

So it can be interpreted as placing a limit of 2 on a mesh Péclet number,
in whose definition a is a velocity, a∆t is interpreted as a mesh-length
and ε is a diffusion or viscosity coefficient – see also the discussion in Sec-
tion 2.15 where such restrictions arise from considering the application
of a maximum principle.

Indeed, such is the practical importance of this criterion and resulting
mesh restriction, the definition embodied in (5.53) and (5.54) is often
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used in the engineering field as the main definition of stability, the term
being used without qualification. Note also that in Section 5.9 we refer
to the property as strong stability when applied to problems which have
no solution growth, corresponding to the concept of absolute stability in
the discretisation of ODEs.

Using the same analysis as that given above, similar practical stability
criteria can be found by combining any of the explicit schemes we have
analysed for the diffusion equation with ones we have used for linear
advection. Generally speaking the resultant condition will be a more
severe combination of the corresponding results from the two parts. For
example, if the upwind method (4.13) is used in (5.49) instead of the
central difference we get

|λ|2 ≤ 1 ∀k iff ν2 ≤ ν + 2µ ≤ 1 (5.58)

compared with the conditions 0 ≤ ν ≤ 1 and 0 ≤ µ ≤ 1
2 , which are

needed for the separate equations.
In carrying out these stability calculations, it is convenient to use

general criteria for the roots of a polynomial to lie inside the closed unit
disc. Miller1 has called such polynomials von Neumann polynomials and
gives criteria for mth degree polynomials in terms of those for related
polynomials of degree m−1. We will just give the criteria for an arbitrary
quadratic with complex coefficients, which generalise criteria we have
devised for special cases in earlier chapters.

Lemma 5.2 The roots of the polynomial aλ2 +2bλ+c = 0 with complex
coefficients a, b, c satisfy the condition |λ| ≤ 1 if and only if

either |c| < |a| and 2|āb − b̄c| ≤ |a|2 − |c|2, (5.59a)

or |c| = |a|, āb = b̄c and |b| ≤ |a|. (5.59b)

The proof is left as an exercise – see Exercise 3.
Finally, we refer again to the conditions given in Section 2.11 for the

θ-method applied to the simple heat flow problem to be stable or satisfy
a maximum principle. We saw that µ(1 − θ) ≤ 1

2 gave a maximum
principle and ensured stability and no error growth in the maximum
norm; on the other hand, µ(1 − 2θ) ≤ 1

2 ensured stability in the l2
norm, and we have since seen that this also guarantees stability in the

1 Miller, J. (1971), On the location of zeros of certain classes of polynomials with
applications to numerical analysis, J. Inst. Math. Appl. 8, 397–406.
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sense of (5.28) in the maximum norm. However, we quoted a result in
Section 2.11 to the effect that for no growth in the maximum norm the
necessary and sufficient condition is µ(1 − θ)2 ≤ 1

4 (2 − θ). We can now
note that this corresponds to practical stability in the maximum norm,
as expressed by (2.97) with K = 1.

5.8 Modified equation analysis

This type of analysis was originally introduced as an alternative means of
deriving stability conditions, but one has to be rather careful in using it
for this purpose. It is now regarded as more useful in giving information
about the general behaviour of a numerical method and the quality of the
approximation it produces. The name we have used is due to Warming
and Hyett.1 However, similar ideas were introduced earlier by Yanenko
and Shokin2 and developed at length in Shokin (1983) under the name
method of differential approximation. The general idea is to fit a smooth
function through the mesh values {Un

j } and thence to find, to a given
order in the mesh parameters, the differential equation that it satisfies.
More recently, by analogy with techniques that have long been common
in numerical linear algebra, the techniques have been called backward
error analysis. We will illustrate the ideas by means of a few examples.

To develop a rigorous analysis it is probably best to extend the mesh
data by means of Fourier expansion, but a simpler procedure is to use
polynomial interpolation. The manipulations that are then needed fol-
low closely those that we have used hitherto to estimate truncation
errors. So let us begin with the upwind scheme applied to the linear
advection equation as in Sections 4.2 and 4.3. We denote by Ũ(x, t) an
interpolatory polynomial through the mesh values of U in the neigh-
bourhood of the mesh point (xj , tn). Then when this is substituted in
the difference equation (4.13) we can expand the two divided differences
by (truncated) Taylor series to obtain, as in (4.24),

[Ũt + 1
2∆tŨtt + · · · ]nj + [a(Ũx − 1

2∆xŨxx + · · · )]nj = 0. (5.60)

1 Warming, R.F. and Hyett, B.J. (1974), The modified equation approach to
the stability and accuracy of finite difference methods, J. of Comput. Phys. 14,
159–79.

2 Yanenko, N.N. and Shokin, Y.I. (1969), First differential approximation method
and approximate viscosity of difference schemes, Phys. of Fluids 12, Suppl. II,
28–33.
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According to the order of the polynomial used for Ũ , these expansions
will be truncated at points that define a modified equation that it sat-
isfies; but, of course, the degree of the polynomial is also closely related
to the neighbourhood of the mesh point for which the approximation
is valid. For example, at one extreme we can fit a linear polynomial
through the three values appearing in the difference scheme and this
exactly satisfies the original linear advection equation; but this gives us
no global information about the approximation provided by the differ-
ence scheme.

In general, then, we shall expand to a higher order that we will not
specify. We can drop the superscripts and subscripts to obtain

Ũt + aŨx = 1
2 [−∆tŨtt + a∆xŨxx] + · · · . (5.61)

This is still not very useful because of the higher order time derivatives
appearing on the right-hand side. One way of dealing with this is to
operate on (5.61) with the combination ∂t − a∂x which, if we assume
for the moment that a is a positive constant, will give an expression for
Ũtt in terms of Ũxx. Substitution into the right-hand side of (5.61) then
gives

Ũt + aŨx = 1
2 [−a2∆t + a∆x]Ũxx + · · · . (5.62)

We can deduce from this that a choice of a∆t = ∆x will mean that
Ũ satisfies an equation that differs from the target advection equation
by terms that are at least of second order in the mesh parameters; also
we see that a choice with a∆t < ∆x will mean that its equation has a
first order perturbation giving damping through a diffusion term; but,
more importantly, if a∆t > ∆x the diffusion term will have a negative
coefficient and this will lead to severe error growth, and corresponds to
instability.

A more powerful procedure than that applied above is to make use
of finite difference operator calculus – see, for instance, Chapter 5 of
Hildebrand (1956). Thus, by recognising that the coefficients in a Taylor
series expansion are just those of an exponential series, we can write the
forward time difference in operator form as

∆+t = e∆t∂t − 1; (5.63)

this can be formally inverted to give the inverse relation

∂t = (1/∆t) ln(1 + ∆+t). (5.64)
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Then from this we derive an expansion for ∂t in terms of D+t := ∆+t/∆t,

∂t = D+t − 1
2∆tD2

+t + 1
3 (∆t)2D3

+t − 1
4 (∆t)3D4

+t + · · · . (5.65)

If a difference scheme gives an expression for D+t in terms of spatial
derivatives, this expansion will lead directly to a modified equation
expansion of the desired form.

So let us consider the central difference in space and forward difference
in time scheme (5.49), applied to the convection–diffusion problem (5.48).
We expand the spatial difference operators to get

D+tŨ = {−a[∂x + 1
6 (∆x)2∂3

x + · · · ]+ ε[∂2
x + 1

12 (∆x)2∂4
x + · · · ]}Ũ . (5.66)

Then we substitute this into the expansion (5.65) and collect terms. For
later use we will expand up to terms in the fourth spatial derivative, and
obtain

∂tŨ =
{
[(−a∂x + ε∂2

x) + (∆x)2(− 1
6a∂3

x + 1
12ε∂4

x − · · · )]
− 1

2∆t[a2∂2
x − 2aε∂3

x + (ε2 + 1
3a2(∆x)2)∂4

x + · · · ]
+ 1

3 (∆t)2[−a3∂3
x + 3a2ε∂4

x + · · · ]
− 1

4 (∆t)3[a4∂4
x + · · · ] + · · ·

}
Ũ , (5.67)

which can be written as the modified equation

Ũt + aŨx = [ε − 1
2a2∆t]Ũxx − 1

6 [a(∆x)2 − 6aε∆t + 2a3(∆t)2]Ũxxx + · · · .

(5.68)
We see immediately that for all choices of the time step the diffusion
coefficient is reduced from that in the original equation; and it is non-
negative only for

1
2a2∆t ≤ ε, or

a.(a∆t)
ε

≤ 2.

This is the stability limit corresponding to the requirement that the
mesh Péclet number be less than two, where the length scale is given
by a∆t; it is equivalent to the practical stability condition contained in
(5.56) and (5.57) that we have ν2 ≤ 2µ, in terms of the mesh ratios
defined in (5.50). Note that the next term in (5.68) allows the amount
of dispersion in the scheme to be estimated.

We should remark at this point that the interpretation of a modified
equation, such as those obtained above, owes a great deal to Fourier
analysis. Thus the effect of a spatial derivative of order m on a typical
Fourier mode eikx is multiplication by a factor (ik)m. Hence odd order
derivatives change the phase of a mode (leading to dispersion), while only
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even order derivatives change its magnitude and can lead to instability. If
the coefficient of the second order derivative is negative, as we have seen
can happen in the example just considered, one can deduce instability
because this term will dominate all higher order terms at small values of
k∆x. If this coefficient is zero we will need to go to higher order terms,
which we shall do below.

We have given the above analysis in some detail because it can be
used to compare the behaviour of any explicit three point approxi-
mation to the convection–diffusion problem. For consistency the first
order difference should be a∆0x/∆x, but the second order difference
can have a different coefficient. So suppose we change it from ε to
ε′. Then we can deduce, from (5.67) with this change, that the dif-
fusion term is correctly modelled if we set ε′ − 1

2a2∆t = ε; that is,
ε′∆t/(∆x)2 = ε∆t/(∆x)2 + 1

2 (a∆t/∆x)2 which corresponds exactly to
what is given by the Lax–Wendroff scheme. The dominant error is then
dispersive, with the coefficient of Ũxxx given by

− 1
6a(∆x)2 + a∆t(ε + 1

2a2∆t) − 1
3a3(∆t)2

= − 1
6a(∆x)2[1 − (a∆t/∆x)2] + aε∆t. (5.69)

We deduce from this that, for pure advection, the dispersive error of the
Lax–Wendroff method is always negative for any stable mesh ratio – the
expression given above being consistent in form and magnitude with the
predominant phase lag error for this scheme shown in Section 4.5.

To consider the stability of the Lax–Wendroff method we need to con-
sider terms in the expansion (5.67) involving the fourth spatial deriva-
tive. We consider only the case ε = 0, i.e., for pure advection; then
with the CFL number given by ν = a∆t/∆x, it is readily found that the
modified equation for this method is given by

Ũt + aŨx = − 1
6a(∆x)2[1 − ν2]Ũxxx − 1

8a2∆t(∆x)2[1 − ν2]Ũxxxx + · · · .

(5.70)
Thus the coefficient of the fourth derivative becomes positive when
|ν| > 1, corresponding to instability.

This is a good example in which the second order coefficient is zero
but the coefficient of the fourth order derivative can become positive,
when it will dominate at small values of k∆x and we can deduce insta-
bility. However, if both coefficients are positive the situation is much
more complicated: we would expect that the second order term would
dominate and hence imply stability; but we would have to consider the
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whole range of Fourier modes that the mesh can carry, which we recall is
such that |k∆x| ≤ π, and all terms in the modified equation expansion.

We have therefore concentrated in the above considerations of stabil-
ity on the pure advection case: for it is easily seen that these modified
equation arguments break down even for the simple heat flow problem.
For example, suppose we set a = 0 in (5.67) and try to deduce the famil-
iar stability limit. We will find ourselves in the situation outlined in the
previous paragraph and not be able to make a sensible deduction. The
underlying reason for distinguishing between the two cases is clear from
our earlier Fourier analysis. The instability of many approximations to
the advection equation shows itself at low frequencies, with plots of the
amplification factor such as in Fig. 4.18 moving outside the unit circle
as k∆x increases from zero; and for such modes an expansion such as
(5.67) in increasing order of the spatial derivatives makes good sense.
But, as we saw in Sections 2.7 and 2.10, the amplification factor for a
typical approximation to the heat flow problem is real and instability
occurs first for the most oscillatory mode k∆x = π when the amplifica-
tion factor becomes less than −1. Then an expansion like (5.67) is of
no use.

There is a solution to this dilemma, however. For each of the modes
in the range |k∆x| ≤ π, we can write k∆x = π − k′∆x, where |k′∆x|
is small for the most oscillatory modes; then expansions in powers of
this quantity will correspond to expansions in spatial derivatives of the
amplitudes of the oscillatory modes. Equivalent to splitting the range
of the Fourier modes, let us write

Un
j = (Us)n

j + (−1)j+n(Uo)n
j , (5.71)

so that U is split into a smooth part Us and an oscillatory part Uo, and
try to find a modified equation that describes the behaviour of the latter.
Note that we have also taken out a factor (−1)n in the time variation,
which corresponds to our expectation that these modes become unstable
with an amplification factor near −1.

Let us therefore consider now the same scheme as above in (5.66) but
with a = 0 to give the pure diffusion case. For the oscillatory modes we
take out the common factor (−1)j+n and obtain

−(Uo)n+1
j = (Uo)n

j + µ[−(Uo)n
j−1 − 2(Uo)n

j − (Uo)n
j+1]

= (1 − 2µ)(Uo)n
j

− 2µ[1 + 1
2 (∆x)2∂2

x + 1
24 (∆x)4∂4

x + · · · ](Uo)n
j , (5.72)
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where the expansion in square brackets results from the average of the
terms at j ± 1. Hence, after collecting together these terms, we obtain
for the forward divided difference

D+tU
o =

{
2(∆t)−1(2µ − 1) + ε

[
∂2

x + 1
12 (∆x)2∂4

x + · · ·
]}

Uo. (5.73)

We see immediately that we obtain exponential growth when µ > 1
2 .

The same technique can help to understand some of the erratic be-
haviour in Fig. 2.7. Writing the equivalent of (5.73) but for the Crank–
Nicolson method we easily find that

D+tU
o =

−2
(2µ + 1)∆t

Uo + O((∆x)2). (5.74)

This is clearly stable, giving an exponentially decreasing term for any
positive value of µ. As ∆t goes to zero the exponential factor is van-
ishingly small except for extremely small t. However, on a coarse mesh
the situation is different: for example, when J = 10, µ = 10 we see that
∆t = 1/10, so the exponential factor is exp(−(20/21)t), which is signifi-
cant over the whole range 0.1 ≤ t ≤ 1. This suggests that the oscillatory
term has a significant effect on the maximum error in this range. As the
mesh is refined the effect rapidly gets smaller, and this analysis suggests
that the oscillatory terms become negligible when J reaches about 50.

We conclude this section by applying this analysis to the box scheme
of Section 4.8, where the (−1)j+n mode is the notorious chequerboard
mode which is a spurious solution of the difference scheme controlled
only by the boundary conditions. It is convenient to use the averaging
operator

µxUj+1/2 := 1
2 (Uj + Uj+1), (5.75)

and similarly µt, in terms of which we can write the box scheme for the
linear (constant coefficient) advection equation as

µxδtU
n+1/2
j+1/2 + (a∆t/∆x)µtδxU

n+1/2
j+1/2 = 0. (5.76)

We could obtain the modified equation given below by expanding all
four mesh values in Taylor series about their central point, and then
substituting space derivatives for higher order time derivatives in the
manner used to derive (5.62) from (5.61). However, a more illuminating
and sophisticated approach is to proceed as follows: we begin by oper-
ating on the box scheme (5.76) with the inverse of the two averaging
operators, and introduce the difference operators

Dx =
µ−1

x δx

∆x
, Dt =

µ−1
t δt

∆t
. (5.77)
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Then we can write the scheme in the compact form (Dt + aDx)U = 0.
Though this step is a formal procedure, and not one to be executed in
practice, it demonstrates the consistent way in which the box scheme
replaces differential operators by difference analogues, and thence yields
a relation that is a direct analogue of the differential equation. Moreover,
it points the way to use operator calculus to derive the modified equation
in a straightforward and very general way.

The first step is to carry out a manipulation similar to that in (5.63)
and (5.64) to obtain the difference operator relation

Dx = ( 1
2∆x)−1 tanh(1

2∆x∂x),

from which we can deduce that

Dx = [1 − 1
12 (∆x)2∂2

x + · · · ]∂x. (5.78)

Then we carry out a similar manipulation with the time difference, but
invert it to obtain

∂t = [1 + 1
12 (∆t)2D2

t + · · · ]Dt. (5.79)

Application of the two expansions (5.78, 5.79) immediately yields the
modified equation for the scheme

Ũt + aŨx = 1
12a(∆x)2(1 − ν2)Ũxxx + · · · , (5.80)

where we have introduced the CFL number ν.
All of the extra terms in this expansion will involve odd orders of

derivatives, consistent with the unconditional stability of the scheme;
and the dispersion coefficient changes sign according to whether we have
ν < 1 (giving a phase advance) or ν > 1 (giving retardation). Indeed, the
expansion (5.80) corresponds exactly to the expansion for the phase of
the amplification factor given in (4.85). However, the modified equation
can be generalised to cover a variable advection speed as in the example
giving Fig. 4.13, or indeed to a nonlinear problem.

The modified equation (5.80) applies to only the smooth component of
the flow. But Fig. 4.13 shows that discontinuous initial data produce vio-
lent fluctuations in the solution. So let us now derive the corresponding
modified equation for the oscillatory part of the decomposition (5.71).
For the difference operators we are using it is easy to see that for the
oscillatory part of the decomposition (5.71) we have

δxUj+1/2 = (−1)j+12µxUo
j+1/2,

µxUj+1/2 = (−1)j+1 1
2δxUo

j+1/2; (5.81)
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that is, differences are turned into averages and averages into differences.
Hence the equation for Uo obtained from (5.76) is just

µtδx(Uo)n+1/2
j+1/2 + (a∆t/∆x)µxδt(Uo)n+1/2

j+1/2 = 0. (5.82)

By comparing the two equations we can immediately write down the
modified equation for the oscillatory component: it is easy to see that
Uo satisfies a box scheme for an advection equation with a replaced by
1/ν2 where ν2 = a(∆t/∆x)2 so we obtain

Ũo
t + (1/ν2)Ũo

x = 1
12 (1/ν2)(∆x)2(1 − ν−2)Ũo

xxx + · · · . (5.83)

Thus these modes are again undamped but generally they are advected
at quite a different speed from a and one that depends on the mesh
ratio. As we saw in Section 4.8, this speed can also be deduced from the
group velocity of these modes, Ch = a/ν2 ≡ 1/ν2.

As also pointed out in that section, the chequerboard mode is usually
controlled by a weighted time-average. So we end by looking at the effect
of this on the modified equations. Let us define the averaging operator

θtU
n+1/2 := θUn+1 + (1 − θ)Un, (5.84)

so that we have θt = µt + (θ − 1
2 )δt. Then we introduce the operator

Mt := µ−1
t θt = 1 + (θ − 1

2 )∆tDt, (5.85)

in terms of which the weighted box scheme becomes[
Dt + aMtDx

]
U

n+1/2
j+1/2 = 0. (5.86)

Writing γ = (θ − 1
2 )∆t, and solving for the time difference, we obtain

the expansion

DtU = (1 + γaDx)−1(−aDx)U

=
[
− aDx + γa2D2

x − γ2a3D3
x + · · ·

]
U. (5.87)

Then substituting from (5.78, 5.79) we obtain for the modified equation

Ũt + aŨx = γa2Ũxx

+ a(∆x)2
[ 1
12 (1 − ν2) − γ2a2]Ũxxx + · · · . (5.88)

Thus taking θ < 1
2 gives γ < 0 and leads to instability; but taking

θ > 1
2 introduces some damping, which is usually limited by setting

θ = 1
2 + O(∆t).
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Consider now the oscillating modes. Instead of (5.86) we obtain from
(5.81)

{
Dx + a(∆t/∆x)2

[
Dt + 4(∆t)−1(θ − 1

2 )
]}

Uo = 0, (5.89)

which yields the modified equation

Ũo
t + (1/ν2)Ũo

x = −4(∆t)−1(θ − 1
2 )Ũo + · · · . (5.90)

Hence even with θ = 1
2 + O(∆t) there is exponential damping of the

chequerboard mode for θ > 1
2 .

5.9 Conservation laws and the energy method of analysis

We have already seen in Sections 2.7 and 4.11 how conservation laws
for

∫
u dx can be helpful in the choice of boundary conditions. Now we

shall consider how the use of similar laws for
∫

|u|2 dx can lead to use-
ful methods for establishing stability. Such arguments have their origin
and draw their motivation from a number of sources. Undoubtedly the
most important is the role of energy inequalities in establishing the well-
posedness of large classes of PDEs written in the form (5.1a). Suppose
that by taking the inner product of both sides with u, integrating over
Ω and exploiting Green’s identities, one can show that

(u, Lu)2 ≡
∫

Ω
uL(u) dΩ ≤ K

∫
Ω

|u|2 dΩ ≡ K‖u‖2
2 (5.91)

for certain boundary conditions. Then this will establish the well-
posedness of the differential problem in the L2 norm. Because this norm
sometimes represents the physical energy of the system such approaches
are generally called energy methods, whether applied to the differential
problem or its finite difference approximation.

As a simple example we return to the model problem introduced at
the beginning of Chapter 2, the heat equation in one dimension with
homogeneous Dirichlet boundary conditions:

ut = uxx, 0 < x < 1, t > 0, (5.92a)

u(0, t) = u(1, t) = 0, t > 0, (5.92b)

u(x, 0) = u0(x), 0 < x < 1. (5.92c)
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From (5.92) it immediately follows that
( 1

2u2
)
t

= u uxx, so that after
integration by parts

∂

∂t

(∫ 1

0

1
2u2 dx

)
=

∫ 1

0
u uxx dx =

[
u ux

]1
0 −

∫ 1

0
(ux)2 dx (5.93)

= −
∫ 1

0
(ux)2 dx ≤ 0, (5.94)

where we have also used the boundary conditions (5.92b). We have thus
shown that the L2 norm of u is decreasing, and therefore bounded by its
initial value. Note that this does not correspond to the physical energy
of the system in this case.

The main tool in this analysis was integration by parts. To obtain a
similar result in the discrete case we shall need corresponding summation
by parts formulae which we shall give below. But first we note that
such analysis in the discrete case has its direct motivation from the
Kreiss Matrix Theorem, already referred to in Section 5.6. One of the
statements in that theorem that is shown to be equivalent to the power-
boundedness of the amplification matrices G, as expressed in (5.46), is
that there exists an energy norm, |v|2H := v∗Hv, for which we have
|G|H ≤ 1; that is, there exists a uniformly bounded and positive definite
hermitian matrix H for which we have

G∗HG ≤ H. (5.95)

So in this norm at each time step there is no growth. Unfortunately, we
do not know in general how to construct or choose these matrices H, or
the operators that they correspond to when we move from the Fourier
space to real space; and it is these operators in real space that we need
because a key objective of the theorem is to lead to the extension of
the stability results obtained by Fourier analysis to problems with vari-
able coefficients, nonperiodic boundary conditions, etc. On the other
hand, in many important cases we can construct such operators from
judicious combinations of difference operators, and in this section we
will illustrate how this is done by means of a number of examples. We
can then establish the stability of the scheme being considered, but we
cannot demonstrate instabilities; so the approach yields sufficient stabil-
ity conditions to complement the necessary conditions given by the von
Neumann analysis.
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Before embarking on this, however, we state a recent result1 that
enables a significant class of methods to be proved stable in a very
straightforward way; the theorem in fact gives conditions for strong sta-
bility, which is equivalent to our definition of practical stability as it
applies directly only to problems that have no solution growth.

