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List of symbols

argmax
x

f(x) Argument of the maximum

argmin
x

f(x) Argument of the minimum

m, m A measurement

x, x Model parameters

ξt, ξ Measurement noise

Σ Covariance matrix of a Gaussian random vector

A Theory matrix of a linear problem

J Jacobian matrix

L Linear regularization operator

UDVH Singular value decomposition

w(t) Window function

z(t), zt complex timeseries

R(t) Trajectory of a target

p(m|x) Likelihood probability density function

p(x|m) Posteriori probability density function

p(x) Prior probability density function

ζr,t Discretized incoherent scattering process

μ(dx; t) Continuous incoherent scattering medium (Itō-measure)

εt, ε(t) Radar transmission waveform or envelope

x Augmented complex random variable
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1. Introduction

The main theme of my research during the last five years has been the

application of the statistical inverse problems framework to radar mea-

surements and design of experiments. During my work I have developed

radar measurement models and their numerical implementations with

the purpose of allowing us to sense our environment more clearly.

Many of the advances in recent years in this field have been facilitated

by increasingly powerful computers, wide band digital receivers, signal

generators and cheap digital mass storage. This has allowed the perma-

nent storage of continuous raw wide band receiver voltage waveforms and

data analysis using software run on general purpose computers. The main

consequence of this is that it has become, through the use of scientific

numerical programming tools and libraries, easier to develop more pre-

cise radar target models and design more advanced measurements. This

computer revolution of radio frequency signal processing is sometimes re-

ferred to as software defined radio [8]. The corresponding term used for

radar systems is software radar [9].

The main contribution of this thesis lies in the introduction of novel

radar measurement models and their numerical implementations. These

have been used, e.g., in measurements of space debris, meteors, lunar

reflectivity, and incoherent scatter from various parts of Earth’s atmo-

sphere. In addition to this, I have worked with optimal experiment de-

sign [10, 11], mainly in the form of designing optimal radar transmission

waveforms. The main results in the field of optimal radar experiment de-

sign include nearly perfect transmission codes and fractional baud-length

codes.

Experimental science requires a wide range of different tools and skills.

During the course of my work, I have ventured through theoretical and

practical issues ranging from formulating physical radar measurement

21



Introduction

models to programming reliable and efficient data acquisition software

for the digital receivers used to record the radar waveforms. In some

cases, the numerical algorithms involved in the analysis of these wave-

forms needed to be written using specialized graphical accelerator cards

in order to be fast enough to be able to analyze the data in a reasonable

amount of time. This wide range of topics is also reflected in the contents

of this thesis.

1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• Fractional baud-length coding, which was introduced in Publication III,

is a new radar transmission coding principle that for the first time makes

it possible to analyze radar targets in amplitude domain with a higher

range resolution than the shortest baud-length used in the radar trans-

mission code. This is achieved by using variable sized baud-lengths.

• Several publications [12, 1, 2, 4, 13] published during the thesis work

have focused on radar transmission code optimality, i.e., radar transmis-

sion waveforms that minimize the variance of various estimates that are

obtained from radar measurements. This work has resulted in a robust

optimization algorithm, which is presented in Publication II. This al-

gorithm can be used to find optimal codes for several different radar

measurement types. It has been used, e.g., to search for nearly optimal

amplitude and phase modulated radar transmission codes [1] for coher-

ent targets, which are in most cases only a very small fraction worse

than perfect. The algorithm can also be used for searching for multi-

purpose [14] incoherent scatter radar transmission code groups that are

nearly perfect, but contain only a small number of codes per group.

• Publication II also showed that sufficiently long purely randomly se-

lected code groups are close to optimal in terms of incoherent scatter au-

tocorrelation function estimation variance. While optimized code groups

can be made shorter, which simplifies ground clutter removal, the use of

long groups of random codes typically guarantees that the error covari-

ance of the estimates is close to diagonal [15]. This result shows that

there is no significant loss in estimation accuracy when using pseudo-
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random code groups [3] for incoherent scatter measurements.

• Publication V of this thesis presents one of the few published high power

large aperture radar space debris beam-park measurements that were

conducted shortly after the Iridium-Cosmos satellite collision. As the

measurements were done soon after the collision, the cloud was still

fairly compact, making the data useful for estimating the size of the

space debris cloud produced by the collision.