Theorem 5.3 Suppose that a well-posed problem in the form (5.1a) is
approximated by (repeatedly) applying a spatial difference operator L∆

and incorporating it into an expansion to give

Un+1 =
s∑

i=0

(∆tL∆)i

i!
Un, (5.96)

which we will refer to as a Runge–Kutta time-stepping procedure. Sup-
pose further that the operator L∆ is coercive in the sense that there is a
positive constant η such that

(L∆U, U) ≤ −η‖L∆U‖2 (5.97)

for all mesh functions U . Then the scheme is strongly stable for s =
1, 2, 3, or 4 if the time step satisfies the condition

∆t ≤ 2η. (5.98)

Proof For a method with no repetitive application of the operator, i.e.
with s = 1, in which the operator is coercive in the sense of (5.97), we
have

‖Un+1‖2 = ‖Un + ∆tL∆Un‖2

= ‖Un‖2 + 2∆t(Un, L∆Un) + (∆t)2‖L∆Un‖2

≤ ‖Un‖2 + ∆t(∆t − 2η)‖L∆Un‖2. (5.99)

So, if (5.98) is satisfied, the norm of the approximate solution is non-
increasing. For s = 2 it is easily checked that we can write

I + ∆tL∆ + 1
2 (∆tL∆)2 = 1

2I + 1
2 (I + ∆tL∆)2,

for s = 3 we can similarly check that we can write
3∑

i=0

(∆tL∆)i

i!
= 1

3I + 1
2 (I + ∆tL∆) + 1

6 (I + ∆tL∆)3,

1 Levy, D. and Tadmor, E. (1998), From semi-discrete to fully discrete: stability of
Runge–Kutta schemes by the energy method, SIAM Rev. 40, 40–73; and Gottlieb,
S., Shu, C.-W. and Tadmor, E. (2001), Strong stability-preserving high-order time
discretisation methods, SIAM Rev. 43, 89–112.
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and for s = 4 we have

4∑
i=0

(∆tL∆)i

i!
= 3

8I + 1
3 (I + ∆tL∆) + 1

4 (I + ∆tL∆)2 + 1
24 (I + ∆tL∆)4.

Nowwehavealready shownthat if (5.98) is satisfied then ‖I + ∆tL∆‖ ≤ 1.
So all powers of this operator are similarly bounded and, since the coef-
ficients in each of these expansions sum to unity, then all three operator
expansions are bounded by unity.

Before we make any use of this theorem some comments are in order.
Its motivation comes from the use of semi-discrete methods; that is,
those in which the spatial discretisation is carried out first so as to lead
to a large system of ODEs to which, for instance, Runge–Kutta time-
stepping methods can be applied. In order for this to be done with s > 1
one would clearly need to pay attention to the application of appropri-
ate boundary conditions; and to apply the ideas to nonlinear problems,
further care would be needed. But here we will confine ourselves to our
standard linear problems, and apply the theorem only to the case s = 1.
Yet it still remains a useful framework in which to establish the stability
of several methods by energy analysis.

The real inner product and norm in the theorem can be quite general,
but our purpose here is to apply the result using the discrete l2 norm. In
general this will be of the form in (5.5) but we will confine our examples
to one dimension and a uniform mesh: thus the l2 inner product of two
real vectors U and V when JΩ = {1, 2, . . . , J − 1} is given by

〈U, V 〉2 = ∆x

J−1∑
1

UjVj , (5.100)

for which we have ||U ||2 = 〈U, U〉1/2
2 . On this mesh the summation by

parts formulae are given in the following lemma.

Lemma 5.3 For any sequences of numbers {Vj} and {Wj}

J−1∑
1

[
Vj(Wj+1 − Wj) + Wj(Vj − Vj−1)

]
= VJ−1WJ − V0W1 (5.101)
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and

J−1∑
1

[
Vj (Wj+1 − Wj−1) + Wj(Vj+1 − Vj−1)

]
=

(
VJ−1WJ + WJ−1VJ

)
−

(
V0W1 + W0V1

)
. (5.102)

The proof of (5.101) involves straightforward algebraic manipulation
and is left as an exercise. The second formula (5.102) is obtained by
interchanging V and W in (5.101) and then adding the two results
together.

In terms of difference operators we can write (5.101) and (5.102) as

〈V, ∆+xW 〉2 + 〈W, ∆−xV 〉2 = ∆x (VJ−1WJ − V0W1) (5.103)

and
〈V, ∆0xW 〉2 + 〈W, ∆0xV 〉2 = 1

2∆x [(VJ−1WJ + WJ−1VJ)

−(V0W1 + W0V1)]. (5.104)

By replacing W with ∆−xW in the first formula we also get

〈V, δ2
xW 〉2 + 〈∆−xW, ∆−xV 〉2 = ∆x [VJ−1(WJ −WJ−1)−V0(W1 −W0)];

(5.105)
and hence if we have V = W and V0 = VJ = 0 we can write

〈V, δ2
xV 〉2 = −‖δxV ‖2

2 := −∆x

J∑
j=1

|δxVj−1/2|2, (5.106)

where it should be noted that now the sum on the right is over all of the
J cells.

Example 1 We consider first the use of the explicit method to solve
(5.92). This can be written

Un+1
j = Un

j + µδ2
xUn

j (5.107)

where µ = ∆t/(∆x)2. Now we apply Theorem 5.3 to this with L∆ =
(∆x)−2δ2

x. From (5.106) we have

(∆x)2(L∆U, U) = 〈δ2
xU, U〉 = −‖δxU‖2, (5.108)
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where we have omitted the subscript on the norm ‖ · ‖2 and inner prod-
uct 〈·, ·〉2 (as we shall in the rest of this section); we can also use the
Cauchy–Schwarz inequality to obtain

(∆x)4‖L∆U‖2 = ‖δ2
xU‖2 = ∆x

J−1∑
j=1

(
δxUj+1/2 − δxUj−1/2

)2

≤ 2∆x

J−1∑
j=1

[
(δxUj+1/2)2 + (δxUj−1/2)2

]
≤ 4‖δxU‖2. (5.109)

Comparing (5.108) with (5.109) it is clear that we can apply Theorem 5.3
with η = 1

4 (∆x)2 and deduce the familiar result that we have stability
for ∆t ≤ 1

2 (∆x)2.
Example 2 Next we consider the implicit θ-method for the same prob-

lem, which is not covered by this theorem. So we proceed as follows:
writing the equation as

Un
j − Un−1

j = µ
[
θδ2

xUn
j + (1 − θ)δ2

xUn−1
j

]
, (5.110)

we multiply both sides by the combination Un
j + Un−1

j and sum over
the values of j for which it holds, namely j = 1, 2, . . . , J − 1. Thus we
obtain

‖Un‖2 − ‖Un−1‖2 = µ〈Un + Un−1, δ2
x[θUn + (1 − θ)Un−1]〉.

We can now apply the summation by parts formula (5.105) to the right-
hand side, and follow that with an application of the Cauchy–Schwarz
inequality in the form −ab ≤ 1

2 (a2 + b2), to get

‖Un‖2 − ‖Un−1‖2 = −µ〈δx[Un + Un−1], δx[θUn + (1 − θ)Un−1]〉
= −µ

{
θ‖δxUn‖2 + (1 − θ)‖δxUn−1‖2 + 〈δxUn, δxUn−1〉

}
≤ −µ

{
(θ − 1

2 )‖δxUn‖2 + ( 1
2 − θ)‖δxUn−1‖2} . (5.111)

Note that the coefficients in this final expression are equal and opposite.
So if we now apply the same formula to all preceding steps, and add all
the formulae, there will be cancellation of all the intermediate quantities.
It is easy to see that the result is

‖Un‖2 − ‖U0‖2 ≤ −µ(θ − 1
2 )

{
‖δxUn‖2 − ‖δxU0‖2} .

More meaningfully, we write this as

‖Un‖2 + µ(θ − 1
2 )‖δxUn‖2 ≤ ‖U0‖2 + µ(θ − 1

2 )‖δxU0‖2, (5.112)
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which will imply stability if these two expressions correspond to norms.
Indeed, we have stability in the L2 norm if in each case the first term
dominates the second. Now in (5.109) we have already used the Cauchy–
Schwarz inequality to obtain a bound for the norm of δ2

xU that we now
need for δxU ; namely, from the argument there we deduce the useful
inequality

‖δxU‖2 ≤ 4‖U‖2. (5.113)

Applying this to (5.112) we deduce that µ(1 − 2θ) < 1
2 gives stability,

a result that is almost equivalent to that obtained in Section 2.10; we
merely fail by this means to establish stability when we have equality in
this relation, but this only affects cases with θ < 1

2 . We note too that
this is an example of our being able to construct explicitly the norm
guaranteed by the Kreiss Matrix Theorem, because from (5.111) we see
that if the stability condition is satisfied this norm is nonincreasing at
each step.

Example 3 In this and the next example we will illustrate how an
energy analysis can deal with more complicated problems, specifically
those with variable coefficients and those needing the imposition of
numerical boundary conditions. We consider the following problem,

ut + a(x)ux = 0, 0 < x ≤ 1, t > 0, (5.114a)

u(x, 0) = u0(x), 0 ≤ x ≤ 1, (5.114b)

u(0, t) = 0, t > 0. (5.114c)

We shall assume that a(x) is nonnegative and bounded, and also satisfies
a Lipschitz condition:

0 ≤ a(x) ≤ A, |a(x) − a(y)| ≤ KL|x − y|. (5.115)

Note that we have imposed a homogeneous Dirichlet boundary condition
on the left, consistent with the characteristics pointing from left to right.

In this example we consider using the first order upwind scheme, to
which we can apply a very direct argument as in Theorem 5.3. With
L∆ = −a(∆x)−1∆−x, we have

〈L∆U, U〉 = −
J−1∑
j=1

aj(Uj − Uj−1)Uj

= −
J−1∑
j=1

ajU
2
j +

J−1∑
j=1

ajUjUj−1; (5.116)
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while we also have

∆x‖L∆U‖2 =
J−1∑
j=1

a2
j (Uj − Uj−1)2 ≤ A

J−1∑
j=1

aj(Uj − Uj−1)2

= A




J−1∑
j=1

ajU
2
j − 2

J−1∑
j=1

ajUjUj−1 +
J−1∑
j=1

ajU
2
j−1


 . (5.117)

Hence we can deduce that

2〈L∆U, U〉 + A−1∆x‖L∆U‖2 ≤ −
J−1∑
j=1

aj(U2
j − U2

j−1)

= −
J−2∑
j=1

(aj − aj+1)U2
j − aJ−1U

2
J−1

≤ KL‖U‖2, (5.118)

in which we have used the left-hand boundary condition for U and the
Lipschitz condition on a. Hence it follows that if the stability condition
A∆t ≤ ∆x is satisfied then

2∆t〈L∆U, U〉 + ∆t2‖L∆U‖2 ≤ ∆t
[
2〈L∆U, U〉 + A−1∆x‖L∆U‖2]

≤ KL∆t‖U‖2. (5.119)

We then conclude that

‖(I + ∆tL∆)U‖2 ≤ (1 + KL∆t)‖U‖2, (5.120)

which establishes the stability of the scheme. This example typifies the
way in which the energy method can be used to show that the presence of
variable coefficients does not destroy the stability of a method – though
it may introduce some error growth.

Example 4 Now we consider the same advection problem (5.114), but
apply the leap-frog method and for simplicity assume that a is a positive
constant. The method may be written

Un+1
j − Un−1

j = −2ν∆0xUn
j , j ∈ JΩ ≡ {1, 2, . . . , J − 1}, (5.121)

where ν = a∆t/∆x. It gives an explicit formula for Un+1
j , but only

at the internal points. The value of Un+1
0 is given by the boundary

condition, but Un+1
J must be obtained in some other way; we shall try

to deduce an appropriate numerical boundary condition for it from an
energy analysis of the scheme’s stability.
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Suppose we multiply (5.121) by Un+1
j + Un−1

j and sum, to obtain

||Un+1||2 − ||Un−1||2 = −2ν〈Un+1 + Un−1, ∆0xUn〉. (5.122)

As in Example 2 we want to express the right-hand side of (5.122) as the
difference between two similar expressions evaluated at successive time
levels. To this end we apply the second summation by parts formula
(5.104) to obtain, with V = Un−1 and W = Un,

2ν
[
〈Un−1, ∆0xUn〉 + 〈Un, ∆0xUn−1〉

]
= a∆t

[
Un−1

J−1Un
J + Un−1

J Un
J−1

]
. (5.123)

The result is

||Un+1||2 − ||Un−1||2 = −2ν〈Un+1, ∆0xUn〉 + 2ν〈Un, ∆0xUn−1〉
−a∆t

[
Un−1

J−1Un
J + Un−1

J Un
J−1

]
. (5.124)

The inner product terms are ready for cancellation when we combine
successive time steps; but they also involve terms in Un

J , the value at
the right-hand boundary, and we have not yet defined how this is to be
calculated. If we collect all the boundary terms involved in (5.124) we
obtain

−a∆t
[
Un+1

J−1Un
J − Un

J−1U
n−1
J + Un−1

J−1Un
J + Un−1

J Un
J−1

]
.

The second and fourth terms cancel here; and then we will obtain a
negative definite contribution from the remaining boundary terms if we
apply the boundary condition

Un
J = 1

2 (Un−1
J−1 + Un+1

J−1 ). (5.125)

Thus if we now sum the resulting inequalities over the time levels n,

n−1, . . . , 2, 1, and denote by a prime the omission of right-hand bound-
ary terms from the inner products, we obtain

‖Un+1‖2 + ‖Un‖2 + 2ν〈Un+1, ∆0xUn〉′

≤ ‖U1‖2 + ‖U0‖2 + 2ν〈U1, ∆0xU0〉′. (5.126)

Finally, we need to apply the Cauchy–Schwarz inequality to these inner
products to get

2〈Un+1, ∆0xUn〉′ = ∆x

J−1∑
j=1

Un+1
j

[
Un

j+1 − Un
j−1

]′

≤ ‖Un+1‖2 + ‖Un‖2, (5.127)



186 Consistency, convergence and stability

where again we have denoted by a prime the omission of the boundary
term from the sum. Both sides of (5.126) are then positive definite, and
equivalent to the respective l2 norms, if we have ν < 1. That is, we have
stability in the l2 norm for such CFL numbers but, as in Example 2, we
cannot establish stability in this way right up to ν = 1.

5.10 Summary of the theory

Without doubt, Fourier analysis is the most useful and precise tool for
studying the stability, and accuracy, of difference schemes; and, by the
Lax Equivalence Theorem, stability is the key property. Yet it is the
most restricted tool, for Fourier analysis can be strictly applied only to
linear problems, with constant coefficients and periodic boundary condi-
tions, approximated by difference schemes on uniform meshes, and with
stability studied only in the l2 norm. Most of the theoretical develop-
ments in the last forty years can therefore be regarded as showing that
the conclusions deduced from Fourier analysis are more widely appli-
cable; that this is possible stems from the early observation by von
Neumann that most instabilities in difference schemes are initiated by
high frequency modes, and are therefore rather local phenomena.

For parabolic problems, we have already seen through a number of
examples how a maximum principle can establish stability in the max-
imum norm for a wider class of problems – with variable coefficients,
on non-uniform meshes, and in non-rectangular regions with realistic
boundary conditions. Where Fourier analysis can be applied it gives
necessary stability conditions, which are sometimes weaker than those
given by analysis in the maximum norm. Yet, from the work of Fritz
John already referred to, the conditions obtained from the Fourier anal-
ysis are sufficient to establish the stability defined in (5.28) which is
needed to ensure convergence through Theorem 5.1, and is often called
Lax–Richtmyer stability because of those authors’ seminal survey paper.1

There are two main reasons for this situation.
The first is that the choice of stability condition in (5.28) is directed

towards such a result. In the 1950’s there were many alternative defini-
tions of stability in use which could lead to very confusing phenomena;
for instance, examples could be given such that, on the one hand, locally
derived stability conditions were not sufficient for overall stability, yet
other examples showed that such conditions were not necessary. The key
1 Lax, P.D. and Richtmyer, R.D. (1956), Survey of the stability of linear finite

difference equations, Comm. Pure Appl. Math. 9, 267–93.
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property of (5.28) is that small perturbations to a difference scheme do
not change its stability. Based on the studies of Kreiss (1962) already
referred to in Section 5.6, and of Strang in 1964,1 into these stability
phenomena, we have the following lemma.

Lemma 5.4 Suppose the difference scheme Un+1 = B−1
1 B0U

n is stable,
and C(∆t) is a bounded family of operators. Then the scheme

Un+1 =
[
B−1

1 B0 + ∆t C(∆t)
]
Un (5.128)

is stable.

Proof Suppose ‖(B−1
1 B0)n‖ ≤ K1 and ‖C(∆t)‖ ≤ K2, and consider the

result of multiplying out the product [B−1
1 B0 +∆t C]n. This will consist

of 2n terms, of which
(
n
j

)
terms involve j factors ∆t C interspersed in

n − j factors B−1
1 B0; the latter can occur in at most j + 1 sequences

of consecutive factors, the norm of each sequence being bounded by K1

and hence the norm of each such term by Kj
2Kj+1

1 . Thus overall we
obtain the bound∥∥∥[

B−1
1 0 + ∆t C

]n
∥∥∥ ≤

n∑
j=0

(
n
j

)
Kj+1

1 (∆t K2)j (5.129)

= K1 (1 + ∆t K1K2)
n ≤ K1en∆t K1K2 (5.130)

which is bounded for n∆t ≤ T .

This can be used for example in the following situation. Suppose
ut = Lu+a(x)u, where L is a linear, constant coefficient, operator. Then
the stability of the scheme B1U

n+1 = B0U
n that approximates ut = Lu

may be analysed by Fourier methods, and the result is unchanged by
the addition of the a(x)u term to the problem.

The second factor enabling Fourier analysis to be applied to variable
coefficient problems is that many difference schemes are dissipative, in
the sense that each eigenvalue of the amplification matrix satisfies a
relation of the form

|λ(x, ∆t, ξ)|2 ≤ 1 − δ|ξ|2r, (5.131)

where ξ = (k1∆x1, k2∆x2, . . . , kd∆xd)T , for some δ > 0 and some pos-
itive integer r. This was what was exploited by Fritz John, and enabled
1 Strang, G. (1964), Wiener–Hopf difference equations, J. Math. Mech. 13(1),

85–96.
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Kreiss in 19641 to develop a similar theory for hyperbolic equations.
The latter’s analysis was in the l2 norm and made great use of energy
methods, so generalising results such as those obtained for very partic-
ular cases in Section 5.9.

A more recent influence on the theory has come from developments in
the understanding of numerical methods for ODEs, and we might expect
this to grow in the future. We have already seen in Theorem 5.3 how a
method that is composed of a spatial difference operator incorporated in
a Runge–Kutta time-stepping procedure can be shown to be stable if the
spatial operator satisfies a coercivity condition. And the examples given
in Section 5.9 show the relationship of this result to the energy analysis of
typical methods. Another example is provided by the modified equation
analysis of Section 5.8. The treatment there shows that this is a very
valuable tool for understanding our methods, but at the present time it
gives few rigorous results. On the other hand, recent developments of
the analysis for ODEs have yielded rigorous error bounds in some cases.
An example is provided by the work of Reich2 where, as is common in
that field, it is referred to as backward error analysis. His results exploit
the symplectic property of a method, which again is an area in ODE
theory where there have been very significant developments during the
last few years – see the following bibliographic notes for references. In
Section 4.9 we have referred briefly to the way in which these ideas have
been extended to PDEs to give multi-symplectic methods, and we might
expect the advantages of such methods to appear through developments
in their modified equation analysis.

In a similar way to the understanding of dissipative methods, a com-
bination of energy methods and Fourier analysis has enabled a thorough
theory to be developed for the effect of boundary conditions on stabil-
ity. In Chapter 4 we have already referred to the work of Godunov
and Ryabenkii, who gave important necessary stability criteria for dis-
crete boundary conditions, and in Section 4.12 we gave an example of
the methods employed. The influential paper3 by Gustafsson, Kreiss and
Sundström established closely related necessary and sufficient conditions
for Lax–Richtmyer stability; and many subsequent publications have

1 Kreiss, H.O. (1964), On difference approximations of the dissipative type for hyper-
bolic differential equations, Comm. Pure Appl. Math. 17, 335–53.

2 Reich, S.(1999), Backward error analysis for numerical integrators, SIAM J.
Numer. Anal. 36, 1549–70.

3 Gustafsson, B., Kreiss, H.O. and Sundström, A. (1972), Stability theory of differ-
ence approximations for mixed initial boundary value problems. II, Math. Comp.
26(119), 649–86.
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deduced valuable practical criteria, including those needed for strict or
practical stability. One of the important properties of difference schemes
that this work highlights, and which we have already referred to in Sec-
tions 4.8 and 4.9, is that of group velocity. In terms of the amplification
factor written as λ = e−iω∆t, this is defined as

C(k) := ∂ω/∂k. (5.132)

The reader is referred to the excellent account by Trefethen1 of its rele-
vance to the stability of boundary conditions.

Finally, a much better understanding of nonlinear problems has been
developed in recent years. The starting point is a definition of stability
based on the difference between two approximations, as in (5.20). It has
long been recognised that the stability of a scheme linearised about the
exact solution was necessary for its convergence, but this was quite inade-
quate to distinguish the very different behaviour of quite similar schemes,
when for instance applied to the inviscid Burgers equation ut + uux = 0.
However, by introducing a concept of stability thresholds, López-Marcos
and Sanz-Serna2 and others have been able to develop a result that is
very similar to the Lax Equivalence Theorem. Of more practical signifi-
cance is the concept of TV-stability which has developed from the TVD
properties of difference schemes described in Section 4.7, and of schemes
which satisfy discrete entropy conditions – see LeVeque (1992, 2002).

Bibliographic notes and recommended reading

The standard reference for the material of this chapter remains Richtmyer
and Morton (1967), where a Banach space framework is employed to give
a complete proof of the Lax Equivalence Theorem. A thorough account
of the Kreiss and Buchanan matrix theorems is also given there, together
with a number of simpler sufficient stability criteria; but several generali-
sations of these theorems and much more compact proofs have appeared
in the literature in recent years. Moreover, the theory has been devel-
oped considerably and the reader is referred to the original papers quoted
in Section 5.10 for details of these developments.

A convenient source to consult for surveys of recent developments is
the set of the annual volumes of Acta Numerica. For example, in the 2003
1 Trefethen, L.N. (1982), Group velocity in finite difference schemes, SIAM Rev.

24, 113–36.
2 López-Marcos, J.C. and Sanz-Serna, J.M. (1988), Stability and convergence in

numerical analysis III: linear investigation of nonlinear stability, IMA J. Numer.
Anal. 8(1), 71–84.
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volume the articles by Cockburn1 and Tadmor2 are both very relevant
to the topics discussed in this chapter. Progress with the application of
symplectic integration and geometric integration methods, and similarly
of modified equation analysis, to PDEs, may also be followed in these
volumes.

Exercises

5.1 Consider the DuFort–Frankel scheme for the convection–diffusion
equation ut + aux = buxx, where b > 0, on a uniform mesh,

Un+1
j = Un−1

j − 2ν∆0xUn
j + 2µ

(
Un

j−1 + Un
j+1 − Un+1

j − Un−1
j

)
where ν = a∆t/∆x, µ = b∆t/(∆x)2. Show that the scheme is
stable for ν2 ≤ 1 with no restriction on the size of µ, but that a
restriction on µ is needed to ensure its consistency.

5.2 Consider the problem ut = uxx on the region 0 < x < 1, t > 0,
with initial condition u(x, 0) = f(x) and boundary conditions
ux(0, t) = 0 and ux(1, t) + u(1, t) = 0. Show that when the
derivative boundary conditions are approximated by central dif-
ferences the explicit method leads to the system

Un+1
j = (1 − 2µ)Un

j + µ(Un
j−1 + Un

j+1), j = 1, 2, . . . , J − 1,

Un+1
0 = (1 − 2µ)Un

0 + 2µUn
1 ,

Un+1
J = (1 − 2µ − 2µ∆x)Un

J + 2µUn
J−1.

Show that V n
j = λn cos kj∆x satisfies these equations provided

that

λ = 1 − 4µ sin2 1
2k∆x,

and that k satisfies

∆x cot k = sin k∆x.

By drawing graphs of cot k and sin k∆x show that there are only
J real solutions of this equation which lead to different mesh
functions V n

j . Verify that there is also one complex solution
which is approximately k∆x = π + iy∆x when ∆x is small,

1 Cockburn, B. (2003), Continuous dependence and error estimation for viscosity
methods, Acta Numerica. 12, 127–80.

2 Tadmor, E. (2003), Entropy stability theory for difference approximations of non-
linear conservation laws and related time-dependent problems, Acta Numerica 12,
Cambridge University Press, 451–512.
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where y is the unique positive root of y = coth y. Show that,
with this value of k, λ = 1− 4µ cosh2 1

2y∆x. Deduce that for this
problem the explicit method with µ = 1

2 gives an error growth,
while still being stable by the criteria of (2.55) and (2.56).

5.3 Consider the quadratic polynomial p(z) = az2 + 2bz + c, where
a, b, and c are complex.

(i) Show that if |c| > |a| then at least one of the zeros of p(z)
has modulus greater than 1.

(ii) Suppose that |c| < |a|, and define q(z) = c̄z2 +2b̄z+ ā and
r(z) = āp(z) − cq(z). Show that if |z| = 1 then |q(z)| = |p(z)|
and hence that |cq(z)| < |āp(z)|. Deduce from Rouché’s theorem
that p(z) and r(z) have the same number of zeros inside the unit
circle, and hence that both zeros of p(z) have modulus less than
or equal to 1 if and only if 2|āb − b̄c| ≤ |a|2 − |c|2,

(iii) Now suppose that |a| = |c|. Write c = aeiθ, b = aβeiφ,
z = ueiθ/2, where β is real, and show that

u2 + 2βei(φ−θ/2)u + 1 = 0.

Show that the roots of this equation lie on the unit circle if and
only if θ = 2φ and |β| ≤ 1. Deduce that if |c| = |a| the zeros of
p(z) have modulus less than or equal to 1 if and only if āb = b̄c

and |b| ≤ |a|.

5.4 The convection–diffusion problem ut + aux = buxx is approxi-
mated on the whole real line by the MacCormack scheme

Un+∗ = Un − ν∆−Un,

Un+1 = Un − 1
2ν(∆−Un + ∆+Un+∗) + 1

2µ(δ2Un + δ2Un+∗),

where ν = a∆t/∆x and µ = b∆t/(∆x)2 are positive. Find the
conditions under which the von Neumann stability condition is
satisfied. Show that for practical stability it is necessary that

2µ − 1 ≤ ν ≤ 1,

and that when µ = 1
2 this is also a sufficient condition.

5.5 Find the necessary and sufficient stability criterion for

Un+1 − Un = −µδ2V n,

V n+1 − V n = µδ2Un+1, µ = a∆t/(∆x)2,

which represents the vibration of a bar.
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Suppose now the bar is subject to tension and terms ν∆0V
n

and ν∆0U
n+1, with ν = b∆t/∆x, are introduced into the two

equations. Is Lax–Richtmyer stability affected? Find a simple
sufficient criterion for practical stability.

5.6 Suppose that the Lax–Wendroff method is applied on a uniform
mesh to the advection equation ut + aux = 0, with constant a.
Show that, over the whole real line, with ν = a∆t/∆x,

||Un+1||2 = ||Un||2 − 1
2ν2(1−ν2)

[
||∆−Un||2 − 〈∆−Un, ∆+Un〉

]
and hence deduce the stability condition.

If the method is applied on the interval (0, 1) with a > 0
and the boundary condition Un

0 = 0 at x = 0, find a simple
boundary condition at x = 1 which will be stable.

5.7 Suppose the box scheme is used for the solution of ut +aux = 0,
where a is a positive constant, in the region x > 0, t > 0 with a
uniform mesh. The boundary conditions give u(x, 0) = f(x) for
x > 0, where f ∈ L2(0, ∞), and u(0, t) = 0 for t > 0. Writing
the scheme in the form

Un+1
j + Un+1

j−1 + ν(Un+1
j − Un+1

j−1 ) = Un
j + Un

j−1 − ν(Un
j − Un

j−1),

and defining

Sn :=
∞∑

j=1

{
(Un

j + Un
j−1)

2 + ν2(Un
j − Un

j−1)
2} ,

where ν = a∆t/∆x, show that Sn+1 = Sn. Deduce that the
numerical solution is bounded in l2(0, ∞) for all ∆x and ∆t.

Now suppose that a is a positive function of x with |a′(x)| ≤
L, and that in the box scheme a is replaced by a(xj − 1

2∆x).
Show that

Sn+1 − Sn ≤ 2L∆t




∞∑
j=1

[(Un
j )2 + (Un+1

j )2]


 .

What does this imply about the stability of the scheme ?

5.8 Suppose the θ-method is applied to ut = uxx on a uniform
mesh with the boundary conditions Un

J = 0 on the right and
aUn

0 + bUn
1 = 0 on the left, for some constants a and b. Con-

sider solution modes of the form Un
j = Ûλnµj to the difference
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equations at interior points and find the relation needed between
λ and µ.

Show that there can be no solution with |λ| > 1 and |µ| < 1
that satisfies the boundary condition on the left, either if |a/b| ≥
1 or if |a/b| < 1 and

2∆t(1 − 2θ)
(∆x)2

≤ 4ab

(a + b)2
.

[NB. The Godunov–Ryabenkii necessary conditions for stability
require that any solution mode of the form λnµj to the interior
equations satisfies: (i) if |µ| = 1 then |λ| ≤ 1; (ii) if |µ| < 1
and |λ| > 1 then boundary conditions are applied on the left to
remove the mode; (iii) similarly on the right for |µ| > 1.]



6

Linear second order elliptic equations in
two dimensions

6.1 A model problem

As in previous chapters we shall begin with the simplest model problem,
to solve

uxx + uyy + f(x, y) = 0, (x, y) ∈ Ω, (6.1a)

u = 0, (x, y) ∈ ∂Ω, (6.1b)

where Ω is the unit square

Ω := (0, 1) × (0, 1) (6.2)

and ∂Ω is the boundary of the square. If we compare with the parabolic
equation, of the type discussed in Chapter 3,

∂u

∂t
= uxx + uyy + f(x, y) (6.3)

we see that, if the solution converges to a limit as t → ∞, this limit will
be the solution of (6.1a). This connection between the elliptic problem
and the time-dependent solution of the parabolic problem has often been
exploited in the solution of elliptic problems; in Chapter 7 we shall
discuss the relation between iterative methods for the solution of elliptic
problems and time stepping finite difference methods for the solution of
the corresponding parabolic problems.

We cover the unit square with a uniform square grid with J intervals
in each direction, so that

∆x = ∆y = 1/J, (6.4)

and we approximate (6.1) by the central difference scheme

Ur+1,s + Ur−1,s + Ur,s+1 + Ur,s−1 − 4Ur,s

(∆x)2
+ fr,s = 0. (6.5)

194
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Writing equation (6.5) with r = 1, 2, . . . , J −1 and s = 1, 2, . . . , J −1 we
obtain a system of (J −1)2 equations which have exactly the same struc-
ture as the systems which arose in the solution of parabolic equations
by implicit methods in Chapter 3. We shall assume for the moment that
the equations have been solved in some way, and go on to investigate
the accuracy of the result.

6.2 Error analysis of the model problem

As usual we begin with the truncation error. Substituting into equa-
tion (6.5) the exact solution u(xr, ys) of the differential equation (6.1),
and expanding in Taylor series, the truncation error is easily found
to be

Tr,s = 1
12 (∆x)2 (uxxxx + uyyyy)r,s + o

(
(∆x)2

)
. (6.6)

Indeed this is bounded by T , where

|Tr,s| ≤ T := 1
12 (∆x)2 (Mxxxx + Myyyy) (6.7)

in the usual notation for bounds on the partial derivatives of u(x, y).
We now define an operator Lh on the set of all arrays U of values Ur,s,

(LhU)r,s ≡ LhUr,s

:=
1

(∆x)2
(Ur+1,s + Ur−1,s + Ur,s+1 + Ur,s−1 − 4Ur,s), (6.8)

at all the interior points JΩ ≡ {(xr, ys); r = 1, 2, . . . , J − 1 and s =
1, 2, . . . , J−1}. Then the numerical approximation satisfies the equation

LhUr,s + fr,s = 0, (6.9)

and the exact solution satisfies

Lhur,s + fr,s = Tr,s. (6.10)

We define the error in the usual way as

er,s := Ur,s − ur,s (6.11)

and see that

Lher,s = −Tr,s. (6.12)

Since the values of u(x, y) were given at all points on the boundary, it
follows that the boundary values of er,s are zero.
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To obtain a bound on er,s we first define a comparison function

Φr,s := (xr − 1
2 )2 + (ys − 1

2 )2. (6.13)

Then

LhΦr,s = 4; (6.14)

this can be shown either by direct calculation, or more easily by noting
that Φ is a quadratic function of x and y, and therefore LhΦ must give
the exact value of Φxx + Φyy, which is evidently 4. If we now write

ψr,s := er,s + 1
4TΦr,s (6.15)

we obtain

Lhψr,s = Lher,s + 1
4TLhΦr,s

= −Tr,s + T

≥ 0 ∀(xr, ys) ∈ JΩ. (6.16)

We now appeal to a maximum principle, similar to that used in Theo-
rem 2.2 in Chapter 2, and which we shall prove in a more general context
in Section 6.5. Briefly, the operator Lh is such that, if at a point (xr, ys)
we have Lhψr,s ≥ 0, then ψr,s cannot be greater than all the neighbour-
ing values. Hence it follows from (6.16) that a positive maximum value
of ψ must be attained at a point on the boundary of our square region.
But er,s vanishes on the boundary, and the maximum of Φ is 1

2 , being
attained at the corners. Hence the maximum of ψ on the boundary is
1
8T , and

ψr,s ≤ 1
8T ∀(xr, ys) ∈ JΩ. (6.17)

But since Φ is nonnegative, from the definition of ψ we obtain

Ur,s − u(xr, ys) = er,s ≤ ψr,s

≤ 1
8T

= 1
96 (∆x)2 (Mxxxx + Myyyy) . (6.18)

Notice that this is a one-sided bound; it is a simple matter to repeat the
analysis, but defining ψr,s = 1

4TΦr,s − er,s. The result will be to show
that −er,s ≤ 1

8T , from which we finally obtain the required bound

|Ur,s − u(xr, ys)| ≤ 1
96 (∆x)2(Mxxxx + Myyyy). (6.19)
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6.3 The general diffusion equation

We shall now extend this approach to a more general elliptic problem,
the diffusion equation

∇ · (a∇u) + f = 0 in Ω, (6.20)

where

a(x, y) ≥ a0 > 0. (6.21)

We shall suppose that Ω is a bounded open region with boundary ∂Ω.
The boundary conditions may have the general form

α0u + α1∂u/∂n = g on ∂Ω, (6.22)

where ∂/∂n represents the derivative in the direction of the outward
normal and

α0 ≥ 0, α1 ≥ 0, α0 + α1 > 0. (6.23)

As in the previous chapter we cover the region Ω with a regular mesh,
with size ∆x in the x-direction and ∆y in the y-direction.

Suppose a is smoothly varying and write b = ∂a/∂x, c = ∂a/∂y. Then
we could expand (6.20) as

a∇2u + bux + cuy + f = 0. (6.24)

At points away from the boundary we can approximate this equation by
using central differences, giving an approximation U := {Ur,s, (r, s) ∈
JΩ} satisfying

ar,s

[
δ2
xUr,s

(∆x)2
+

δ2
yUr,s

(∆y)2

]
+ br,s

[
∆0xUr,s

∆x

]
+ cr,s

[
∆0yUr,s

∆y

]
+ fr,s = 0.

(6.25)
The truncation error of this five-point scheme is defined in the usual
way and is easily found to be second order in ∆x, ∆y. The terms in this
equation which involve Ur+1,s and Ur−1,s are[

ar,s

(∆x)2
− br,s

2∆x

]
Ur−1,s +

[
ar,s

(∆x)2
+

br,s

2∆x

]
Ur+1,s. (6.26)

In order to use a maximum principle to analyse the error of this scheme
it is necessary to ensure that all the coefficients at the points which are
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neighbours to (r, s) have the same sign. This would evidently require
that

|br,s|∆x ≤ 2ar,s ∀r, s (6.27)

with a similar restriction for cr,s. This would imply the use of a fine mesh
where the diffusion coefficient a(x, y) is small but changing rapidly.

A more natural scheme however is based more directly on an integral
formof (6.20), aswe sawwhenconsideringpolar co-ordinates inSection2.8.
Consider the control volume V around a mesh point, which was introduced
in the last chapter and is indicated by dotted lines in Fig. 6.1. Integrating
(6.20) over this volume and using Gauss’ theorem we obtain∫

∂V

a(∂u/∂n) dl +
∫

V

f dx dy = 0. (6.28)

We can now construct a difference scheme by approximating the terms
in (6.28). The boundary ∂V of V has normals in the co-ordinate direc-
tions and the normal derivatives can be approximated by divided dif-
ferences using the same five points as in (6.25). We approximate each
of the line integrals along the four sides of the rectangle by the product
of the length of the side and the value of the normal derivative at the
mid-point of the side. In the same way, we approximate the integral of
f(x, y) over the element by the product of the area of the element and
the value of f(x, y) at the centre. As a result, we obtain the scheme

∆y

∆x

[
ar+1/2,s (Ur+1,s − Ur,s) − ar−1/2,s (Ur,s − Ur−1,s)

]
+

∆x

∆y

[
ar,s+1/2 (Ur,s+1 − Ur,s) − ar,s−1/2 (Ur,s − Ur,s−1)

]
+∆x∆yfr,s = 0 (6.29a)

or [
δx(aδxU)

(∆x)2
+

δy(aδyU)
(∆y)2

]
r,s

+ fr,s = 0. (6.29b)

It is often convenient to use the ‘compass point’ notation indicated in
Fig. 6.1 and to write (6.29a), (6.29b) as

ae(UE − UP ) − aw(UP − UW )
(∆x)2

+
an(UN − UP ) − as(UP − US)

(∆y)2
+fP = 0.

(6.30)
Since we have assumed that the function a(x, y) is positive it is now easy
to see that the coefficients in the scheme (6.30) always have the correct
sign, without any restriction on the size of the mesh.
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P
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N

W w

n

s

Ee

Fig. 6.1. The control volume about the point P .

Another advantage of the form (6.29), comes in problems where there
is an interface at which material properties (represented by a) change
abruptly, yet the normal flux a∂u/∂n is continuous. Suppose we arrange
the grid so that the material interface passes vertically through the point
e, with the constant value aE holding on the right and the value aP on
the left. Then in terms of an intermediate value Ue on the interface, the
common value of the flux can be approximated by

aE(UE − Ue)
1
2∆x

=
aP (Ue − UP )

1
2∆x

=
ae(UE − UP )

∆x
, say, (6.31)

where the elimination of Ue to give the last expression, ready for substi-
tution into (6.30), is accomplished by defining ae through

2
ae

=
1

aE
+

1
aP

. (6.32)

6.4 Boundary conditions on a curved boundary

Either form (6.25) or (6.30) has to be modified in the neighbourhood
of a boundary which does not lie along one of the mesh lines. We saw
in Section 3.4 how the second derivatives can be approximated at such
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Fig. 6.2. Dirichlet condition on a curved boundary; (a) shows
the points used in the modified difference scheme and (b)
shows the modified control volume.

points, and now have to extend the method to the more general diffusion
equation.

Let us first consider a situation such as that in Fig. 6.2 where Dirichlet
data are given on the curved boundary. If we use Taylor series expansions
to obtain an approximation to (6.24) at the point P in the form (6.25),
we need to use the given values at A and B instead of the values at E

and N . It is sufficient to consider A only, and we write PA = θ∆x.
Then Taylor expansions for uA and uW give

uA =
[
u + θ∆x ux + 1

2 (θ∆x)2uxx + · · ·
]
P

,

uW =
[
u − ∆x ux + 1

2 (∆x)2uxx − · · ·
]
P

.

From these, by eliminating first uxx and then ux, we obtain approxima-
tions

[ux]P ≈ uA − θ2uW − (1 − θ2)uP

θ(1 + θ)∆x
, (6.33a)

[uxx]P ≈ uA + θuW − (1 + θ)uP
1
2θ(1 + θ)(∆x)2

. (6.33b)

Carrying out the same construction for UP , US and UB , we readily
obtain an appropriately modified form of (6.25). For a maximum prin-
ciple to hold we shall again require a restriction on the size of the mesh,
just as at an ordinary interior point.

The alternative integral form of the difference scheme (6.30) is modi-
fied near a Dirichlet boundary in a similar way. Thus for each mesh
point we draw a rectangular control volume about it as in Fig. 6.1 but,
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if the mesh line joining P to one of its neighbours crosses the boundary,
the corresponding side of the rectangle is drawn perpendicular to the
mesh line, crossing it half-way to the boundary, as in Fig. 6.2(b). For
example, the distance PA in this figure is a fraction θ of the mesh size
PE = ∆x, so the width of the volume V is 1

2 (1 + θ)∆x.
Hence the line integral along the bottom side of the element is approx-

imated by

1
2 (1 + θ)∆x

[
−as(UP − US)

∆y

]
. (6.34)

We must also make an adjustment to the approximation to the normal
derivative in the line integral up the right-hand side of the element; this
derivative is approximated by

aa(UA − UP )
θ∆x

, (6.35)

where aa is the value of a(x, y) at the point midway between A and
P and ab will have a similar meaning. Noting that in Fig. 6.2(b) the
boundary cuts the mesh lines at two points, A and B with PA = θ∆x

and PB = φ∆y, we obtain the difference approximation at the point P

as

1
2 (1 + φ)∆y

[
aa(UA − UP )

θ∆x
− aw(UP − UW )

∆x

]

+ 1
2 (1 + θ)∆x

[
ab(UB − UP )

φ∆y
− as(UP − US)

∆y

]
+ 1

4 (1 + θ)(1 + φ)∆x∆yfP = 0. (6.36)

It is clear that in the case where a(x, y) is constant this scheme will be
identical to that given by (6.33a, b). More generally, it has the advantage
that the coefficients still satisfy the conditions required for a maximum
principle.

Derivative boundary conditions are more difficult to deal with. As we
saw in Chapter 3, it is difficult to construct accurate difference approx-
imations to the normal derivative, and it is necessary to take account
of a number of different possible geometrical configurations. Moreover,
we shall see in Section 6.7 that derivative boundary conditions are dealt
with much more straightforwardly in a finite element approximation.
However we will show how in a simple case the integral form of the
equation can be adapted.
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Fig. 6.3. Integral form of Neumann condition; the boundary
intersects one mesh line in (a) and two in (b).

Consider the situation shown in Fig. 6.3(a) where the boundary cuts
the mesh line PN at the point B, but does not cut the other lines joining
P to its nearest neighbours. We also assume that a Neumann condition,

∂u

∂n
= g, (6.37)

is given on this part of the boundary; the general condition (6.22) is more
difficult to deal with. We construct an element V round P by drawing
three sides of the rectangle as we have done before, but extending the
two vertical sides to meet the boundary at the points L and R and using
the part of the boundary between them. Writing

wL = φ1∆y, eR = φ2∆y, (6.38)

we can approximate the line integrals along the horizontal and vertical
sides of the element just as we did before, but we notice that the results
will be less accurate, since we are not evaluating the normal derivatives
at the mid-points of the vertical sides. In the same way the double
integral is approximated by the product of the area of the element and
the value of f at P . Again there is a loss of accuracy, since P is not at
the centre of the element.

Finally we must approximate the line integral along the boundary
RBL; here we can write ∫

a
∂u

∂n
dl =

∫
a g dl (6.39)
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which is approximated by

aB gB ψ∆x (6.40)

where ψ∆x is the length of the line LR. This leads finally to the differ-
ence equation

(φ2 + 1
2 )∆y

[
ae

UE − UP

∆x

]
+ (φ1 + 1

2 )∆y

[
aw

UW − UP

∆x

]

+∆x

[
as

US − UP

∆y

]
+ ψ∆x aBgB + 1

2 (φ1 + φ2 + 1)∆x ∆y fP = 0. (6.41)

In the fairly common situation where the boundary cuts two of the
mesh lines from P to its neighbours, the procedure is much the same,
but it will be necessary to use some diagonal lines in the construction of
the element, as in Fig. 6.3(b). The geometrical details are tedious, and
we shall not discuss them further.

6.5 Error analysis using a maximum principle

We shall assume that in approximating (6.20), (6.22), or any linear ellip-
tic equation, we have been successful in constructing, at each interior
point P ∈ JΩ, an approximation of the form

LhUP + fP + gP = 0, (6.42)

where gP represents any boundary data that are picked up from other
than Dirichlet boundary conditions. We assume that the following con-
ditions hold:–

(i) For each P ∈ JΩ, Lh has the form

LhUP =
∑

k

ckUk − cP UP , (6.43)

where the coefficients are positive and the sum over k is taken over
mesh points which are neighbours of P . In the difference scheme
above these have only included the four nearest neighbours, but
the analysis can be applied to more general schemes which involve
neighbours such as UNE in a diagonal direction. Also, when P

is near the boundary, some of the neighbours may be in a set
J∂Ω of points on the boundary such as A and B in Fig. 6.2, and
equation (6.36), and then the corresponding values Uk are given
by Dirichlet boundary conditions. The key requirement is that
all the coefficients which occur in (6.43) must be positive.
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(ii) For each P ∈ JΩ

cP ≥
∑

k

ck. (6.44)

(iii) The set JΩ is connected. We say that a point P is connected to
each of its neighbours that occurs in (6.43) with a non-zero coeffi-
cient. The set is then connected if, given any two points P and Q

in ΩJ , there is a sequence of points P = P0, P1, P2, . . . , Pm = Q

such that each point Pr is connected to Pr−1 and Pr+1, for
r = 1, 2, . . . , m − 1.