• Publication IV of this thesis for the first from showed that it is feasible

to perform lunar inverse synthetic aperture radar measurements using

the EISCAT UHF radar system. This was made possible by applying

an extremely long optimized radar transmission code. These types of

measurements are typically performed with the much larger Arecibo or

Greenbank systems, but using methods developed in this work, such

measurements can also be performed with smaller radars.

• Publication I showed for the first time how to analyze narrow and strong

incoherent scattering targets in amplitude domain in cases where the

incoherent scatter is overspread in range and Doppler, i.e., the backscat-

ter amplitude changes significantly already while the transmission pulse

travels through the target.

• Introduction of radar experiments and methods for simultaneously an-

alyzing multiple different types of targets, including meteors, space de-

bris and incoherent scatter [14, 16, 17].

• Utilizing MCMC methods for accurate analysis of various incoherent

scatter radar target plasma parameters [18, 19].

• In several papers [19, 16] with my collaborators, we have for the first

time applied optimal space debris and meteor head echo detection al-

gorithms for removal of these echoes in amplitude domain, before esti-

mating the incoherent scatter from ionospheric plasma using lag-profile

inversion [20]. This significantly improves the quality of low signal to

noise ratio incoherent scatter measurements, as this allows the removal

weak and strong interfering echoes, while only discarding a very small

amount of raw voltage samples.
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• In the introduction part of this thesis, we show for the first time that a

radar target estimator called the matched filter can be seen as a max-

imum a posteriori solution with a certain type a priori covariance as-

sumption. Matched filtering, or more generally correlation estimation,

can be seen as a form of regularization in the framework of statistical

inverse problems. A similar explanation is also given for the truncated

SVD method.

• The introductory part of this thesis introduces dual-polarization lag-

profile inversion equations. These equations are an extension of lag-

profile inversion [20] that can be used for dual-polarization radar mea-

surements.

Most of these contributions are described in the papers included in this

thesis. The rest of the contributions listed above are described in the

introductory part of this thesis.

1.2 Outline of the thesis

This thesis consists of an introductory part, followed by a collection of

refereed publications.

The introductory part of the thesis will first skim through the basics

of probability theory and go into more detail on several types of prob-

lems that are useful in the case of radar measurements. We then go

through several practical numerical methods that have been applied in

the work. After this, we will shortly discuss the history of radars and

give an overview of high power large aperture radars. This is followed by

a chapter that describes various useful radar measurement models with

emphasis on the contributions of the thesis. Using the introduced radar

measurement models we will finally discuss several aspects of optimal

radar experiment design, mainly in the form of radar transmission cod-

ing.

1.2.1 Papers not included in the thesis

During my research, I have also worked on several other interesting re-

search topics in collaboration with my collegues. This has resulted in

many publications. I will discuss some of this work in the introductory
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part of the thesis, even though the publications will not be distributed as

part of this thesis.

1. J. Vierinen, M. S. Lehtinen, J. Markkanen, and I. I. Virtanen. Mea-

suring space debris with phase coded aperiodic transmission sequences.

In Proc. Fifth European Conference on Space Debris, 2009.

2. M. Markkanen, J. Vierinen, and J. Markkanen. Polyphase alternating

codes. Annales Geophysicae, 26, 2237-2243, 2008.

3. I. I. Virtanen, J. Vierinen, and M. S. Lehtinen. Phase coded aperiodic

transmission sequences. Annales Geophysicae, 27, 2799-2811, 2009.

4. A. Kero, J. Vierinen, C-F Enell, I. I. Virtanen, and E. Turunen. New

incoherent scatter diagnostic methods for the heated D-region ionosphere,

Annales Geophysicae, 26, 2270-2279, 2008.

5. I. I. Virtanen, M. S. Lehtinen, T. Nygren, M. Orispää, and J. Vieri-

nen. Lag profile inversion method for EISCAT data analysis. Annales

Geophysicae, 26, 571-581, 2008.

6. M. S. Lehtinen, I. I. Virtanen, and J. Vierinen. Fast comparison of IS

radar code sequences for lag profile inversion. Annales Geophysicae, 26,

2291-2301, 2008.