(iv) At least one of the equations (6.43) must involve a boundary value
UA which is given by a Dirichlet boundary condition. In other
words, Dirichlet boundary conditions must be given on at least
part of the boundary. (Such a condition is needed, or at least
(6.22) with α0 
= 0, to ensure uniqueness of the solution of (6.1).)

Note that in these conditions we refer to interior points JΩ and bound-
ary points J∂Ω in a specific sense. An interior point is one at which an
equation of the form (6.42) is satisfied, with the coefficients satisfying
the appropriate conditions. A boundary point is a point which appears
in at least one equation but is one at which no equation is given and
the value of U is prescribed, by a Dirichlet condition. At a point on
the boundary of the region at which a Neumann or mixed condition
is given we will normally eliminate the value of U , as in the situation
illustrated in Fig. 6.3 where the unknown value UB does not appear in
the equation (6.41) for UP , or in any of the equations; or we treat it
as an interior point with its own equation, as in the treatment of the
symmetry boundary condition in the example of Section 6.9 below. The
boundary points are therefore those at which values are prescribed by
Dirichlet conditions. Note that these definitions and conventions, which
are convenient for our present purposes, are slightly different from those
used in Chapter 5 (where difference operators as in (5.8) involved only
points in JΩ) and from those to be used in Chapter 7.

Lemma 6.1 (Maximum Principle) Suppose that Lh, JΩ and J∂Ω

satisfy all the above assumptions and that a mesh function U satisfies

LhUP ≥ 0 ∀ P ∈ JΩ. (6.45)

Then U cannot attain a nonnegative maximum at an interior point, i.e.

max
P∈JΩ

UP ≤ max{ max
A∈J∂Ω

UA, 0}. (6.46)
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Proof We prove this by contradiction. Suppose the interior maximum
MΩ ≥ 0 occurs at a point P and that MΩ > M∂Ω, the maximum over
the boundary points. Then from (6.45), (6.43) and (6.44)

MΩ = UP ≤ 1
cP

∑
k

ckUk

≤ 1
cP

∑
k

ckMΩ ≤ MΩ. (6.47)

This means that equality holds throughout (6.47), which implies that
all the values Uk involved are also equal to MΩ. Hence the maximum
value is attained also at all the points which are connected neighbours
of P . The same argument can then be used at each of these points, and
so on. Since we have assumed that JΩ is connected this shows that U

takes the same value MΩ at all the interior points, and at least one of
these points must have a connected neighbour which is on the boundary.
This contradicts the assumption that MΩ > M∂Ω.

Corollary The inequality

LhUP ≤ 0 ∀P ∈ JΩ

implies

min
P∈JΩ

UP ≥ min{ min
A∈J∂Ω

UA, 0}. (6.48)

The proof follows in the same manner as above, or alternatively we may
simply apply the lemma to the mesh function −U .

We next define the truncation error at each interior point in the usual
way, noting that (6.42) has been properly scaled,

TP := LhuP + fP + gP . (6.49)

Hence for the error eP = UP − uP at each interior point we have

LheP = −TP , P ∈ JΩ. (6.50)

We shall assume as usual that eA = 0 at all boundary points at which
a Dirichlet condition is prescribed, i.e. Dirichlet conditions are imposed
exactly. This will enable us to bound eP by means of the maximum
principle in Lemma 6.1.

Theorem 6.1 Suppose a nonnegative mesh function Φ is defined on
JΩ ∪ J∂Ω such that

LhΦP ≥ 1 ∀ P ∈ JΩ, (6.51)
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and that all the above four conditions are satisfied. Then the error in
the approximation (6.42) is bounded by

|eP | ≤
[

max
A∈J∂Ω

ΦA

] [
max
P∈JΩ

|TP |
]

. (6.52)

Proof Let us denote by T the maximum of the absolute value of the
truncation error, |TP |. Then we can apply Lemma 6.1 to the function
TΦP + eP because

Lh (TΦP + eP ) ≥ T − TP ≥ 0. (6.53)

We therefore deduce, using the fact that Φ is nonnegative, that

max
P∈JΩ

(eP ) ≤ max
P∈JΩ

(TΦP + eP ) ≤ max
A∈J∂Ω

(TΦA + eA),

i.e.,

max
P∈JΩ

eP ≤
[

max
A∈J∂Ω

ΦA

]
T, (6.54)

where we have used the fact that eA = 0 at all boundary points, because
of the assumption that we use the exact values of the given Dirichlet
boundary conditions.

This gives a one-sided bound. If we apply the lemma to the function
TΦP − eP we obtain a similar bound for −eP , thus giving the required
result.

The presentation and analysis here have been given in rather general
terms. The analysis of the model problem in Section 6.2 followed the
same method, the only difference being that we used a comparison func-
tion Φ for which LhΦP = 4; a more general theorem that includes both
cases will be given below. When applying the technique to a particular
problem we must find a bound on the truncation error, giving T , and
then construct a function Φ. Evidently the determination of T is quite
straightforward, requiring simply a Taylor series expansion, whereas it
may be more difficult to construct a suitable Φ. This function is not,
of course, unique. In the model problem we could, for example, have
defined

Φr,s = 1
4

[
(xr − p)2 + (ys − q)2

]
; (6.55)

the required conditions would be satisfied for any values of the constants
p and q. The particular values that were chosen, p = q = 1

2 , give the
smallest value for max(ΦA).
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We shall now apply this general analysis to some more complicated
cases. Consider first the solution of Poisson’s equation (6.1) in a region
with a curved boundary, as discussed in Section 6.4. The finite differ-
ence approximation will satisfy a maximum principle, and for all points
at which all the four neighbours are also interior mesh points, the trun-
cation error has the form (6.6) and satisfies (6.7). However, at mesh
points next to the boundary, where one or more of the neighbours lie
on the boundary, we must use a more general difference approximation,
such as (6.33b). A Taylor series expansion easily shows that

uA + θuW − (1 + θ)uP
1
2θ(1 + θ)(∆x)2

= (uxx)P − 1
3 (1 − θ)∆x (uxxx)P + O

(
(∆x)2

)
.

(6.56)
It is possible for an interior mesh point to have more than one neighbour
on the boundary, but since 0 < θ < 1 in (6.56) it is easy to see that in
all cases we can choose positive constants K1 and K2 such that

|Tr,s| ≤ K1(∆x)2 at ordinary points, (6.57a)

|Tr,s| ≤ K2∆x next to the boundary, (6.57b)

provided that ∆x is sufficiently small. Hence

|Tr,s| ≤ K1(∆x)2 + K2∆x (6.58)

at all interior mesh points.
Now suppose that the region is contained in a circle with centre (p, q)

and radius R, and define the comparison function Φr,s by (6.55). Then
LhΦP = 1 at all ordinary interior mesh points, as before; this result also
holds at points next to the boundary, since the truncation error in (6.56)
involves the third and higher derivatives, and vanishes for a quadratic
polynomial. We can therefore apply Theorem 6.1 and deduce that

|Ur,s − u(xr, ys)| ≤ 1
4R2[K1(∆x)2 + K2∆x], (6.59)

since 0 ≤ Φ ≤ 1
4R2 throughout the region, and on the boundary. This

shows that the error is O(∆x) as the mesh size tends to zero, rather
than the O

(
(∆x)2

)
obtained for a simple region.

A slightly modified comparison function can however be used to pro-
duce a sharper error bound. In analysis of problems of this kind it is
quite common for the truncation error to have one form at the ordinary
points of the mesh, but to be different near the boundary. It is therefore
convenient to have a generalised form of Theorem 6.1.
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Theorem 6.2 Suppose that, in the notation of Theorem 6.1, the set JΩ

is partitioned into two disjoint sets

JΩ = J1 ∪ J2, J1 ∩ J2 = ∅;

the nonnegative mesh function Φ is defined on JΩ ∪ J∂Ω and satisfies

LhΦP ≥ C1 > 0 ∀ P ∈ J1,

LhΦP ≥ C2 > 0 ∀ P ∈ J2;
(6.60)

and the truncation error of the approximation (6.42) satisfies

|TP | ≤ T1 ∀ P ∈ J1,

|TP | ≤ T2 ∀ P ∈ J2.
(6.61)

Then the error in the approximation is bounded by

|eP | ≤
[

max
A∈J∂Ω

ΦA

]
max

{
T1

C1
,
T2

C2

}
. (6.62)

Proof The proof is an easy extension of that of Theorem 6.1; it is only
necessary to apply Lemma 6.1 to the function KΦ+e, where the constant
K is chosen to ensure that the maximum principle applies. The details
of the proof are left as an exercise.

We now apply this theorem to the problem with the curved boundary,
taking the set J1 to contain all the ordinary internal mesh points, and
J2 to contain all those mesh points which have one or more neighbours
on the boundary. We then define the mesh function Φ by

ΦP = E1
{
(xr − p)2 + (ys − q)2

}
∀ P ∈ JΩ,

ΦP = E1
{
(xr − p)2 + (ys − q)2

}
+ E2 ∀ P ∈ J∂Ω,

where E1 and E2 are positive constants to be chosen later. Then

LhΦP = 4E1 ∀ P ∈ J1, (6.63a)

but for points in J2 there is an additional term, or terms, arising from the
boundary points. In the approximation (6.33b) the coefficient of uA is

2
θ(1 + θ)(∆x)2

and since 0 < θ < 1 this coefficient is bounded away from zero and
cannot be less than 1/(∆x)2. Hence

LhΦP ≥ 4E1 + E2/(∆x)2

≥ E2/(∆x)2 ∀ P ∈ J2. (6.63b)
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Applying Theorem 6.2, with the truncation error bounds of (6.61) given
by (6.57) as T1 = K1(∆x)2 and T2 = K2∆x, we obtain

|eP | ≤ (E1R
2 + E2) max

{
K1(∆x)2

4E1
,
K2(∆x)3

E2

}
. (6.64)

This bound depends only on the ratio E2/E1, and is optimised when
the two quantities in max{·, ·} are equal; so we get the result

|eP | ≤ 1
4K1R

2(∆x)2 + K2(∆x)3, (6.65)

showing that the error is in fact second order in the mesh size. Notice
that the leading term in this error bound is unaffected by the lower order
terms in the truncation error near the boundary.

As a second example, consider the solution of Poisson’s equation in
the unit square, with the Neumann boundary condition ux(1, y) = g(y)
on the right-hand boundary x = 1, and Dirichlet conditions on the other
three sides. As in a similar problem in Chapter 2 we introduce an extra
line of points outside the boundary x = 1, with r = J +1. The boundary
condition is approximated by

UJ+1,s − UJ−1,s

2∆x
= gs. (6.66)

We then eliminate the extra unknown UJ+1,s from the standard differ-
ence equation at r = J , giving

UJ,s+1 + UJ,s−1 + 2UJ−1,s − 4UJ,s + 2gs∆x

(∆x)2
+ fJ,s = 0. (6.67)

This is now an equation of the general form (6.42), satisfying the required
conditions for the maximum principle; so in the application of the max-
imum principle these points with r = J are to be regarded as internal
points.

The truncation error at the ordinary points is as before, and an expan-
sion in Taylor series gives the truncation error of (6.67). The result is

Tr,s = 1
12 (∆x)2(uxxxx + uyyyy) + O

(
(∆x)4

)
, r < J,

TJ,s = 1
12 (∆x)2(uxxxx + uyyyy) − 1

3∆xuxxx + O
(
(∆x)3

)
. (6.68)

The same argument as before, using Theorem 6.1 and the comparison
function Φ given in (6.13), shows that the error is bounded by

|er,s| ≤ 1
8

{ 1
12 (∆x)2(Mxxxx + Myyyy) + 1

3∆xMxxx

}
. (6.69)
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This error bound is of order O(∆x), but as in the previous example
a sharper bound can be obtained by choice of a different comparison
function and application of Theorem 6.2. We define

Φ = (x − p)2 + (y − q)2 (6.70)

where p and q are constants to be determined. We partition the internal
points of the region into J1 and J2, where J2 consists of those points
with r = J . Then in region J1 the standard difference equation is used,
and

LhΦP = 4, P ∈ J1. (6.71)

At the points where r = J , a different operator is used, as in (6.67), and
we have

LhΦP = 4 − 4(1 − p)/∆x, P ∈ J2. (6.72)

In the notation of Theorem 6.2 we then find that

T1

C1
=

1
12 (∆x)2(Mxxxx + Myyyy)

4
,

T2

C2
=

1
12 (∆x)2(Mxxxx + Myyyy) + 1

3∆xMxxx

4 − (1 − p)/∆x
. (6.73)

If we now choose, for example, p = 2, q = 1
2 , we obtain

T2

C2
≤ 1

3 (∆x)2Mxxx + 1
12 (∆x)3(Mxxxx + Myyyy), (6.74)

and at all points of the square we see that (x − 2)2 + (y − 1
2 )2 ≤ 17

4 ; so
by adding T1/C1 and T2/C2 we obtain the error bound

|er,s| ≤ 17
4 (∆x)2[ 13Mxxx + 1

12 ( 1
4 + ∆x) (Mxxxx + Myyyy)]. (6.75)

This shows that, in this example also, the error is second order in the
mesh size.

The same technique can be used to show that the error in our approx-
imation for the solution of Poisson’s equation in a fairly general region,
given either Dirichlet or Neumann conditions on a curved boundary, is
still second order; the technique is complicated only by the need to take
account of a number of different geometrical possibilities. Indeed, the
same ideas can be applied quite generally to both elliptic and parabolic
problems where maximum principles hold. Thus we end this section
by sharpening some of the results that we gave in Chapter 2 for one-
dimensional heat flow.
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In Section 2.11 we gave a proof of convergence of the θ-method for
the heat equation. We now define the operator Lh by

Lhψ =

[
θδ2

xψn+1
j + (1 − θ)δ2

xψn
j

]
(∆x)2

−
ψn+1

j − ψn
j

∆t
, (6.76)

and take P as the point (xj , tn+1). It is easy to see that, provided
0 ≤ θ ≤ 1 and µ(1 − θ) ≤ 1

2 , the conditions of Theorem 6.1 are satisfied
for an appropriately defined set of points JΩ. We shall suppose that
Dirichlet conditions are given on x = 0 and x = 1; then the interior
points JΩ are those for which 1 ≤ j ≤ J − 1 and 1 ≤ n ≤ N , and the
boundary points J∂Ω have j = 0 or j = J or n = 0. In the notation of
Section 2.10, the exact solution u and the numerical solution U satisfy
Lhun

j = −T
n+1/2
j and LhUn

j = 0, so that

Lhen
j = T

n+1/2
j

and we have

T
n+1/2
j = O(∆t) + O

(
(∆x)2

)
.

Now define the comparison function

Φn
j = Atn + Bxj(1 − xj) (6.77)

where A and B are nonnegative constants; it is easy to show that
LhΦn

j = −(A + 2B). Hence

Lh(en
j − Φn

j ) = A + 2B + T
n+1/2
j

≥ 0 (6.78)

if the constants are so chosen that A + 2B ≥ T := max |Tn+1/2
j |.

At points on the boundary J∂Ω we have en
j = 0, Φn

0 = Φn
J = Atn,

and Φ0
j = Bxj(1 − xj), so that en

j − Φn
j ≤ 0 on the boundary. Hence

by Lemma 6.1, en
j − Φn

j ≤ 0 in JΩ. We now consider two choices of the
constants A and B.

(i) Take A = T , B = 0; we have therefore shown that

en
j ≤ Φn

j = tnT, (6.79)

and the same argument applied to the mesh function (−en
j − Φn

j ) shows
that

|en
j | ≤ tnT (6.80)

which agrees with (2.96).
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(ii) Take A = 0, B = 1
2T and we obtain in the same way

|en
j | ≤ 1

2xj(1 − xj)T. (6.81)

From combining these results it is in fact clear that

|en
j | ≤ max

m<n

0<i<J

{|Tm+1/2
i |} min{tn, 1

2xj(1 − xj)} (6.82)

which properly reflects the fact that e = 0 round the boundary of the
domain, and grows away from it.

We saw that for the model problem in Section 2.6 the error in the
solution tends to zero as t increases, while the bound in (6.82) does not.
If we have some additional information about the solution, and we can
show that |Tn+1/2

j | ≤ τn, where τn is a known decreasing function of n,
we may be able to construct a comparison function which leads to an
error bound which decreases with n. An example is given in Exercise 7.

In a similar way we can obtain an error bound in the case of a
Neumann boundary condition, the problem considered in Section 2.13.
With a homogeneous Neumann condition at x = 0, i.e. at x0, the oper-
ator at j = 1 is replaced by

(Lhψ)n
1 =

θ(ψn+1
2 − ψn+1

1 ) + (1 − θ)(ψn
2 − ψn

1 )
(∆x)2

− ψn+1
1 − ψn

1

∆t
(6.83)

obtained from (2.103) with α = 0 and g = 0. The truncation error, from
(2.109), and with θ = 0, at this point is

T
n+1/2
1 = 1

2∆t utt − 1
12 (∆x)2uxxxx − 1

2uxx. (6.84)

We now apply the argument of Theorem 6.2, with J1 including all the
interior mesh points with j > 1, and J2 all the interior mesh points with
j = 1. In (6.61) we can take T1 = T = 1

2∆t Mtt + 1
12 (∆x)2Mxxxx as

before, but in J2 we must use T2 = T + 1
2Mxx. We then construct the

comparison function such that Φn
0 = Φn

1 , namely

Φn
j =

{
Atn + B(1 − xj)(1 − ∆x + xj) in J1,

Atn + B(1 − xj)(1 − ∆x + xj) + K in J2,
(6.85)

so that we obtain

LhΦn
j =

{
−(A + 2B) in J1,

−(A + 2B) − K/(∆x)2 in J2.
(6.86)
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This shows that Lh(en
j − Φn

j ) ≥ 0 in J1 and in J2 if we choose the
constants so that

A + 2B ≥ T,

A + 2B + K/(∆x)2 ≥ T + 1
2Mxx. (6.87)

This is clearly satisfied if we take the same A and B as before and
K = 1

2 (∆x)2Mxx.
The boundary of the region only involves the points where j = J or

n = 0, and at these points it is easy to see as before that en
j − Φn

j ≤ 0.
Hence this holds at the interior points also, so that

en
j ≤ Atn + B(1 − xj)(1 − ∆x + xj) + 1

2 (∆x)2Mxx. (6.88)

With the same choices of A and B as before we get the final result

|en
j | ≤ max

m<n

0<i<J

{|Tm+1/2
i |}×

min{tn, (1 − xj)(1 − ∆x + xj) + 1
2 (∆x)2Mxx}, (6.89)

showing that the error is O(∆t) + O
(
(∆x)2

)
, just as in the case of

Dirichlet boundary conditions.

6.6 Asymptotic error estimates

We had examples in the previous section where a straightforward error
analysis gave a bound of first order in the mesh size, while a more sophis-
ticated analysis produced a bound of second order. This must raise the
question whether a still more careful analysis might show that the error is
in fact of third order. In those examples it is fairly clear that no improve-
ment in order is possible, but in more complicated problems it may not
be at all easy to see what the actual order of error really is. For example,
while in those examples the difficulties stemmed from lower order trun-
cation errors at exceptional points near the boundary, the consideration
of more general elliptic operators in Section 2.15, Section 3.5 and the
next section can lead to lower order truncation errors at all points. It
is therefore useful to have estimates which show more precisely how the
error behaves in the limit as the mesh size tends to zero.

Such estimates often exploit more fully the maximum principle of
Lemma 6.1, and the corresponding result which holds for an elliptic
operator L. As a preliminary, suppose we denote by Φ∂Ω the maximum
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of ΦA over all the boundary nodes, as it appears in the bound of (6.52)
with Φ satisfying (6.51). Now let us apply Lemma 6.1 to Ψ := e −
T (Φ∂Ω − Φ): it is clear that

LhΨP = −TP + TLhΦP ≥ 0,

and also that the maximum of Ψ on the boundary is zero; so we can
conclude that ΨP ≤ 0, ∀ P ∈ J . We can also repeat this argument with
−e, and hence deduce that

|eP | ≤ T (Φ∂Ω − ΦP ), (6.90)

which can be a much stronger result than that of (6.52) in Theorem 6.1;
in particular, it gives an error bound that decreases to zero at some
point of the boundary.

To illustrate how to estimate the asymptotic behaviour of the error,
we consider first the solution of Poisson’s equation in the unit square,
with Dirichlet conditions on the boundary. Using the standard five-
point difference scheme we can easily write down an expression for the
truncation error, and take more terms in the expansion because the
underlying solution will be smooth for reasonable data:

Tr,s = 1
12 (∆x)2(uxxxx + uyyyy)r,s

+ 1
360 (∆x)4(uxxxxxx + uyyyyyy)r,s + · · · . (6.91)

Then the error er,s satisfies the equation

Lher,s = −Tr,s

= − 1
12 (∆x)2(uxxxx + uyyyy)r,s + O

(
(∆x)4

)
. (6.92)

Suppose now that we write ψ(x, y) for the solution of the equation

ψxx + ψyy = − 1
12 (uxxxx + uyyyy) (6.93)

which vanishes on the boundary of the unit square; and let Ψ be the
result if we were to approximate this problem by our numerical scheme.
Then an application of the error bound in Theorem 6.1 shows that Ψ −
ψ = O

(
(∆x)2

)
. Moreover, we can combine this result with (6.92) so

that another application of the theorem shows that
er,s

(∆x)2
= ψ(xr, ys) + O

(
(∆x)2

)
. (6.94)

That is, the numerical solution to the original Poisson’s equation has an
error which is given by

Ur,s = u(xr, ys) + (∆x)2ψ(xr, ys) + O
(
(∆x)4

)
. (6.95)
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This shows that the error is exactly second order, and not of any higher
order, except in a very special case where the function ψ is identically
zero; but of course the expression is only valid in the limit as the mesh
size goes to zero.

We can estimate the size of this error from the difference between two
numerical solutions using different mesh sizes, comparing the results
at the mesh points they have in common. Alternatively, we could use
divided differences of the approximate solution U to estimate the right-
hand side of (6.93) and then actually solve the discrete equations again to
obtain an approximation to what we called ψ above; then substitution
into (6.95) leads to a fourth order approximation. This procedure is
called deferred correction. Again we should emphasise that the extra
orders of accuracy will only be obtained if the mesh size is sufficiently
small for the asymptotic expansion (6.95) to be valid.

An asymptotic estimate can be obtained in a similar way for the last
example in the previous section, with a Neumann boundary condition on
one side of the square, where the error bound was obtained by a rather
arbitrary choice of the comparison function Φ; it is clear that the error
bound (6.75) is most unlikely to be the best possible. In this case the
error satisfies Lh(ers) = −Trs where Trs is given by (6.68). If we now
define ψ to be the solution of the problem

ψxx + ψyy = − 1
12 (uxxxx + uyyyy) (6.96)

with

ψ(0, y) = ψ(x, 0) = ψ(x, 1) = 0, ψx(1, y) = − 1
6uxxx(1, y), (6.97)

we find that the same numerical method applied to this problem will
lead to the equations satisfied by er,s, with additional truncation terms
of higher order; the details are left as an exercise – see Exercise 6. We
thus see, as in the previous example, that

Ur,s = u(xr, ys) + (∆x)2ψ(xr, ys) + o((∆x)2), (6.98)

and ψ(., .) could be estimated by the deferred correction approach.
The extension to problems involving a curved boundary is straight-

forward. As in the application immediately following Theorem 6.2 we
divide the set of mesh points into J1 and J2, where J2 comprises those
mesh points that have one or more neighbours on the boundary. At
points in J1 we have, as in (6.92),∣∣Lh(ers) + 1

12 (∆x)2(uxxxx + uyyyy)
∣∣ ≤ K3(∆x)4 in J1, (6.99)
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where K3 = 1
360 (Mxxxx + Myyyy). We now suppose that Dirichlet con-

ditions are given on the curved boundary. Then at points in J2 we can
use (6.56) and (6.57b) to give∣∣Lh(ers)

∣∣ ≤ K2∆x in J2. (6.100)

We define ψ(x, y) as in (6.93) to be the solution of

ψxx + ψyy = − 1
12

(
uxxxx + uyyyy

)
(6.101)

which vanishes on the boundary. Then, provided the functions u and
ψ have sufficient bounded derivatives, there exist constants K4 and K5

such that ∣∣Lh(ψrs) + 1
12 (uxxxx + uyyyy)

∣∣ ≤ K4(∆x)2 in J1∣∣Lh(ψrs)
∣∣ ≤ K5∆x in J2. (6.102)

By subtracting (6.102) from (6.99) and (6.100) we then have∣∣∣∣Lh

(
ers

(∆x)2
− ψrs

)∣∣∣∣ ≤ (K3 + K4)(∆x)2 in J1,∣∣∣∣Lh

(
ers

(∆x)2
− ψrs

)∣∣∣∣ ≤ K2

∆x
+ K5∆x in J2. (6.103)

We now apply Theorem 6.2; the function ΦP and the values of C1 and
C2 are the same as those used to obtain (6.64), i.e., C1 = 4E1, C2 =
E2/(∆x)2, but T1 = (K3 + K4)(∆x)2 and T2 = K2/∆x + K5∆x. We
thus obtain∣∣∣∣ ers

(∆x)2
−ψrs

∣∣∣∣ ≤ (E1R
2+E2) max

{
(K3 + K4)(∆x)2

4E1
,
K2 + K5(∆x)2

E2/∆x

}
.

(6.104)
Choosing E1 = 1

4 (K3 + K4)(∆x)2, E2 = K2∆x + K5(∆x)3 we then
obtain ∣∣∣∣ ers

(∆x)2
− ψrs

∣∣∣∣ ≤ C(∆x), (6.105)

showing that

ers = (∆x)2ψ(xr, ys) + O
(
(∆x)3

)
. (6.106)

Once again this shows how the lower order truncation error at points
near the boundary does not affect the leading term in the asymptotic
expansion of the error.

A combination of the asymptotic error estimates obtained in this sec-
tion and the rigorous error bounds of previous sections will give a useful
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description of the behaviour of the error in the linear problems with
smooth solutions that we have been discussing. We should note, how-
ever, that for the more general equation involving a variable a(x, y) the
construction of a function Φ with the required properties is likely to be
more difficult; just how difficult, and how sharp will be the resulting
bound, will depend on the form of a(x, y), a lower bound for which may
well have to be used in the construction.

However, an attempt to apply the analysis given above to a problem
with Neumann conditions on part of a curved boundary is less successful.
If we use the approximation of (6.41) and expand in Taylor series we find
the leading term of the truncation error is

p2
1 − p2

2

1 + p1 + p2
uxy. (6.107)

We see at once that this is O(1), and does not tend to zero as the mesh
size goes to zero. It is now not difficult to use the maximum principle to
obtain a bound on the error, and we find a bound which is O(∆x). But
our asymptotic expansion of the error is founded on the fact that the
leading term in the truncation error is the product of a power of ∆x and
a function of x and y only, independent of ∆x. This is no longer true
of the expression in (6.107), since p1 and p2 are functions of x, y and
∆x, and moreover are not smooth functions, but involve terms like the
fractional part of x/∆x. This observation is illustrated in Fig. 6.4. This
shows the results of a numerical solution of Poisson’s equation on the
annulus between circles of radii 1 and 0.3. In the first problem Dirichlet
conditions are given on both boundaries, and these conditions and the
function f are so chosen that the solution is

u(x, y) = 1 + 3x2 + 5y2 + 7x2y2 + (x2 + 2)2.

The maximum error in this calculation is shown in the lower curve,
which shows the error behaving like (∆x)2. In the second problem the
solution is the same, but a Neumann condition is given on the outer
circular boundary. We notice that the error is now much larger, that
there is a general trend of order O(∆x), but the detailed behaviour is
very irregular. To get a numerical solution of such a problem, with an
error behaving smoothly like O

(
(∆x)2

)
, will require a more complicated

approximation to the boundary condition.
A major advantage of the finite element method, as we shall see in the

next section, is that it deals with the application of Neumann bound-
ary conditions in a simple and natural way, that leads to much better
behaved errors.



218 Linear second order elliptic equations in two dimensions
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Fig. 6.4. Numerical solution of Poisson’s equation in an
annulus: lower curve, Dirichlet conditions; upper curve,
Neumann condition on the outer boundary.

6.7 Variational formulation and the finite element method

Our general diffusion problem (6.20), (6.22) can be given a variational
formulation. Consider first the case where Dirichlet boundary conditions
are given at all points on the boundary. We define

I(v) :=
∫

Ω

[ 1
2a|∇v|2 − fv

]
dx dy. (6.108)

Then we assert that the solution of (6.20) satisfies a variational equation
that we write as

δI(u) = 0. (6.109)

This means that if v = u + δu is any function for which I(v) is defined,
and which satisfies the boundary conditions, then

I(u + δu) − I(u) = o(δu). (6.110)

We can show why this is so without attempting a completely rigorous
proof. By expanding I(u + δu) we find that

I(u + δu) − I(u) =
∫

Ω
[(a∇u) · (∇δu) − fδu] dx dy +

∫
Ω

1
2a|∇δu|2dx dy

=
∫

Ω
− [∇ · (a∇u) + f ] δu dx dy + O

(
(δu)2

)
, (6.111)
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where we have used Gauss’ theorem, and the fact that δu = 0 on the
boundary of Ω. The result follows.

In fact we have shown rather more, for since a(x, y) > 0 it follows
from (6.111) that I(u + δu) ≥ I(u) for all functions δu which vanish on
the boundary. Hence the function u gives the minimum of I(v), taken
over all functions v which satisfy the boundary conditions.

Now suppose we take a finite expansion of the form

V (x, y) =
N∑

j=1

Vjφj(x, y), (6.112)

where the functions φj are given, and try to choose the coefficients Vj so
that this gives a good approximation to the solution u. We can expand
I(V ) in the form

I(V ) = 1
2

∑
i

∑
j

AijViVj −
∑

i

biVi, (6.113)

where

Aij =
∫

Ω
[a∇φi · ∇φj ]dx dy (6.114)

and

bi =
∫

Ω
fφidx dy. (6.115)

Since the exact solution u minimises I(v), it is natural to define an
approximation U to the solution by choosing the coefficients {Vj} to
minimise I(V ). As (6.113) shows that I(V ) is a quadratic form in the
coefficients, the determination of its minimum is a straightforward mat-
ter, applying the constraint that V satisfies the boundary conditions.

This approach was used by Rayleigh, Ritz and others in the nine-
teenth century with various choices of the functions φj(x, y). It is also
the starting point for the finite element method which is now widely
used to solve elliptic problems in preference to finite difference methods,
especially by engineers.

The particular feature of the finite element method lies in the choice of
the φj(x, y), which are known as the trial functions, or shape functions.
They are chosen so that each φj is non-zero only in a small part of the
region Ω. In the matrix A most of the elements will then be zero, since
Aij will only be non-zero if the shape functions φi and φj overlap. We
will consider one simple case.
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Fig. 6.5. Triangular elements in a polygon.

Suppose the region Ω is a polygon and it is subdivided into triangu-
lar elements, as in Fig. 6.5. The vertices P of the triangles are known
as nodes. We suppose that V is piecewise linear, having a linear form
in each triangle determined by its values at the vertices of the trian-
gle. Then it is clearly continuous from one triangle to the next; and
we suppose that the boundary conditions are similarly piecewise linear
around the bounding polygon and V takes on these values. The func-
tion φj(x, y) is defined to be the piecewise linear function which takes
the value 1 at node Pj , and zero at all the other nodes. This defines the
function uniquely, and it is clear that it is non-zero only in the triangles
which have Pj as a vertex. This function is for obvious reasons known
as a hat function; drawn in three dimensions (Fig. 6.6) it has the form
of a pyramid, with triangular faces.

This definition of the shape functions has the useful property that
the coefficient Vj gives the value of the function V (x, y) at the node
Pj , since all the other shape functions vanish at this node. Then to
ensure that V satisfies the boundary conditions we fix the coefficients
Vj corresponding to nodes on the boundary, and allow all the others to
vary in the minimisation process.

One of the main advantages of the finite element method is that it
adapts quite easily to difficult geometrical shapes, as a triangulation can
easily follow a boundary of almost any shape. Once a set of triangular
elements has been constructed, the elements of the matrix A can be
evaluated in a routine way, taking no particular account of the shape of
the triangles.
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Fig. 6.6. A hat basis function.

To illustrate the procedure we shall consider the simplest model prob-
lem, the solution of Poisson’s equation in a square with u = 0 on the
boundary, as in (6.1). We cover the square with a uniform square mesh
as before, and then divide each small square into two triangles by draw-
ing a diagonal, as in Fig. 6.7. A general row of the matrix A will then
contain seven non-zero elements, as the hat function centred at the node
P will overlap with the hat functions centred at P and its six neighbours,
labelled N , S, E, W , NW and SE in the figure. Since each φ is a linear
function of x and y in each triangle, its gradient ∇φ is constant in each
triangle. With a(x, y) = 1 in this example, the evaluation of

Aij =
∫

Ω
[∇φi · ∇φj ]dx dy (6.116)

is a simple matter. The partial derivatives of φ in each triangle each
take one of the values 0, 1/∆x or −1/∆x, and we find that

APP = 4, (6.117a)

APN = APS = APE = APW = −1 (6.117b)

and

AP,NW = AP,SE = 0. (6.117c)

We also require the value of bi from (6.115). If we approximate this by
replacing the function f(x, y) by a constant, the value of f at the point
P , we obtain

bP = (∆x)2fP . (6.118)
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Fig. 6.7. Triangular elements on a square mesh.

However, we should point out here that in a finite element program
the integrations of (6.114) and (6.115) will be carried out over each
element before being assembled into the global equation of the form
(6.119) below: in particular, this will mean that (6.115) will commonly
be approximated by centroid quadrature in each triangle, so that in
(6.118) fP will be replaced by the mean of the six values at the centroids
of the triangles sharing the vertex P . Now the minimum of the quadratic
form (6.113) is given by the vector U, with values that satisfy the system
of linear equations AU = b. The number of interior nodes corresponding
to the Vj which are allowed to vary, determines the dimension of U, b
and hence of A; there are no other contributions to the right-hand side
of the equations because the boundary data are zero. A general equation
of this system is

4UP − UN − US − UE − UW − (∆x)2fP = 0, (6.119)

which is the same as the familiar finite difference scheme introduced in
Section 6.1 – apart from the change of sign throughout.

The error analysis of the finite element method has a different char-
acter from that of the finite difference schemes. We have seen that u

satisfies ∫
Ω

[a∇u · ∇w − f w] dx dy = 0 (6.120)

for any function w which vanishes on the boundary. Also the function
U would satisfy ∫

Ω
[a∇U · ∇W − f W ] dx dy = 0 (6.121)
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if the integrals were carried out exactly (or a and f were constant),
for any function W which can be expressed as a finite sum of the form
(6.112) and vanishes on the boundary. Now we can choose any V of the
form (6.112) which satisfies the boundary conditions and take both w

and W to be V − U because this difference vanishes on the boundary;
then by subtraction we obtain∫

Ω
[a∇(U − u) · ∇(V − U)]dx dy = 0. (6.122)

Thus∫
Ω

a|∇(V − u)|2dx dy =
∫

Ω
a|∇[(V − U) + (U − u)]|2dx dy

=
∫

Ω
a|∇(V − U)|2dx dy +

∫
Ω

a|∇(U − u)|2dx dy,

because the cross-product terms drop out by (6.122). This means that∫
Ω

a|∇(U − u)|2dx dy ≤
∫

Ω
a|∇(V − u)|2dx dy ∀V. (6.123)

We can define a special norm for a function w(x, y) which vanishes on
the boundary of Ω,

||w||2E =
∫

Ω
a|∇w|2dx dy. (6.124)

We have thus shown that

||U − u||E ≤ ||V − u||E ∀V. (6.125)

This key result means that U is the best possible approximation to
u of the form (6.112) in this norm. Its error can then be estimated
very sharply by application of approximation theory. To do so here
in any detail would take us beyond the scope of this book, as would
consideration of the effects of the quadrature needed for variable a and
f ; we merely quote the main results as

||U − u||E ≤ C1h|u|∗, (6.126a)

||U − u||L2(Ω) ≤ C2h
2|u|∗, (6.126b)

where h is the maximum diameter of all the triangles in the triangulation,
|u|∗ = ||uxx|| + ||uxy|| + ||uyy|| and || · || denotes the || · ||L2(Ω) norm.

Finally, suppose that homogeneous Neumann boundary conditions are
imposed on part of the boundary; these are dealt with as a natural part
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of the variational process and in a correspondingly automatic way by the
finite element method. In the derivation of (6.111) a boundary integral∫

∂Ω
a
∂u

∂n
δu dl (6.127)

is obtained from the application of Gauss’ theorem. This is zero if at all
boundary points either Dirichlet boundary conditions are imposed, giv-
ing δu = 0, or a homogeneous Neumann boundary condition is required,
in which case ∂u/∂n = 0 for the true solution. Thus when we minimise
I(v) given by (6.108), at the minimum not only is (6.20) satisfied at all
interior points, but also ∂u/∂n = 0 at all boundary points which are not
constrained by a Dirichlet boundary condition. This is called a natural
treatment of the Neumann boundary condition.

The finite element method makes direct use of this minimisation prop-
erty. Boundary nodes which are not constrained by a Dirichlet boundary
condition are treated as interior nodes and included in the sum (6.112),
with associated shape functions which are truncated by the boundary.
Thus the computation of the system of equations AU = b can be per-
formed as before, except that its dimension will be increased because of
the additional nodes and the corresponding entries in A and b will be
of non-standard form – see the example in Section 6.9. Moreover, the
error analysis outlined above will continue to apply; the only changes
required are to replace the phrases ‘satisfy the boundary condition’ and
‘vanish on the boundary’ by ‘satisfy the Dirichlet boundary condition’
and ‘vanish on the Dirichlet boundary’.

6.8 Convection–diffusion problems

As we have seen in earlier chapters, the addition of lower order terms to
a diffusion operator can cause difficulties and a loss of performance with
many standard methods. The differential equation (6.24) that we have
already discussed in this chapter still satisfies a maximum principle; this
is because if there were an interior maximum, at that point we would
have ux = uy = 0 so that these terms do not affect the deduction by
contradiction that there can be no such maximum. (Note, moreover, this
would be true even if these terms arose independently of the diffusion
coefficient a.) But the corresponding argument in Lemma 6.1 for the
discrete equation (6.25) breaks down unless the condition (6.27) is satis-
fied, and this can be very restrictive. Fortunately, in the case discussed
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there this difficulty can be avoided by using the finite volume approach
to deriving the difference equations, which yields the scheme (6.29a).

It is in situations where the first order terms do not arise from expand-
ing the diffusion term that the difficulties become much more serious.
The distinction is highlighted by the variational form just considered
in Section 6.7: from the self-adjoint differential operator of (6.20) we
obtain in (6.120) the bilinear form∫

Ω
a∇u · ∇w dx dy (6.128)

which is symmetric in u and w and hence leads to the norm defined
in (6.124). But suppose we have a convection–diffusion equation of the
form

−∇(ε∇u) + V · ∇u = f. (6.129)

Here ε is a (positive) diffusion coefficient, the extra term compared with
equation (6.20) comes from a convective (or advective) velocity V, and
we have introduced a change of notation so as to emphasise the fact that
the diffusion coefficient is often quite small. If the velocity is incompress-
ible, that is ∇ · V = 0, this equation is equivalent to

∇ · (ε∇u − Vu) + f = 0. (6.130)

Either form may occur in practical problems and they correspond to a
steady, two-dimensional version of the problem considered in Section 5.7;
and they raise the same issues. By multiplying the latter equation by
a test function w, integrating over the domain and integrating by parts
we are led to the bilinear form∫

Ω
(ε∇u − Vu) · ∇w dx dy. (6.131)

This is now no longer symmetric in u and w. As a result we do not have
a natural norm in which to measure the accuracy of an approximation,
and the system of equations corresponding to (6.121) no longer gives the
best approximation to u.

We will consider briefly below how finite difference methods should
be derived to restore the maximum principle, and how finite element
methods can come close to restoring the best approximation property.

Finite difference schemes are best formulated through the finite vol-
ume approach, combining the formulas of (6.29) for the diffusion terms
with those derived in Section 4.7 for the convective terms. In the lat-
ter case we found it desirable to use some form of upwinding: thus if
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the velocity component V (x) is positive, in the compass point nota-
tion of (6.30) we replace the east and west fluxes by the following
approximations:-

(
ε
∂u

∂x
− V (x)u

)
e

≈ εe
UE − UP

∆x
− V

(x)
P UP(

ε
∂u

∂x
− V (x)u

)
w

≈ εw
UP − UW

∆x
− V

(x)
W UW . (6.132)

If the velocity V (y) is also positive and we make a similar replacement
for the north and south fluxes, the resultant replacement equation for
(6.30) satisfies all the conditions of Lemma 6.1 and the approximation
satisfies a maximum principle.

We regard this as the simplest upwind choice because, although there
is no time derivative in equation (6.130), the sign of ε requires that if
it were introduced it would be on the right-hand side: thus the char-
acteristics would point from bottom left to top right. The penalty to
be paid for such a simple way of ensuring a maximum principle holds
is that we have only first order accuracy. Convection–diffusion problems
often exhibit steep boundary layers, and this scheme, while ensuring
that a monotone layer retains that property, will often result in a much
thicker layer than the correct result. This effect, and an estimate of its
magnitude, are easily obtained by a modified equation analysis which
will show that the truncation error from the first order approximation
of the convection term will enhance the diffusion term.

In a finite element approximation of (6.130) we will also introduce
some upwinding. This is best done by modifying the test functions that
are used. When, as in (6.121), the same basis functions φj are used
to generate the test functions W as are used in the expansion (6.112)
for the approximation U the result is called a Galerkin method. Use of
more general test functions results in what is called a Petrov–Galerkin
method. We consider useful choices for a convection–diffusion problem,
firstly in one dimension.

The piecewise linear basis function, depicted in Fig. 6.6, is given in
one dimension by

φj(x) =
{

(x − xj−1)/hj x ∈ ej ,

(xj+1 − x)/hj+1 x ∈ ej+1,
(6.133)
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where the element ej of length hj corresponds to the interval (xj−1, xj).
Now suppose we introduce an upwinded test function as

ψj(x) = φj(x) + ασj(x), (6.134)

where we define the modifying σj(·) as

σj(x) =
{

3(x − xj−1)(xj − x)/h2
j x ∈ ej ,

−3(x − xj)(xj+1 − x)/h2
j+1 x ∈ ej+1.

(6.135)

Thus a quadratic bubble is added to φj(·) to the left of xj , if α is positive,
and a similar bubble subtracted on the right. Now let us apply this to
the equation that corresponds to (6.121),∫

[εU ′ − V U ]ψ′
j dx =

∫
fψj dx. (6.136)

For simplicity we assume ε and V are constants. Then, because U ′ is
constant on each interval and σj(·) is zero at each node, the upwinding
does not affect the diffusion term and we get the scheme

−ε [(Uj+1 − Uj)/hj+1 − (Uj − Uj−1)/hj ]

+ V
[ 1
2 (1 − α)(Uj+1 − Uj) + 1

2 (1 + α)(Uj − Uj−1)
]

=
∫

fψj dx.

(6.137)

It is clear that when V is positive taking α > 0 corresponds to upwind-
ing. Moreover, in that case and with a uniform mesh spacing, the scheme
satisfies a maximum principle if

1
2 (1 − α)V ≤ ε/h, i.e., α ≥ 1 − 2ε/V h. (6.138)

Note too that we can write (6.137) on a uniform mesh as

−(ε/h + 1
2αV )δ2

xUj + V ∆0xUj =
∫

fψj dx, (6.139)

which shows how upwinding increases the diffusion. As we have seen
before, when the mesh Péclet number V h/ε is less than 2 we can take
α = 0 and use central differencing for the convective term; but for any
larger value we can choose α, for example by taking the equality sign in
(6.138), to ensure a maximum principle holds.

A wide variety of upwinding ‘bubbles’ can be (and have been) used
to achieve the above results. This provides many possibilities for gen-
eralising the techniques to more dimensions. A good indicator of where
the bubble should be placed is provided by V · ∇φj : indeed, this forms
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the starting point for the very widely used streamline diffusion meth-
ods. We refer the reader to the Bibliographic notes for references to
these and other methods. In these references one will also find that,
in various norms, there are choices of test functions which will yield
approximations that are within a given factor of best possible.

6.9 An example

As an example to conclude this chapter we consider a problem whose
geometry is similar to a problem considered in Chapter 3 – see Fig. 3.6.
We wish to determine the electrical capacity of a conductor consisting
of two long cylinders, the inner one being circular, and the outer one
being square in cross-section. This leads to a two-dimensional problem,
requiring the solution of Laplace’s equation in the region between a
square and a concentric smaller circle. This problem has three lines of
symmetry, and it is clearly enough, and much more efficient, to consider
only one eighth of the region, as shown in Fig. 6.8.

We need to solve Laplace’s equation in the region bounded by the
circular arc AD and the lines AB, BC and CD. The boundary con-
ditions specify that the solution is zero on the circular arc AD, and is
equal to unity on the line BC. The other two lines are symmetry bound-
aries; formally we could specify that the normal derivative vanishes on
these two lines, but a simpler and more accurate approach uses sym-
metry directly, by first ensuring that these boundary lines pass through
mesh points and then treating these points as interior points with non-
standard equations.