7. B. Damtie, M. S. Lehtinen, M. Orispää, and J. Vierinen. Mismatched

filtering of aperiodic quadriphase codes. IEEE Transactions on informa-

tion theory, 54, April 2008.

8. I. I. Virtanen, M. S. Lehtinen, and J. Vierinen. Towards multi-purpose

IS radar experiments. Annales Geophysicae, 26, 2281-2289, 2008.

9. A. Kero, C.-F. Enell, A. Kavanagh, J. Vierinen, I. Virtanen, and E.

Turunen. Could negative ion production explain the polar mesosphere

winter echo (PMWE) modulation in active HF heating experiments? Geo-

physical Research Letters, 35, L2J102, 2008.

10. Carl-Fredrik Enell, Pekka T. Verronen, Mathew J. Beharrell, Juha
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Vierinen, Antti Kero, Annika Seppälä, Farideh Honary, Thomas Ulich,

and Esa Turunen. Case study of the mesospheric and lower thermo-

spheric effects of solar X-ray flares: Coupled ion-neutral modelling and

comparison with EISCAT and riometer measurements. Annales Geo-

physicae, 26, 2311-2321, 2008.

11. B. Damtie, M. S. Lehtinen, M. Orispää, and J. Vierinen. Optimal

long binary phase code-mismatched filter pairs with applications to iono-

spheric radars. Bull. Astr. Soc. India, 2007.
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2. Probability theory

Probability theory is a mathematical framework that is used to study un-

certain quantities. This could be, e.g., the outcome of a coin toss, or the

voltage of cosmic radio noise induced in a receiver. This framework is es-

sential when analyzing nearly any type of real world measurements that

contain uncertain quantities, typically in the form of measurement noise.

The importance of probability theory has long been recognized in the

radar community, as random variables are needed not only for modeling

measurement errors but also often as target models [21, 22, 23, 24].

As in any other field of applied mathematics, the main advances in the

field of radar measurement analysis are largely driven by the exponen-

tially growing computational capabilities of digital computers. This al-

lows the use of more sophisticated measurement models, which in many

cases can provide substantial improvements in estimation accuracy.

In this chapter, we will first briefly discuss the foundations of the theory

of probability. We will then go through several topics of special impor-

tance in the case of radar measurements, including complex valued linear

statistical inverse problems, Toeplitz and circulant models [25, 26], and

Kolmogorov-Wiener [27] filtering. Parts of the material presented here

have been influenced by the following references [28, 29].

2.1 History

Perhaps the earliest use of probability theory was for analyzing games of

chance in order to gain an advantage in gambling. In addition to Cardano

[30, 31], many other early mathematicians, such as Fermat and Huygens

also developed probability theory through the study of games of chance.

One of the first to extensively apply calculus to probability was Laplace

[32]. By his time, the concept of probability was already applied for inter-
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preting scientific measurements.

One of the most important practical concepts of probability theory, the

least-squares solution, was developed independently by Gauss, Legendre

and Adrain [33, 34, 35]. Today it is used in the heart of nearly every

statistical analysis procedure.

In 1929, Kolmogorov introduced the axioms of probability theory [36],

which are now considered as the foundation for modern probability the-

ory. This set and measure-theoretic formulation of probability provides a

consistent framework for mathematical inference.

2.2 The concept of probability

The following definition of the axioms of probability is based on the orig-

inal Kolmogorov presentation [36]. Let Ω be a collection of elementary

outcomes of a stochastic experiment and E be the set of subsets of Ω,

which we will call random events.

I. E is a non-empty subset of the power set of Ω closed under the intersec-

tion and union of pairs of sets and under complements of individual

sets, i.e., (Ω, E) is a field of sets.

II. The set E of all possible random events contains Ω.

III. Each set A ⊂ E is associated with a non-negative real number (mea-

sure) p(A) ≥ 0, which is called the probability of random event A.

IV. p(Ω) = 1, i.e., the probability that some elementary event will occur is

one.

V. If events A and B have no element in common (A ∩B = ∅), then

p(A ∪B) = p(A) + p(B).