When using a finite difference scheme, at a point P on the symmetry
boundary AB we construct a neighbouring mesh point S outside the
boundary. By symmetry, US = UN , so the difference equation corre-
sponding to the point P becomes

cNUN + cSUN + cEUE + cAUA − cP UP = 0. (6.140)

Similarly on the symmetry line CD we construct points outside the
boundary at N ′ and W ′, so that the use of symmetry with

cN ′UN ′ + cS′US′ + cE′UE′ + cW ′UW ′ − cP ′UP ′ = 0 (6.141)

produces

(cW ′ + cS′)US′ + (cE′ + cN ′)UE′ − cP ′UP ′ = 0. (6.142)
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A
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S ′

N ′

P ′W ′ E ′

B

Fig. 6.8. Example: Laplace’s equation.

The standard difference scheme is used at all points except those adjacent
to the circular arc, and there the coefficients are calculated as discussed
in Section 6.4.

When applying the finite element method to this problem, the values
at the nodes on the interior of the edges AB and CD are included in the
minimisation process. Each has an associated shape function which is
truncated at the boundary, and so yields a modified equation. We sup-
pose the diagonals for the triangular elements are drawn in the direction
CD. Then for the typical point P ′ on CD it is clear from the symmetry
that the coefficient cP ′ is halved and cE′ and cS′ are unchanged by the
truncation of the shape functions; thus we get equation (6.142) multi-
plied by a half. At a point P on AB the coefficients cP , cE and cW are
all halved and cN is unchanged; so again we obtain (6.140) multiplied
by a half.

Thus in this case, the finite difference and finite element approaches
give the same system of equations. However, the latter clearly yields a
more general procedure for dealing with Neumann boundary conditions,
which is much more straightforward than that described in Section 6.4.
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Fig. 6.9. Solution in one quarter of the region.

A solution obtained with a unit square and a circle of radius 0.4 is
illustrated in Fig. 6.9. The solution has been reflected in the diagonal
line for ease of visualisation.

The result required for this problem is the flux of the electric field out
of the boundary. This is given by the flux either across the circular arc
AD, or across the straight line BC. The latter is obviously easier to
calculate accurately; as we are only considering one eighth of the region,
we therefore need to compute

g = 8
∫

BC

∂u

∂x
dy. (6.143)

Using a central difference, this is approximated at the point (xr, ys) by

Ur+1,s − Ur−1,s

2∆x

with one of the points being outside the boundary. Using the standard
five-point approximation to Laplace’s equation at the boundary point
we can eliminate Ur+1,s to give the approximation

4Ur,s − 2Ur−1,s − Ur,s+1 − Ur,s−1

2∆x
.
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Table 6.1. Calculation of flux for various ∆x.

∆x g

0.1000 6.33901
0.0500 6.33495
0.0250 6.33396
0.0125 6.33370

With this approximation to the derivative, except at the point C where
∂u/∂n is assumed to be zero, the required flux is easily calculated from
(6.143) by the use of the trapezium rule.

It is left as an exercise for the reader to check that the same formula
would be obtained from a finite element integral of the form∫

Ω
[∇U · ∇W ] dx dy, (6.144)

evaluated in the same way as the integrals in (6.116), where W is the
piecewise linear function which has unit value on BC and is zero on the
vertical line through E.

Numerical results for various mesh sizes are shown in Table 6.1. These
clearly indicate an error of order (∆x)2, with a correct value of 6.33362.
In fact the numerical results are fitted to four decimal places by the
expression

6.33362 + 0.53(∆x)2.

Bibliographic notes and recommended reading

An analysis of methods for elliptic problems with general boundary con-
ditions was given in the classic text by Collatz (1966) already referred
to. The idea of the construction of difference equations by integrating
over small elements of area seems to have been widely publicised first in
Varga (1974).

The use of a maximum principle in the error analysis of finite dif-
ference methods was developed by Bramble and Hubbard in a series of
papers beginning in 1964, a selection of which are referenced in the bib-
liography. For a general account of the use of maximum principles for
elliptic equations, see the text of Protter and Weinberger (1967).

Our brief introduction to finite element methods does scant justice
to the impact that they have had on the solution of elliptic problems,
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which has been covered in many books – see, for example, Strang and
Fix (1973), Ciarlet (1978), and Brenner and Scott (2002). The many
further aspects covered in such books include higher order shape func-
tions, quadrilateral and curved elements and error analysis in various
norms.

A key feature of finite element methods is the possibility of locally
refining the mesh or introducing higher order shape functions in selected
elements. Such local refinement in selected elements, in which the error
is worse than the average, is based on an a posteriori error estimate, that
is an estimate of the error derived from the computed approximation.
A simple introduction to these ideas can be found in Süli and Mayers
(2003).

The special difficulties encountered in convection–diffusion problems
(both with finite volume and finite element methods) can be found in
the books by Roos et al. (1996) and Morton (1996).

Exercises

6.1 To obtain a numerical solution of Poisson’s equation

uxx + uyy + f(x, y) = 0

on the triangle bounded by the lines y = 0, y = 2 + 2x and
y = 2 − 2x, with Dirichlet conditions given at all points on the
boundary, we use a uniform square grid of size ∆x = ∆y = 1/N .
Find the leading terms in the truncation error of the standard
five-point difference schemes at internal points, and at points
adjacent to the boundary. Show how to choose the constant
C so that a maximum principle may be applied to the mesh
function u(xi, yj) − Ui,j + Cy2

j . Deduce that the error in the
solution is at least first order in the mesh size.

The necessity for a special difference scheme near the bound-
ary could be avoided by using a rectangular mesh with ∆y =
2∆x. Would this give a real advantage over the previous
method?

6.2 We require the solution of the equation

∂

∂x

(
a
∂u

∂x

)
+

∂

∂y

(
a
∂u

∂y

)
+ f(x, y) = 0



Exercises 233

in the unit square, given Dirichlet conditions at all points on
the boundary. The difference scheme

LhU :=
δx(aδxU)

(∆x)2
+

δy(aδyU)
(∆y)2

= −f

is used, with a uniform grid. Suppose that a is a positive mono-
tonic increasing function of x only; show how to choose the
constant C so that the comparison function Φ = C(x2 + y2)
satisfies the conditions of Theorem 6.1. Extend this result to
the cases where (i) a is a positive monotonic decreasing func-
tion of x only, and (ii) a(x, y) is positive, monotonic increasing
as a function of x for fixed y, and monotonic decreasing as a
function of y for fixed x.

6.3 Construct explicitly the system of linear equations obtained
from approximating Poisson’s equation uxx + uyy + f(x, y) = 0
in the region defined by x ≥ 0, y ≥ 0, x2 + y ≤ 1. Use a
uniform square grid of size 1

3 . The boundary conditions are
u(x, 0) = p(x), ux(0, y) = q(y), and u(x, 1 − x2) = r(x), where
p, q, r and f are given functions.

6.4 The central difference approximation is used on a uniform mesh
of size ∆x = a/(M + 1), ∆y = b/(N + 1) to solve the equation

uxx + uyy − Ku + f(x, y) = 0,

on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b, where K is a positive
constant, and f is a given function; Dirichlet conditions are
given at all points on the boundary.

Write down the leading terms in the truncation error. Derive
a maximum principle; show that by suitable choice of the con-
stants C and D the maximum principle may be applied to the
mesh function Ur,s −u(xr, ys)+Cx2

r +D to give a bound on the
error of the numerical solution.

6.5 The function u(x, y) satisfies the equation uxx+uyy+f(x, y) = 0
in the sector of the circle defined by 0 ≤ x2 + y2 ≤ 1, 0 ≤
y ≤ x. A Neumann condition is given on the boundary y = x,
and Dirichlet conditions on the rest of the boundary. Using a
uniform square mesh of size ∆x = ∆y = 1

3 leads to a system
of linear equations of the the form Au = b; construct explicitly
the elements of the matrix A.
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Transform the problem into polar co-ordinates, and construct
the matrix of a similar system of linear equations.

6.6 Suppose that u is the solution of uxx+uyy = f in the unit square
with a Neumann condition ux = g on x = 1 and Dirichlet condi-
tions on the other three sides. A numerical solution is obtained
from the usual central difference approximation on a uniform
square mesh, with the boundary condition approximated by

UJ+1,s − UJ−1,s

2∆x
= gs.

Show that

Ur,s = u(xr, ys) + (∆x)2ψ(xr, ys) + O
(
(∆x)3),

where ψ satisfies

ψxx + ψyy = − 1
12 (uxxxx + uyyyy)

and give the boundary conditions satisfied by ψ(x, y).
Obtain a similar result for the case where the grid is uniform

and rectangular, with ∆y = 1
2∆x.

6.7 The θ-method is used to solve the heat equation ut = uxx, with
Dirichlet boundary conditions at x = 0 and x = 1; suppose that
we are given the bound on the truncation error

|Tn+1/2
j | ≤ C(1 − α∆t)n, n ≥ 0, 0 < j < J,

where α and C are positive constants such that α∆t < 1 and
θα∆t < 1

2 − 1
8α. Use a comparison function of the form

(1 − α∆t)nxj(1 − xj)

to obtain the error bound

|en
j | ≤ K(1 − α∆t)nxj(1 − xj),

and express the constant K in terms of C.
Repeat the analysis with sin πxj replacing xj(1 − xj).
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Iterative solution of linear algebraic
equations

In Chapter 6 we have discussed alternative methods for approximating
the solution of linear elliptic equations, the finite difference method, using
either the differential equation or an integral form, and the finite element
method. Each of these methods gives rise to a system of linear algebraic
equations, which may be very large. A two-dimensional problem may lead
to a system of several thousand unknowns, and three-dimensional prob-
lems involving several hundred thousand unknowns are common in real
engineering situations. The solution of such a system is a major problem
in itself and has been the subject of much detailed study. As we have
seen above, the system of equations produced by a discretisation has
many special features and an efficient solution procedure must exploit
these. The most obvious property of the system is that it is extremely
sparse. Even when there are many thousand unknowns, each equation
will involve one unknown and the unknowns at its immediate neighbours.
In particular, if we write the equations in the conventional notation

Ax = b, (7.1)

where A is an N × N matrix, b the given data vector and x the vector
of N unknown interior mesh values, there is an implied one-dimensional
ordering of these values which is somewhat unnatural and obscures the
important property that only immediate neighbours are involved. Each
row of the matrix A involves only a very small number of non-zero
elements, commonly five or seven; moreover in many problems a suitable
ordering of the unknowns will lead to a matrix in which these non-zero
elements occur in a regular pattern. In devising efficient methods for
the solution of the system these structural properties will be important,
as well as the properties of the signs of the elements which we have
emphasised in Chapter 6.

235
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The most obvious method of solving (7.1) is direct Gaussian elimi-
nation. For one-dimensional problems ordered in a natural way this is
very efficient: a second order equation approximated by a second order
accurate method leads to a tridiagonal system of equations and the very
straightforward Thomas algorithm presented in Section 2.9 is equivalent
to Gaussian elimination without pivoting; even if a higher order differ-
ence scheme were used, so that more than three neighbouring points
were involved in each difference equation, the system of equations would
be ‘banded’ rather than tridiagonal (that is Alm �= 0 for only small val-
ues of |l −m|) and direct elimination in the natural order would be very
efficient.

However, in two and three dimensions any ordering will give a very
much larger bandwidth. Consider, for example, the solution of Poisson’s
equation on a rectangular region, covered with a uniform rectangular
mesh, so that the unknown interior values are Ur,s for r = 1, 2, . . . , Jx

and s = 1, 2, . . . , Jy. We number these points in the standard or natural
ordering; starting at the bottom, numbering within each row from left
to right, and moving up the rows in order. The unknown Ur,s will thus
be number k = r+Jx(s−1) in this sequence. Then a general equation of
the system will involve Ur,s and its four neighbours on the mesh, which
will be unknowns number k, k + 1, k − 1, k + Jx and k − Jx. The non-
zero elements in the matrix therefore lie within a band centred on the
diagonal and of width 2Jx + 1. During the elimination process for the
solution of the system, with no pivoting, the elements outside this band
will remain zero, but the elements within the band will fill up with non-
zero elements. The total number of unknowns is JxJy, and the solution
process will require of order JxJy(2Jx+1)2 arithmetical operations. This
is of course very much less than would be required if the matrix were full,
of order (JxJy)3 operations, but is still considerable. On a square mesh
of size h the number of arithmetical operations required is of order h−4

for a two-dimensional problem, and of order h−7 for a three-dimensional
problem. In two dimensions, the flexibility of the elimination process
in dealing with arbitrary regions and meshes has made it the preferred
method for finite element equations, but its dominance here is now being
challenged by iterative methods and it is widely recognised that these
will be of increasing importance in three-dimensional problems.

When the direct elimination method is applied to a sparse matrix the
amount by which the matrix fills up with non-zero elements depends
on the ordering of the rows of the matrix. The study of this effect is
well developed, and the natural ordering is by no means the best for
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our model problem. The use of an optimum ordering strategy makes it
possible to use direct elimination for quite large problems; the solution of
sparse systems by direct methods is described in detail in Duff, Erisman
and Reid (1986).

Iterative methods make maximum use of the structure of the matrix
A. They underwent very rapid development in the 1950’s as part of the
effort in the infant nuclear energy industry to develop efficient methods
for modelling neutron transport. We will devote the first part of this
chapter to giving a somewhat simplified account of these methods and
their theory; then we go on to describe in Sections 7.6 and 7.7 much more
efficient modern methods, which make some use of these basic iterative
processes.

7.1 Basic iterative schemes in explicit form

Suppose we write the familiar five-point scheme on a two-dimensional
mesh in the form

c̃P UP − [c̃EUE + c̃W UW + c̃NUN + c̃SUS ] = bP (7.2)

where UP , UE , . . . , US are unknown (interior) values of U and bP repre-
sents all the known data, including boundary values given by Dirichlet
boundary conditions. Thus if, for example, UN is a known value on the
boundary this term would be transferred to the right-hand side of (7.2);
it would not appear on the left and c̃N would be zero in (7.2). It is
because of this difference in convention from that in Chapter 6 that we
have used the coefficients c̃P etc. here rather than cP ; this distinction
corresponds to what happens in the practical implementation of finite
element methods, where the matrix elements Aij as in (6.116) are first
calculated without reference to the boundary conditions that are to be
applied, and then those corresponding to known values Uj are trans-
ferred to the right-hand side. The present convention is also closer to
that used for evolutionary problems in Chapter 5.

The iteration starts from an initial estimate of all the unknowns, which
we denote by U

(0)
P , U

(0)
E , . . . , U

(0)
S . The simplest iterative procedure, first

used by Jacobi in 1844 and known as the Jacobi method or the method of
simultaneous displacements, gives the successive iterates U

(n)
P defined by

U
(n+1)
P = (1/c̃P )[bP + c̃EU

(n)
E + c̃W U

(n)
W + c̃NU

(n)
N + c̃SU

(n)
S ],

n = 0, 1, 2, . . . . (7.3)
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Clearly the algorithm is independent of the ordering of the unknowns,
and it is admirably suited to modern parallel computers. Also if the
coefficients are all positive with c̃P at least as great as the sum of the
rest, as in Section 6.3, subtracting (1/c̃P ) of (7.2) from (7.3) gives

|U (n+1)
P − UP | ≤ max

E,W,N,S
{|U (n)

Q − UQ|}. (7.4)

This is not quite sufficient to show that the iteration converges, as that
would require at least a strict inequality. However it does at least show
that the sequence does not diverge, and indicates the importance of this
property of the coefficients.

On a serial computer, however, the new values of the unknowns U
(n+1)
P

are calculated from (7.3) in some particular order and then it would seem
advantageous to use the latest available value for UE , UW , . . . , US : one
might expect that this will speed convergence as well as mean that only
one value at each mesh point needs to be held in the computer memory
at any one time. If we use the natural order mentioned above, then (7.3)
is replaced by

U
(n+1)
P = (1/c̃P )[bP + c̃EU

(n)
E + c̃W U

(n+1)
W + c̃NU

(n)
N + c̃SU

(n+1)
S ],

n = 0, 1, 2, . . . . (7.5)

Clearly, under the same conditions we will again have (7.4). This iter-
ative method is known as the method of successive displacements or
the Gauss–Seidel method after Gauss, who was reported by Gerling in
1843 to have used it, and Seidel who published it independently in
1874: sometimes however it is called after Liebmann who used it
in 1918.

Of course in those early days these two procedures were carried out
by hand without the aid of electronic computers. Very often the regular
application of (7.3) or (7.5) in successive iterations was varied to increase
the convergence rate: the equation residuals were usually monitored and
possibly the largest chosen to determine which UP should be changed
next. Such so-called relaxation methods reached a high state of devel-
opment in the l940’s here at Oxford under the leadership of Southwell.
One result was a modification of the Gauss–Seidel procedure which is
now called successive over-relaxation or the SOR method. Taking the
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new value of UP to be a weighted average of the old value and the value
given by (7.5) we obtain, using weights ω and (1 − ω),

U
(n+1)
P = (1 − ω)U (n)

P + (ω/c̃P )[bP + c̃EU
(n)
E + c̃W U

(n+1)
W

+c̃NU
(n)
N + c̃SU

(n+1)
S ]

= U
(n)
P + (ω/c̃P )[bP + c̃EU

(n)
E + c̃W U

(n+1)
W

+ c̃NU
(n)
N + c̃SU

(n+1)
S − c̃P U

(n)
P ]

= U
(n)
P − (ω/c̃P )r(n)

P , (7.6)

where r
(n)
P is the residual at point P ; this residual is the difference between

the left- and right-hand sides of the equation, calculated using the most
recent values of the unknowns. Another way of expressing the same proce-
dure is tocalculate thecorrectionwhichwouldbegivenbytheGauss–Seidel
iteration (7.5), and then multiply this correction by ω before adding to the
previous value. The term over-relaxation then implies that ω > 1.

In the last form (7.6) we can also see immediately the similarity with
schemes for solving the corresponding parabolic equation: if the Jacobi
method had been used the identification with the usual explicit scheme
would have been exact. We could identify ω with 4∆t/(∆x)2 and would
expect convergence to be best with the largest value of ω consistent with
stability. In the Jacobi case this would be ω = 1: but we could expect
this to be increased in (7.6) because of the greater implicitness – hence
the term over-relaxation corresponding to taking ω > 1; ω < 1 is called
under-relaxation and ω = 1 corresponds to the Gauss–Seidel iteration.
Notice that in this method the over-relaxation parameter ω is taken to
be constant. The same value is used, not only for each unknown, but
also for each iteration.

7.2 Matrix form of iteration methods and their convergence

In the notation of (7.1) we write the matrix of the system of equations
in the form

A = D − L − U (7.7)

where D is a diagonal matrix of strictly positive elements (correspond-
ing to the coefficients c̃P ), L is strictly lower triangular and U is strictly
upper triangular. The matrices L and U are written with the negative
sign because in the problems which arose in Chapter 6 the matrix
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elements off the diagonal are always negative or zero. The ordering
of the unknowns completely determines which coefficients of the differ-
ence equations appears in L and which in U . Now we can write the
three schemes introduced earlier as:

Jacobi:

x(n+1) = D−1[b + (L + U)x(n)] (7.8)

Gauss–Seidel:

Dx(n+1) = b + Lx(n+1) + Ux(n), (7.9a)

i.e.,

x(n+1) = (D − L)−1[b + Ux(n)] (7.9b)

or

x(n+1) = (I − D−1L)−1[D−1b + D−1Ux(n)] (7.9c)

SOR:

Dx(n+1) = (1 − ω)Dx(n) + ω[b + Lx(n+1) + Ux(n)], (7.10a)

i.e.,

x(n+1) = (D − ωL)−1[ωb + ωUx(n) + (1 − ω)Dx(n)] (7.10b)

or

x(n+1) = (I − ωD−1L)−1[ωD−1b + {ωD−1U + (1 − ω)I}x(n)].
(7.10c)

These forms will be useful for subsequent analysis but the earlier explicit
forms indicate more clearly how each procedure is actually carried out.

Each of the above iterative procedures can be written

x(n+1) = Gx(n) + c (7.11)

where the matrix G is called the iteration matrix for the method. The
iteration matrix G can be readily obtained from (7.8), (7.9) or (7.10)
and the solution x of the system satisfies

(I − G)x = c. (7.12)

Then if e(n) := x(n) − x is the error after n iterations,

e(n+1) = Ge(n) = G2e(n−1) = . . . = Gn+1e(0). (7.13)
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Lemma 7.1 The iteration (7.11)–(7.13) converges as n → ∞ for all
starting vectors x if and only if

ρ(G) < 1, (7.14)

where ρ(G) is the spectral radius of G, i.e. ρ(G) = max
i

|λi(G)|. The

asymptotic convergence rate is − ln ρ.

Proof For convergence from all data it is necessary and sufficient that
‖Gn‖ → 0 as n → ∞. Suppose first that the matrix G has a full set of
eigenvectors, so there exists a non-singular matrix S such that

G = SΛS−1 (7.15)

where Λ is the diagonal matrix whose diagonal elements are the eigen-
values {λi} of G. Then

Gn = S Λn S−1. (7.16)

Now the matrix Λn is also a diagonal matrix, with diagonal elements
λn

i , and these tend to zero if and only if each |λi| < 1.
If G does not have a full set of eigenvectors it must be written in a

form similar to (7.15), but with Λ replaced by J , the Jordan form of G.
The argument is then essentially similar.

The rate of convergence, defined by R = − ln ρ, indicates the number
of iterations required to obtain a required accuracy. For example, to
reduce the error by a factor of 10p, the number of iterations required
will be approximately (p/R) ln 10. Strictly speaking, R is called the
asymptotic rate of convergence because it gives an accurate indication
of the number of required iterations only for large n; in the early stages
of the iteration the error reduction may be faster or slower than that
indicated. This follows from (7.13) and (7.15) because

‖e(n)‖ ≤ ‖Gn‖ ‖e(0)‖ ≤ ‖S‖ ‖S−1‖ ‖Λ‖n‖e(0)‖, (7.17a)

i.e., (
‖e(n)‖/‖e(0)‖

)1/n

≤
(
‖S‖ ‖S−1‖

)1/n
ρ; (7.17b)

while for the eigenvector corresponding to the largest eigenvalue the
error reduction is exactly ρ.

It is now useful to relate more formally the matrix concepts of diagonal
dominance and the maximum principle used in the analysis of difference
schemes in Chapter 6. A matrix is said to be diagonally dominant if, in



242 Iterative solution of linear algebraic equations

each row, the diagonal element is at least as large in magnitude as the
sum of the moduli of the off-diagonal elements; that is,

|All| ≥
∑
m�=l

|Alm| ∀ l, (7.18)

which is implied by the condition (6.44) on a difference scheme. It is said
to be strictly diagonally dominant if strict inequality holds for all l in
(7.18). It is then quite easy to show that the Jacobi iteration converges
for a strictly diagonally dominant matrix. However, this is not a very
helpful result, for our matrices almost never satisfy this condition.

A matrix is said to be irreducibly diagonally dominant if (7.18) holds,
with strict inequality for at least one value of l, and if it is irreducible.
The concept of irreducibility is closely related to the property of a set
of mesh points being connected as in Chapter 6. Rows l and m of
the matrix are said to be connected if the element Alm is non-zero.
The matrix is then irreducible if, for any two rows l1 and lk, there is a
sequence l1, l2, . . . , lk such that each row of the sequence is connected to
the next. Evidently a difference scheme on a set of mesh points which
is connected leads to an irreducible matrix; moreover the condition that
we must have strict inequality for at least one row corresponds to our
earlier condition that a Dirichlet condition must be given on at least part
of the boundary. These conditions are thus contained in those required
in Chapter 6 for a maximum principle to hold.

Theorem 7.1 The Jacobi iteration converges for an irreducibly diago-
nally dominant matrix.

Proof Suppose that we denote by µ any eigenvalue of the Jacobi iteration
matrix, with v the corresponding eigenvector; then we have to show that
|µ| < 1, the strict inequality being essential. We have

D−1(L + U)v = µv, (7.19a)

or

(µD − L − U)v = 0. (7.19b)

We use a method of proof similar to that used in Lemma 6.1 to establish
a maximum principle. Thus suppose |µ| = 1 and vk is an element of the
eigenvector v with the largest magnitude. Then we have

µAkkvk = −
∑
m�=k

Akmvm, (7.20)
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from which we deduce

|µ| ≤
∑
m�=k

|Akm|
|Akk|

|vm|
|vk| . (7.21)

Thus if |µ| = 1 we must have both equality in the diagonal dominance
relation (7.18) for l = k, and also |vm| = |vk| for all rows m which are
connected to k. By repeating the argument with each m replacing k, and
then continuing this process recursively, by the irreducibility hypothesis
we cover all rows. But inequality must hold for at least one value of l in
(7.18); so the assumption that |µ| = 1 leads to a contradiction.

We can also give a bound on the values of the relaxation parameter ω

in the SOR method.

Theorem 7.2 The SOR method does not converge unless 0 < ω < 2.

Proof The eigenvalues of the SOR iteration matrix satisfy

det
[
(D − ωL)−1(ωU + (1 − ω)D) − λI

]
= 0 (7.22a)

which may be written

det [λ(D − ωL) − ωU − (1 − ω)D] = 0 (7.22b)

or

det
[
(λ + ω − 1)I − λωD−1L − ωD−1U

]
= 0. (7.22c)

If we expand this determinant we shall obtain a polynomial in λ, and
the leading term and constant term can only come from the diagonal
elements. The polynomial has the form

λN + · · · + (ω − 1)N = 0, (7.23)

where N is the order of the matrix. Hence the product of the eigenval-
ues is (1 − ω)N , so that if |1 − ω| ≥ 1 at least one of the eigenvalues
must satisfy |λ| ≥ 1, and the iteration will not converge. Note that
this result makes no assumptions about the matrix, which can be quite
general.

It is worth emphasising here that we are using the concept of con-
vergence in this chapter in an entirely different sense from that used in
Chapters 2–5, and also that in Chapter 6. In all of those chapters we were
concerned with the convergence of U to u as the mesh is refined: at each
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stage of the convergent process we had a finite-dimensional approxima-
tion, but the dimension increased without limit as the mesh was refined.
Here we have a fixed mesh and a strictly finite-dimensional algebraic
problem which we are solving by an iterative process: only when this
has converged do we actually have the approximation U to u on the
mesh. Refining the mesh to get U to converge to u introduces further
algebraic problems which could also be solved by iteration. Thus we are
looking at convergent processes set within a larger scheme of convergent
processes. The distinction is important to make because of the similar-
ity of some of the iterative methods to the evolutionary schemes used to
solve parabolic problems, as already remarked. This is reflected in the
notation U (n) etc.: thus here we have n → ∞ with ∆x fixed; in earlier
chapters we had ∆t, ∆x → 0 and as a consequence n → ∞.

7.3 Fourier analysis of convergence

For particular model problems we can use Fourier analysis to exam-
ine more closely the rate of convergence of various iterative methods.
Suppose we are solving the five-point difference scheme approximating
∇2u+f = 0 on the unit square with Dirichlet boundary conditions. With
a square mesh of size ∆x where J∆x = 1, we have N = (J−1)2 unknown
interior values. Their errors can be expanded in terms of Fourier modes,
just the sine modes in the case of Dirichlet boundary conditions consid-
ered here; at the mesh point (xr, ys) we have

e(n)
r,s =

∑
kx,ky

a(n)(kx, ky) sin kxxr sin kyys (7.24a)

where

kx, ky = π, 2π, . . . , (J − 1)π. (7.24b)

For the Jacobi method of (7.3), in which c̃P = 4 and c̃E = c̃W = c̃N =
c̃S = 1, it is clear from the trigonometric formula for sinA + sin B that
we have

e(n+1)
r,s =

∑
kx,ky

a(n)(kx, ky) 1
4 (2 cos kx∆x + 2 cos ky∆x) sin kxxr sin kyys.

(7.25)
Hence sin kxxr sin kyys is an eigenvector of the Jacobi iteration matrix
GJ := D−1(L + U) with the eigenvalue

µJ(kx, ky) = 1
2 (cos kx∆x + cos ky∆x). (7.26)
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The choices given by (7.24b) give all of the eigenvectors; and hence the
largest values of |µJ | are obtained from the extreme values kx = ky = π

or (J − 1)π. These give µJ = ± cos π∆x, so that

max |µJ | = cos π∆x ∼ 1 − 1
2 (π∆x)2 + · · · . (7.27)

Clearly this implies very slow convergence for small values of ∆x,
and it is the lowest frequency mode, sin jπ∆x in each direction, which
converges most slowly: this also occurs for the highest frequency which
has the form sin j(J −1)π∆x = (−1)j−1 sin jπ∆x. However in the latter
case we have µJ ∼ −1 and such an error mode could be easily damped
by averaging two successive iterations.

The rate of convergence is

− ln |µJ | = − ln(cos π∆x)

∼ − ln
(
1 − 1

2 (π∆x)2
)

∼ 1
2 (π∆x)2. (7.28)

With a mesh size of ∆x = 0.02, for example, this gives a value of 0.00197,
so that 1166 iterations are required to reduce the error by a factor of 10.
If the original estimate had errors of order 1 and we wish to find the
solution to six decimal places we should therefore require nearly 7000
iterations. It is therefore important to investigate other methods, which
may converge faster.

The situation with the SOR iteration (7.6) is, however, rather more
complicated because sin kxxr sin kyys is not an eigenvector of the itera-
tion matrix. As with the stability analysis, it is more convenient to work
with the complex form; so suppose we look for errors of the form

en
r,s = [g(ξ, η)]nei(ξr+ηs) (7.29)

where ξ = kx∆x, η = ky∆y. Substitution into (7.6) shows that this gives
an eigenvector provided that

g(ξ, η) =
1 − ω + 1

4ω(eiξ + eiη)
1 − 1

4ω(e−iξ + e−iη)
. (7.30)

We see that g(±ξ,±η) �= g(ξ, η), showing again why sin ξr sin ηs is not
an eigenvector of the iteration matrix.

However, the situation can be rescued by tilting the space–time mesh
as originally proposed by Garabedian and followed up subsequently by
LeVeque and Trefethen.1 We introduce a new index and a form for the
1 LeVeque, R.J. and Trefethen, L.N. (1988), Fourier analysis of the SOR iteration,

IMA J. Numer. Anal. 8(3), 273–9.
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eigenvector

ν = 2n + r + s, (7.31a)

eν
r,s = [g(ξ, η)]νei(ξr+ηs). (7.31b)

In terms of the new index the error equation corresponding to (7.6)
involves three levels, taking the form

eν+2
r,s = (1 − ω)eν

r,s + 1
4ω[eν+1

r+1,s + eν+1
r−1,s + eν+1

r,s−1 + eν+1
r,s+1]. (7.32)

Thus substitution of (7.31b) gives a quadratic for g(ξ, η),

g2 = (1 − ω) + 1
2ω[cos ξ + cos η]g, (7.33)

in which the coefficients are even functions of ξ and η. The eigenvectors
of the iteration matrix are therefore of the form

[g(ξ, η)]r+s sin ξr sin ηs (7.34)

and the largest eigenvalue is

max |λSOR| = max
ξ,η

max{|g+(ξ, η)|2, |g−(ξ, η)|2} (7.35)

where g+ and g− are the roots of (7.33).
It is now clear that this result could have been obtained directly by

examining the behaviour of errors of the form

λn[g(ξ, η)]r+s sin ξr sin ηs. (7.36)

Substituting into (7.6) shows that we require

λ sin ξr sin ηs = 1 − ω + 1
4ω[g sin ξ(r + 1) sin ηs + (λ/g) sin ξ(r − 1) sin ηs

+ g sin ξr sin η(s + 1) + (λ/g) sin ξr sin η(s − 1)]. (7.37)

We then obtain the correct trigonometric sums provided that g = λ/g,
and in that case we obtain an eigenvector with eigenvalue given by

λ = 1 − ω + 1
2ω(cos ξ + cos η)λ1/2 (7.38)

in agreement with (7.33).
The Gauss–Seidel method, in which ω = 1, is a special case; for then

one of the roots of (7.33) is g = 0, so there is a multiple zero eigenvalue
and the matrix does not have a full set of eigenvectors. However we can
take the limit of (7.38) as ω → 1 and deduce that the eigenvalues of the
Gauss–Seidel iteration matrix are zero and the squares of the eigenvalues
of the Jacobi iteration matrix. This shows that the Gauss–Seidel method
converges exactly twice as fast as the Jacobi method.
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Fig. 7.1. The spectral radius ρ(Gω) as a function of ω for
µ0 = 0.99.

More generally, for ω �= 1, it is easy to confirm from (7.33) that
0 < ω < 2 is necessary for |g±| < 1. Furthermore, by considering the
dependence of |g±| on µ = 1

2 (cos ξ +cos η), it is readily checked that the
maximum value is obtained with µ0 = cos π∆x; and then from how this
maximum varies with ω we can find the optimal SOR parameter.

The eigenvalues of the SOR matrix satisfy (7.38). For a fixed value of
ω the largest eigenvalue corresponds to 1

2 (cos ξ +cos η) = µ0 = cos π∆x.
Equation (7.38) can then be written

λ2 + 2λ(ω − 1 − 1
2µ2

0ω
2) + (ω − 1)2 = 0. (7.39)

It is clear that when µ2
0ω

2 ≤ 4(ω − 1), which can only occur for ω > 1,
they form a complex conjugate pair with absolute values equal to ω − 1;
otherwise, we see from (7.39) that the sum of the roots is positive and
therefore they are both positive. We now easily obtain

λSOR = 1 − ω + 1
2µ2

0ω
2

+ µ0ω(1 − ω + 1
4µ2

0ω
2)1/2 if ω < 1 + 1

4µ2
0ω

2, (7.40a)

λSOR = ω − 1 if ω ≥ 1 + 1
4µ2

0ω
2. (7.40b)

This behaviour is plotted in Fig. 7.1 for a typical value of µ0. Since the
expression (7.40a) decreases with ω and that in (7.40b) increases, the
optimum value occurs when ω = 1 + 1

4µ2
0ω

2, giving

ω =
2
µ2

0

(
1 − √

(1 − µ2
0)

)
. (7.41)
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Inserting the value of µ0 we obtain

ωopt =
2

1 + sin π∆x
∼ 2 − 2π∆x,

ρ(Gω)opt =
1 − sin π∆x

1 + sin π∆x
∼ 1 − 2π∆x. (7.42)

The asymptotic rate of convergence, given by − ln ρ(Gω), is therefore
approximately 2π∆x. With ∆x = 0.02 this is 0.1256, so that only
18 iterations are need to reduce an error by a factor of 10; this compares
with 1166 iterations required for Jacobi iteration, as we found in
Section 7.3.

7.4 Application to an example

The use of the optimum relaxation parameter gives a very significant
improvement in the rate of convergence. In our model problem we could
calculate the eigenvalues of the Jacobi matrix, and thus find the opti-
mum parameter. In a more general problem this would not be possible,
and it is necessary to make some sensible choice of ω. In Fig. 7.2 we
show the rate of convergence, for the model problem, as a function of ω

over the range 1 < ω < 2. It is clear from this fairly typical example that
the optimum is quite sharply defined, and any deviation from it unfor-
tunately leads to a substantial reduction of the rate of convergence.

−ln ρ

0.05

0.1

0.15

0.2

1.0 2.0ωopt

Fig. 7.2. Rate of convergence of the SOR iteration as a func-
tion of ω.
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However, it does also show that it is better to overestimate than to
underestimate the parameter. When ω > ωopt the eigenvalue is complex
and has modulus ω − 1; the slope of the curve in Fig. 7.2 is close to −1.
But on the left of the critical value the slope tends to infinity, and a
small deviation in ω has a greater effect.

As an example of the behaviour of the SOR iteration we apply the
method to the solution of the linear equations arising from the problem
discussed at the end of Chapter 6. Here we used the standard five-
point difference scheme to approximate Laplace’s equation on a uniform
square mesh. The Fourier analysis of Section 7.3 does not strictly apply,
since the eigenvector in (7.24a) does not satisfy the correct conditions
on the curved boundary. We might expect the effect of the boundary to
be fairly small, and therefore that the choice (7.42) for the parameter
would not be exactly optimal, but would give good convergence.

This calculation used the interval ∆x = 0.025, and the radius of the
circular boundary is 0.4. The iterations started from an initial vector
which is zero at all internal points. Fig. 7.3 shows the behaviour of
the error as the iteration proceeds, for various choices of the relaxation
parameter. To determine the error at each stage we have first carried
out a large number of iterations so that the sequence has converged to
the true solution {Ur,s} of the algebraic system. After each iteration the
error is then measured by E(n), where

E(n) =

[
1
N

∑
r,s

(U (n)
r,s − Ur,s)2

]1/2

. (7.43)

Iterations
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Fig. 7.3. Convergence of SOR iteration.
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The graphs show E(n) as a function of n.The graph shows very clearly
the great improvement in convergence over Gauss–Seidel iteration, with
ω = 1. The optimum choice of parameter predicted by (7.42), with ∆x =
0.025, is 1.8545, and this gives good convergence. However, we find that
the slightly different value ω = 1.88 gives a significant improvement.

Our use of the spectral radius of the iteration matrix as a measure of
the rate of convergence does not always give an exact picture of what
actually happens. If we expand the error in terms of the eigenvec-
tors of the matrix, as in (7.24a), each contribution is multiplied by the
corresponding eigenvalue at each iteration. If the largest eigenvalue is
significantly larger than all the others, its contribution will soon come to
dominate the behaviour of the error. But in practical problems it is much
more likely that there will be a number of eigenvalues with nearly the
same modulus, and all of them will be making a significant contribution
to the error. With a choice of ω close to the optimum, these eigenvalues
are likely to be complex, leading to the sort of erratic behaviour shown
in Fig. 7.3. For the smaller values of ω most of the eigenvalues are real,
and the error behaves more smoothly.

7.5 Extensions and related iterative methods

The convergence of the methods treated in the preceding sections can
often be improved, at the expense of some additional computation, by
partitioning the matrix A into blocks . Suppose that A is partitioned in
the form

A =




D1 −U12 −U13 . . .

−L21 D2 −U23 . . .

−L31 −L32 D3 . . .

. . . . . . . . . . . .


 , (7.44)

where the matrices Dk are square, but need not all be the same size.
The block SOR method is then defined as in (7.10a), but now D, L and
U are the matrices

D =




D1 0 0 . . .

0 D2 0 . . .

0 0 D3 . . .

. . . . . . . . . . . .


 , (7.45)
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L =




0 0 0 . . .

L21 0 0 . . .

L31 L32 0 . . .

. . . . . . . . . . . .


 , (7.46)

U =




0 U12 U13 . . .

0 0 U23 . . .

0 0 0 . . .

. . . . . . . . . . . .


 . (7.47)

The practical difference from the point iterative methods discussed pre-
viously is that now the calculation of xn+1 from (7.10a) requires the
solution of a set of separate linear systems with matrices D1, D2, D3, . . ..
In our model problem the matrix A is of order (J − 1)2; numbering the
unknowns in the natural order we can partition A into blocks where each
Dk is a (J −1)× (J −1) matrix. All the Llm and Ulm matrices are diag-
onal if |l − m| = 1 and otherwise are zero. The diagonal block matrices
Dk are tridiagonal, so the calculation of xn+1 requires the solution of
J − 1 systems of linear equations, each tridiagonal of order J − 1; each
of these systems can be efficiently solved by the Thomas algorithm.

We might also number the unknowns within each column from bottom
to top, moving along the columns in order. Partitioning the new matrix
into blocks of the same size gives a new block iteration, treating the
unknowns in vertical blocks on the grid instead of horizontal blocks. If
we use a combined iterative method, with one horizontal line iteration
followed by one vertical line iteration, the result is similar to one time
step of the Peaceman–Rachford ADI method of Section 3.2 for the heat
equation ut = ∇2u. These become identical if we take ω = 1 in (7.10a),
νx = νy = 1 in (3.15), and replace Lx(n+1) by Lx(n) in (7.10a); this last
modification would replace a method based on Gauss–Seidel iteration
by one based on Jacobi iteration.

This method of alternating line iteration is closely related to the ADI
method for solving the time-dependent heat equation, and looking for
a steady solution for large time. But the iterative method is more gen-
eral, since we do not need the successive stages of the iteration to agree
accurately with solutions of the heat equation at specific times; only the
limit solution is required.

However, in many practical application areas the methods described
so far have largely been superseded by more efficient and usually more
elaborate methods. We end this chapter with a brief introduction to the
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multigrid method and the conjugate gradient method; these methods and
their derivatives are now most often used in practical computations.

7.6 The multigrid method

This method, originally proposed by Brandt1 has been developed over
the last 20 years into a very efficient method for the solution of systems of
algebraic equations derived from partial differential equations. In most
cases it gains this efficiency by making use of the underlying differential
equation. The fundamental idea is best introduced by means of an
example; we shall use an example involving the self-adjoint equation

(a(x, y)ux)x + (a(x, y)uy)y + f(x, y) = 0, (x, y) ∈ Ω, (7.48a)

u = 0, (x, y) ∈ ∂Ω, (7.48b)

where Ω is the unit square

Ω := (0, 1) × (0, 1) (7.49)

and ∂Ω is the boundary of the square. The function a is

a(x, y) = x + 2y2 + 1 (7.50)

and f is chosen so that the solution of the difference equations gives an
approximation to

u(x, y) = xy(1 − x)(1 − y) (7.51)

at the mesh points.
We use the central difference approximation (6.5), with ∆x = 1/10,

and then with ∆x = 1/20, and first solve each of the resulting system
of equations by Gauss–Seidel iteration. In order to bring out the basis
of the multigrid method, we start the iteration with the initial vector
whose elements are independent random numbers, uniformly distributed
in [0, 1], though in practice this would not be a useful starting vector.
The progress of the iterations is illustrated in Fig. 7.4. The graphs
show ln(Rn), where Rn is the 2−norm of the residual vector after n

iterations; the solid line corresponds to ∆x = 1/10, and the dotted line
to ∆x = 1/20.

These graphs show two important features: (i) the first few iterations
give a rapid reduction in the residual, but then the rate of convergence
soon becomes very much slower, and (ii) the eventual rate of convergence
1 Brandt, A. (1977) Multi-level adaptive solutions to boundary value problems.

Math. Comput. 31, 333-90.
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Fig. 7.4. Gauss–Seidel iteration for the model problem:
lower curve, ∆x = 1/10; upper curve, ∆x = 1/20.

when ∆x = 1/20 is much slower than when ∆x = 1/10. This second
observation is just as predicted by (7.38). We will return to this problem
later, in Section 7.8.

Figure 7.5 shows surface plots of the initial residual, and of the resid-
ual after 5, 20 and 50 iterations. These plots are not to the same scale,
but are arranged to show roughly the same maximum size. It is the
shape of the plots which is important, not their size; after the very
jagged initial plot they rapidly become smoother, and even after five
iterations the random peaks have largely disappeared.

We can now apply these observations to suggest a simple form of the
multigrid method. We wish to solve the systems of equations

Ax = b. (7.52)

Starting from the first estimate x(0) we construct the sequence x(k),
k = 1, 2, . . . and the corresponding residuals

r(k) = b − Ax(k). (7.53)

The corresponding error e(k) is then the vector e(k) = x − x(k), and

Ae(k) = r(k). (7.54)

Now suppose that the residual r(k) is smooth, in a sense which can
be quite precisely defined. Then the elements of the vector r(k) can be
regarded as the values of a smooth function rk(x, y) at the mesh points
(xr, ys). It is important here that the rows of the matrix A are correctly
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After 20 iterations After 50 iterations

Initial residuals After 5 iterations

Fig. 7.5. Surface plot of residuals.

scaled, so that the system of algebraic equations represent a difference
approximation to the differential equation; the elements of A will contain
the factor 1/(∆x)2. The algebraic equation (7.54) can then be regarded
as the finite difference approximation to the differential equation

exx + eyy = r. (7.55)

Assuming that the functions e and r are smooth, we can therefore find
an approximate solution of this differential equation on a coarser grid;
this coarser grid is often, though not always, obtained by omitting alter-
nate mesh lines in both x and y directions, giving a mesh with twice
the mesh size ∆x and ∆y. The important point is that this finite differ-
ence problem now involves a number of unknowns which is a quarter of
the number in the original problem. As our analysis above has shown
the usual iterative methods will now converge much faster, and each
iteration will require much less work.

We have thus outlined the key part of a two-grid method, which con-
sists of four stages.

Smoothing First perform a small number of iterations of an iterative
method to smooth the residuals.

Restriction Compute the residuals and transfer them to the coarser
grid; this can be done just by using the values at the even-
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numbered mesh points, or by some weighted mean of neigh-
bouring residuals.

Coarse grid correction Solve the resulting system of equations on the
coarser grid, the restricted residuals being the vector on the right
hand side.

Prolongation This solution is defined on the coarser grid, and is
extended to the fine grid, usually by linear halfway interpolation
in both the x- and y-directions. The result is our approxima-
tion to the vector e(k), and is therefore added to the fine grid
solution xk to give a better approximation to the solution of our
problem.

Post–smoothing It is usual to perform more smoothing iterations at
this stage.

The central step in this two-grid method is the solution of the coarse-
grid system of equations. The method now becomes a multigrid method
when we make it recursive, so that we solve the coarse grid equations
in the same way as the fine grid equations, by defining a new level of
coarsening of the coarse grid. The recursion continues, each grid having
a mesh size double that of the previous grid, until a grid is reached
where the number of unknowns is so small that a direct solution of the
algebraic equations is as efficient as an iterative method.

In each of the four stages of the multigrid method there is a wide
choice; for example, any of the iterative methods described in Section 7.1
might be considered for the smoothing stage, and there are many other
possibilities. As a very simple example, consider the application of the
weighted Jacobi method to the solution of Poisson’s equation in a square
region.

The weighted Jacobi method extends the Jacobi method just as SOR
extends Gauss–Seidel iteration. It replaces (7.8) by

Dx(n+1) = (1 − ω)Dx(n) + ω(b + (L + U)x(n)).

where ω is a factor to be chosen. The Fourier analysis of Section 7.3
determines the eigenvalues of the iteration matrix as in (7.26), but now

µ = 1 − ω(sin2 kx∆x + sin2 ky∆y).

The smooth eigenvalues will be dealt with by the coarse grid correction,
and the smoothing process only needs to consider the Fourier modes
with kx ≥ 1

2Jπ or ky ≥ 1
2Jπ, or both. We leave it as an exercise to show

that the best choice is now ω = 4
5 , and that this leads to a reduction
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of all relevant Fourier modes by a factor better than 3
5 . The important

result is that this smoothing factor is independent of the mesh size.
We can now apply the multigrid method to the solution of a particu-

lar model problem used in Briggs, Henson and McCormick (2000); this
is Poisson’s equation on the unit square, with the function f chosen
so that the solution is u(x, y) = (x2 − x4)(y4 − y2), which vanishes on
the boundary of the square. We use 2 sweeps of the weighted Jacobi
method as smoother, and another two sweeps for post-smoothing; for
restriction we use full weighting, calculating the coarse-grid residual as
a weighted sum of the nine neighbouring fine-grid residuals. The coarse-
grid correction uses one iteration of the same multigrid method; taking
n = 2p intervals in each direction on the finest grid, the coarsest grid
has just one internal point, so the solution on this grid is trivial. The
initial approximation is taken to be zero everywhere. Fig. 7.6 displays
the results of a numerical calculation; it gives ln(||r(k)||) after each iter-
ation. There are five curves for, respectively, ∆x = 2−p, p = 4, 5, 6, 7, 8;
the curves are closely parallel, showing that the rate of convergence of
the multigrid method is independent of the mesh size (compare with
Fig. 7.4). In fact, apart from a slightly faster reduction in the residual
after the first two iterations, for the smaller values of p, the curves would
be identical.

The multigrid method requires the construction of a coarse grid from
a given fine grid. In our example this is straightforward, involving just
the even numbered grid lines. If we cover a nonrectangular region with a
mesh of triangles, as in Fig. 6.5, it is more convenient to begin by defining
the coarsest mesh and then construct a sequence of finer meshes by
subdividing each triangle, placing vertices at the midpoints of the sides.

In the smoothing stage of the process we may choose any of a wide
range of iterative schemes; the choice will depend on the properties of the
problem. For example, when solving a convection-dominated problem
such as (6.24), with b and c much larger than a, and probably taking
different values, and different signs, in different parts of the region, the
simple weighted Jacobi smoothing scheme will not be the most efficient.
There are a great many studies reported in the multigrid literature which
help in making this choice.

Having chosen a smoothing scheme it is also necessary to decide how
many iterations of the smoother should be used – commonly just one or
two, but sometimes more. A similar decision has to be made when mak-
ing the coarse grid correction, applying the multigrid method recursively
on the coarse grid; this can be done by using more than one iteration
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Fig. 7.6. Multigrid convergence for different grid sizes: start-
ing from the lower curve, ∆x = 2−p for p = 4,5,6,7 and 8.

of the multigrid correction here. Use of one iteration leads to what are
known as V–cycles, while two iterations lead to W–cycles. More than
two iterations here are rarely used.

The crucially important property of the multigrid method is that its
overall rate of convergence is independent of the grid size. As we illus-
trated in Fig. 7.4 the classical iterative methods converge more slowly
as the grid size is reduced. Theoretical analysis of the multigrid method
introduces the idea of a work unit, which is the amount of computational
work involved in carrying out one relaxation sweep on the finest grid.
This work unit is clearly proportional to the number of unknown values
at the grid points. The multigrid method should obtain an accurate
solution of the problem with just a small number of work units, usually
about 10. This aim is achieved over a very wide range of problems.

So far in this chapter we have only discussed linear problems, but of
course most practical problems involve nonlinear differential equations.
The multigrid method has been extended to solve such problems with
the same sort of efficiency. A straightforward approach would be to
use Newton’s method to solve the full set of nonlinear algebraic equa-
tions. Each iteration of Newton’s method then involves a large set of
linear equations, which can be solved by the multigrid method which we
have described; this now involves a double iteration. The method more
commonly used is the full approximation scheme, which is fully described
in the books cited at the end of this Chapter. This is a modification of
the multigrid scheme as we have just described it. It requires some form
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of nonlinear iteration as a smoother, and will also need to solve a small
system of nonlinear equations on the final coarsest grid. With careful
choice of the various components of the method, an accurate solution
can still be obtained with a small number of work units.

7.7 The conjugate gradient method

The multigrid method discussed in the previous section exploits the
structure of the grid which led to the system of linear equations. Now
we go on to consider another efficient iterative method for the solution
of large systems of linear equations that exploits their algebraic struc-
ture. The conjugate gradient method, devised by Hestenes and Stiefel,1

applies to systems arising from a larger class of problems which have a
symmetric positive definite structure.

We begin with the solution of the system Ax = b, where the matrix A

is symmetric and positive definite; in practical problems it will of course
also be sparse. The method is based on the observation that the unique
minimum of the function

φ(x) = 1
2x

T Ax − bT x (7.56)

is the solution of the system Ax = b; the corresponding value of φ(x)
is zero. The conjugate gradient method proceeds by constructing a
sequence of vectors x(k) for which the values φ(x(k)) form a monotonic
decreasing sequence, converging to zero.

Suppose that we have an estimate x(k) of the solution, and have some
means of choosing a search direction defined by the vector p(k). Then
we can choose the next vector in the sequence by

x(k+1) = x(k) + αkp(k), (7.57)

where the scalar αk is chosen to minimise φ(x(k)) as a function of αk. It
is easy to show by differentiation that the required minimum is obtained
when

αk = p(k)T r(k)/p(k)T Ap(k), (7.58)

where r(k) is the residual vector

r(k) = b − Ax(k). (7.59)

1 Hestenes, M.R. and Stiefel, E. (1952), Methods of conjugate gradients for solving
linear systems, J. Res. Nat. Bur. Stand. 49, 409–36.
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The best choice of the search direction p(k) is obviously important. The
key property of the conjugate gradient method is that it constructs a
sequence of vectors p(k) such that when we determine x(k+1) from (7.57),
with αk from (7.58), the new vector x(k+1) gives the minimum of φ(x)
not only in this search direction, but also in the whole subspace spanned
by the search directions p(0) . . .p(k). We shall see below that this key
property results from the directions being ‘A-conjugate’, that is that
p(k)T Ap(j) = 0 for j < k.

This method in its basic form converges, but for the type of problems
which we are considering the rate of convergence is usually rather dis-
appointing. The situation is transformed by the use of preconditioning.
This idea is based on the observation that the solution of Ax = b is the
same as the solution of PAx = Pb when P is any nonsingular matrix;
a suitable choice of P may make the new system of equations much eas-
ier to solve. The matrix PA will not usually be symmetric, so we take
the idea a step further by choosing a nonsingular matrix C with further
properties that we shall discuss below, and writing the system as(

C−1A(C−1)T
)
CT x = C−1b. (7.60)

The matrix of this system is symmetric; having solved this system for
the vector CT x we need to recover the required vector x. However,
the process can be simplified by writing M = CT C, which is now the
preconditioner; then the preconditioned conjugate gradient algorithm
takes the following form:

starting from x(0) = 0, r(0) = b, solve Mz(0) = b, and set
β1 = 0,p(1) = z(0). Then for k = 1, 2, . . . carry out the following steps:

αk = z(k−1)T r(k−1)/p(k)T Ap(k)

x(k) = x(k−1) + αkp(k)

r(k) = r(k−1) − αkAp(k) and solve Mz(k) = r(k)

βk+1 = z(k)T r(k)/z(k−1)T r(k−1)

p(k+1) = z(k) + βk+1p(k). (7.61)

Notice that thematrixC−1A(C−1)T is notused in the calculation,which
only uses the matrix M and the original matrix A. It can be shown that
the residual vectors r and the search directions p satisfy the relations

r(j)T M−1r(i) = 0,

p(j)T (
C−1A(C−1)T

)
p(i) = 0, (7.62)

for i �= j, and these form the basis for the convergence of the process.
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The choice of preconditioner is very important for the success of the
method. There are two obvious extremes: taking M = I, the unit
matrix, corresponds to the basic method without preconditioning, which
converges too slowly; on the other hand, if we choose M = A it is easy
to see that the process terminates with the exact solution after one step.
But this is not a practical choice, as we must be able to solve easily the
system Mz = r. For a practical method we need a matrix M which is
in some sense close to A, but such that z can be easily calculated.

A frequently used method constructs M by the incomplete Cholesky
process, which leads to what is known as the ICCG algorithm. The
Cholesky algorithm constructs a lower triangular matrix L such that
A = L LT . As with other factorisation methods L is usually a rather
full matrix even when A is very sparse. The incomplete Cholesky algo-
rithm uses the same formulae for the calculation of the elements of
Lij in the positions where Aij is nonzero, but puts Lij = 0 wherever
Aij = 0. The result is that L has the same sparsity structure as A,
and L LT is fairly close to A. As in other factorisation processes, it is
not necessary to construct the preconditioning matrix M itself. Having
constructed L, the vector z(k) can be found by solving two triangular
systems,

Lη = r(k), LT z(k) = η. (7.63)

The whole calculation is very efficient, because of the sparsity of L.
We have just seen that in the ICCG method it was not necessary to

construct the matrix M explicitly, and the same is true more generally.
All that we need is to be able to find a vector z which is close to the
solution of Az = r, and which exactly satisfies Mz = r where M is
some symmetric and positive definite matrix. This means that we might
consider any of a number of iterative methods; for instance we might
use several iterations of the Jacobi method for solving Az = r, since
the iteration matrix in this case is symmetric. The iteration matrix
for the SOR method is not symmetric, though it is still possible that
some symmetric matrix M might exist for which the result is the exact
solution. In practical problems the efficiency of various preconditioners
has to be assessed by experimentation, and in many cases it is found that
SOR iteration is quite a good preconditioner. The incomplete Cholesky
algorithm seems to be efficient for a wide range of problems, but it makes
no use of the special properties of the PDE from which the system of
equations was derived. A wide range of possibilities have been studied
and recommended, for example using various block methods discussed
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in Section 7.5, and the related ideas of domain decomposition. The rate
of convergence depends crucially on the choice of preconditioner, and
it is difficult to give a simple Fourier analysis like that of the multigrid
method.

The conjugate gradient method as we have presented it requires that
the matrix A is symmetric and positive definite. Extensions of the idea
to matrices which are not symmetric and/or not positive definite have
been devised, but so far practical experience of them is less satisfac-
tory than for the original version; research in this area is currently very
active. An alternative but related approach sets out directly to minimise
the sum of squares of the residuals, and can apply to an arbitrary matrix
A: the most widely used algorithm is GMRES, due to Saad and Schultz.1

Like the conjugate gradient algorithm, it constructs a sequence of search
directions p(k), but requires all the previous vectors p(1), . . . ,p(k) for
the construction of p(k+1). Note that the conjugate gradient algorithm
constructs the vector p(k+1) from only p(k) and p(k−1), saving in compu-
tational labour, and storage requirements. Both methods are members
of the general class of Krylov subspace methods as they utilise successive
powers Az(0), A2z(0), A3z(0), . . . of an initial vector.

7.8 A numerical example: comparisons

To conclude this chapter, we show in Fig. 7.7 the result of applying three
iterative methods to the problem used in Fig. 7.4:

(a(x, y)ux)x + (a(x, y)uy)y + f(x, y) = 0, 0 < x < 1, 0 < y < 1,

(7.64)
where a(x, y) = (x + 2y2 + 1), with solution u(x, y) = x(1 − x)y(1 − y).
The numerical experiments used J = 40, so the system of algebraic
equations is of order 1521.

First we use the symmetric SOR method described in Section 7.2.
Since the coefficient a(x, y) is not a constant the problem is more general
than that in Section 7.6 and we cannot use Fourier analysis to find
the optimal relaxation parameter ω. We experimented with a range of
values, and found empirically that ω = 1.85 gave the fastest convergence;
this is in fact close to the optimum value which would be predicted by
(7.42). In Fig. 7.7 the top graph shows the convergence of the iteration;

1 Saad, Y. and Schultz, M.H.(1986) A generalised minimal residual algorithm for
solving nonsymmetric linear systems. J. Sci. Stat. Comput. 7, 856–69.
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Fig. 7.7. Comparison of iterations for the model problem
(7.64).
Top curve: SOR with ω = 1.85.
Middle curve: Incomplete Cholesky Conjugate Gradient.
Bottom curve: Multigrid.

as expected it is slow, and after 50 iterations the residual has been
reduced by a factor of about 55.

The bottom curve shows the result from use of a multigrid method,
with Gauss–Seidel iteration as a smoother and two stages of coarsening.
This gives a solution correct to 6 decimal places after only 8 iterations.
The middle curve uses the preconditioned conjugate gradient method,
with incomplete Cholesky factorisation as the preconditioner: after the
first iteration this indicates a rate of convergence very similar to that of
multigrid.

It is not the purpose of this calculation to compare multigrid with
ICCG, but to show that both of them are far more efficient than the
classical SOR iteration. Of course, each of them is also more compli-
cated, so that one iteration requires more work than one SOR iteration.
Nevertheless even allowing for this, both of them are orders of magnitude
faster than SOR.

The two methods, multigrid and conjugate gradient should be regarded
as complementary rather than as in competition. Recent studies reported
in Elman, Silvester and Wathen (2004) of the solution of the Navier–
Stokes equations for steady incompressible fluid flow use the conjugate
gradient method, with multigrid iterations as the preconditioner. The
results demonstrate convergence within a small number of work units
with very little dependence on the number of mesh points.
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Bibliographic notes and recommended reading

A full treatment of the classical theory of iterative methods for linear
equations is given by Varga (1974), and also in the slightly earlier book
by Young (1971). Direct methods that make full use of matrix sparsity
are fully treated in Duff, Erisman and Reid (1986). Golub and Van Loan
(1996) and Hackbusch (1994) give considerably more detail on many of
the topics covered in this chapter.

The Multigrid Tutorial by Briggs, Henson and McCormick (2000) is a
useful introduction, while Wesseling (1992) and Hackbusch (1985) anal-
yse multigrid methods in considerable detail.

The conjugate gradient method is discussed in a number of books,
such as Golub and Van Loan (1996). More detail is given by van der
Vorst (2003) and Elman, Silvester and Wathen (2004). This is an area of
vigorous research activity, and these books will help the reader to follow
the recent literature.

Exercises

7.1 The 2 × 2 matrix A is symmetric and positive definite; show
that the Jacobi iteration for A converges.

7.2 The matrix A is symmetric and positive definite, and is written
in the form A = L+D+LT , where L is strictly lower triangular.
Suppose that λ and z are an eigenvalue and eigenvector of the
Gauss–Seidel iteration matrix of A, with z̄T Dz = 1. Show that

λ = − z̄T LT z
1 + z̄T Lz

.

Show also that 2p+1 > 0, where p is the real part of z̄T Lz, and
that |λ| < 1. Deduce that the Gauss–Seidel method converges
for any symmetric positive definite matrix.

7.3 The N × N matrix E has all its elements equal to unity. Show
that one of the eigenvalues of E is N , and all the others are
zero. Construct a matrix A = I + kE, where k is a constant to
be determined, such that A is symmetric and positive definite,
but in general the Jacobi method diverges. Explain why this
result does not contradict Exercise 7.1.
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7.4 The system of equations Au = b results from use of the standard
five-point stencil to solve Poisson’s equation on the unit square
with Dirichlet boundary conditions and interval ∆x = ∆y = 1

3 .
The matrix is therefore 4 × 4. There are 24 such matrices A,
obtained by numbering the grid points in all possible different
orders. By considering the symmetries of the problem show
that there are only three different matrices, each occurring eight
times. Determine the eigenvalues of the Jacobi iteration matrix,
and of the three Gauss–Seidel matrices. Verify that for two of
the matrices the eigenvalues of the Gauss–Seidel matrix are zero
together with the squares of the eigenvalues of the Jacobi matrix.

7.5 For the solution of ∇2u+ f = 0 on the unit square we are given
a Neumann condition on x = 0 and Dirichlet conditions on the
other three sides. The Neumann condition is approximated by
using an additional line of points corresponding to x = −∆x

and using central differences to represent the normal derivative.
The resulting system of linear equations is then solved by the
Jacobi iterative method. Show that the errors can be expanded
in terms of the Fourier modes

e(n)
r,s =

∑
kx,ky

a(n)(kx, ky) cos kxxr sin kyys

where ky = π, 2π, . . . , (J − 1)π and kx = 1
2π, 3

2π, . . . , (J − 1
2 )π.

Deduce that the eigenvalues of the Jacobi iteration matrix are

µJ(kx, ky) = 1
2 (cos kx∆x + cos ky∆y)

and that for a square mesh with ∆x = ∆y the spectral radius
is approximately 1 − 5

16 (π∆x)2.
Extend this analysis to problems where Neumann conditions

are given on two sides of the square, and then on three sides of
the square. What happens when Neumann conditions are given
at all points on the boundary?

7.6 Laplace’s equation uxx + uyy = 0 is approximated by central
differences on a square mesh of size ∆x = ∆y = 1/N on the
triangular region defined by x ≥ 0, y ≥ 0, x + y ≤ 1. The
resulting system of linear equations is solved by the Jacobi iter-
ative method. Show that the vector with elements

wr,s = sin
(prπ

N

)
sin

(qsπ

N

)
± sin

(qrπ

N

)
sin

(psπ

N

)



Exercises 265

is an eigenvector of the iteration matrix. Hence determine the
eigenvalues of the iteration matrix, and the asymptotic rate of
convergence.

7.7 Determine the von Neumann stability condition for the solution
of the equation ut = uxx + uyy + f(x, y) by the three-term
difference scheme
Un+1

r,s − Un−1
r,s

2∆t
=

Un
r,s+1 + Un

r,s−1 + Un
r+1,s + Un

r−1,s − 2Un+1
r,s − 2Un−1

r,s

(∆x)2
+ frs

on a uniform square mesh of size ∆x = ∆y.
Explain how this scheme might be used as an iterative method

for the solution of the equations

δ2
xUr,s + δ2

yUr,s + (∆x)2fr,s = 0.

Show that taking ∆t = 1
4 (∆x)2 gives the same rate of conver-

gence as Jacobi’s method, but that the choice

∆t = 1
4 (∆x)2/ sin(π∆x)

gives significantly faster convergence.

7.8 Show that the weighted Jacobi method defined by

Dx(n+1) = (1 − ω)Dx(n) + ω(b + (L + U)x(n)).

has the iteration matrix

G =
[
(1 − ω)I + ωD−1(L + U)

]
.

Show that for the problem of Section 6.1 the eigenvalues of this
matrix are

µrs = 1 − ω
(
sin2 rπ

2J
+ sin2 sπ

2J

)
,

for r, s = 1, 2, . . . , J −1. Defining the smooth eigenvectors to be
those for which 2r ≤ J and 2s ≤ J , verify that the eigenvalues
corresponding to the nonsmooth eigenvectors lie between 1− 1

2ω

and 1 − 2ω. Deduce that the best performance as a smoother
is obtained by the choice ω = 2/5, and that with this choice
every nonsmooth component of the error is reduced by a factor
at least 3/5.
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7.9 Repeat the previous example for the three dimensional prob-
lem of the solution of Poisson’s equation in the unit cube, with
Dirichlet boundary conditions. Find the optimum choice of ω,
and show that weighted Jacobi iteration now reduces each non-
smooth component of the error by a factor of at least 5/7.

7.10 In the conjugate gradient iteration as defined by (7.61) with
M = I, the unit matrix, show by induction that, for each posi-
tive integer n, the vectors x(n), p(n−1) and r(n−1) all lie in the
Krylov space Kn, which is the space spanned by the vectors
b, Ab, . . . , An−1b.

Now suppose that the N × N matrix A has only k distinct
eigenvalues, where k ≤ N . Show that the dimension of the space
Kn does not exceed k, and deduce that the iteration terminates,
with the exact solution of Ax = b, in at most k + 1 iterations.

7.11 The conjugate gradient algorithm described in (7.61) begins
with the first approximation x(0) = 0. Suppose that an approx-
imation x∗ to the solution is available: suggest how the method
might be modified to make use of this information.
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López-Marcos, J. C. and Sanz-Serna, J. M. (1988). Stability and con-
vergence in numerical analysis iii: linear investigation of nonlinear
stability. IMA J. Numer. Anal. 8(1), 71–84.

Matsuno, T. (1966). False reflection of waves at the boundary due to the
use of finite differences. J. Meteorol. Soc. Japan 44(2), 145–57.

Miller, J. (1971). On the location of zeros of certain classes of polynomi-
als with applications to numerical analysis. J. Inst. Math. Appl. 8,
397–406.

Mitchell, A. R. and Griffiths, D. F. (1980).TheFiniteDifferenceMethod
in Partial Differential Equations. New York, Wiley-Interscience.

Morton, K. W. (1996). Numerical Solution of Convection–Diffusion
Problems. London, Chapman & Hall.

Peaceman, D. W. and Rachford, H. H. Jr (1955). The numerical solution
of parabolic and elliptic differential equations. J. Soc. Indust. Appl.
Math. 3, 28–41.

Preissmann, A. (1961). Propagation des intumescences dans les canaux
et rivières, paper presented at the First Congress of the French Asso-
ciation for Computation, Grenoble, France.

Protter, M. H. and Weinberger, H. F. (1967). Maximum Principles in
Differential Equations. Englewood Cliffs, NJ, Prentice-Hall.

Reich, S. (1999). Backward error analysis for numerical integration.
SIAM J. Numer. Anal. 36, 1549–1570.

Richtmyer, R. D. and Morton, K. W. (1967). Difference Methods for
Initial Value Problems, 2nd edn. New York, Wiley-Interscience.
Reprinted (1994), New York, Kreiger.

Roe,P. L.(1981).ApproximateRiemannsolvers,parametervectors, and
difference schemes. J. of Comput. Phys. 43, 357–72.



References 271

Roos, H. G., Stynes, M. and Tobiska, L. (1996). Numerical Methods for
Singularly Perturbed Differential Equations. Berlin, Springer.

Saad, Y. andSchultz, M. H. (1986).A generalisedminimal residual algo-
rithm for solving nonsymmetric linear systems. J. Sci. Stat. Com-
put. 7, 856–69.

Shokin, Y. I. (1983). The Method of Differential Approximation.
New York–Berlin, Springer.

Smoller, J. (1983). Shock Waves and Reaction-Diffusion Equations.
New York, Springer-Verlag.

Strang, G. (1964). Wiener–Hopf difference equations. J. Math.
Mech. 13(1), 85–96.

Strang,G. andFix,G. (1973).AnAnalysis of theFiniteElementMethod.
New York, Prentice-Hall.
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Numerical Solution of Partial Differential Equations

This is the second edition of a highly successful and well respected textbook
on the numerical techniques used to solve partial differential equations
arising from mathematical models in science, engineering and other fields.

Based upon the extensive experience of both authors, the book concentrates
on the thorough treatment of standard numerical techniques which are
chosen on the basis of their general utility for practical problems. As in the
first edition, the emphasis is on finite difference methods for simple examples
of parabolic, hyperbolic and elliptic equations, but there are brief
descriptions of the finite element method and a new section on finite volume
methods. Stability is treated clearly and rigorously by means of maximum
principles, a completely revised section on energy methods, and discrete
Fourier analysis. There are also new sections on modified equation analysis,
symplectic integration schemes, convection–diffusion problems, multigrid
methods and conjugate gradient methods.

Already an excellent choice for students and teachers in mathematics,
engineering and computer science departments, the revised text brings the
reader up to date with the latest developments in the subject.