VI. For a decreasing sequence of events

A1 ⊃ A2 ⊃ · · · ⊃ An

of E, for which ∩nAn = ∅, the following holds:

lim
n→∞ p(An) = 0.

This last axiom is only needed when there are infinitely many ele-

mentary outcomes.
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From these axioms, it is possible to derive the commonly used rules of

probability theory.

Even though use of the most general form of probability theory requires

measure theoretic formalism, the probability density function formalism

is sufficient for most of the topics discussed in this thesis.

In the case of the probability density formalism, we assume that the

probability of an event A can be given by applying an integrable probabil-

ity density function π(x) to the following integral:

p(A) =

ˆ
A
π(x)dx, (2.1)

where A is the set of values of x that correspond to event A. In the rest of

the introduction, we will use the notation p(x) for the probability density

function itself. We will also sometimes use the terms probability density

function and probability distribution interchangably.

2.3 Expected value

In most situations encountered in this thesis, the probability density func-

tion p(x) ∈ R is well defined in the sense that
ˆ
Ω
p(x)dx = 1 (2.2)

and the expected value of a function f(x) is obtained by integrating over

the probability density function

E f(x) =

ˆ
Ω
f(x)p(x)dx, (2.3)

assuming the product f(x)p(x) is integrable over Ω.

For example, the mean value of a variable x is defined as

Ex =

ˆ
Ω
xp(x)dx. (2.4)

Several other alternative notations exist for the expectation operator. For

example in physics, the expectation operator is denoted by angle brackets

Ex = 〈x〉.

2.4 Theorem of Bayes

The Bayes theorem [37, 38] is important in data analysis as it allows

one to easily make use of prior information when making inferences. For
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example, when estimating the ion temperature of ionospheric plasma, one

typically has to make some assumption about the masses of the ions and

their concentrations. This can be done by using a prior distribution of the

ion concentrations.

The theorem can be derived using the formula for conditional proba-

bilities for events A and B. Combining p(B|A) = p(A ∩ B)p(A)−1 and

p(A|B) = p(A ∩B)p(B)−1 gives us the theorem of Bayes:

p(B|A) = p(A|B)p(B)

p(A)
. (2.5)

For practical applications, the probability density function form of the

Bayes theorem for vector valued random variables x and y is

p(x|y) = p(y|x)p(x)
p(y)

. (2.6)

This is derived, e.g., in the textbook by Kaipio and Somersalo [28].

When solving inverse problems using the framework of probability the-

ory, one makes use of prior information to regularize a problem that is

otherwise unstable. One typical example of such a prior assumption is to

assume that the solution is smooth. We will discuss this in more detail

later.

2.5 Measurement model

When analyzing measurements, it is important to have a good mathemat-

ical model that describes how the measurements are produced. A sta-

tistical measurement model is a mapping of model parameters x ∈ X

and measurement noise ξ ∈ Ξ to measurements m ∈ M , in such a way

that both all of these are considered as random variables. The mapping

f : X ∪Ξ→M is commonly referred to as the forward theory, when is also

sometimes written as

m = f(x; ξ), (2.7)

and in the most common cases, the measurement errors are additive:

m = f(x) + ξ, (2.8)

which simplifies the statistical treatment of the problem.

The task of statistical inference is to extract information about x from

the measurements m. Sometimes, this task of extracting information is

called an inverse problem or a statistical inverse problem.
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As the measurement relation typically contains random variables, a nat-

ural framework for studying inverse problems is probability theory, typ-

ically by inspecting the a posteriori probability distribution of the model

parameters x, given the observed measurements m. This can be typically

obtained using the Bayes formula (Eq. 2.6)

p(x|m) =
p(m|x)p(x)

p(m)
. (2.9)

This probability distribution contains all the information of the unknown

model parameters x. Here the term p(m|x) is called the likelihood func-

tion, which is the probability distribution of the measurements, given the

model parameters. The likelihood function is defined using the forward

theory f(x; ξ), by assuming some probability distribution for the measure-

ment errors ξ. The term p(x) is the a priori distribution of the model pa-

rameters. Finally, p(m) is simply a scaling factor p(m) =
´
Ω p(m|x)p(x)dx

that ensures that the posterior probability distribution is scaled correctly.

This scaling constant is sometimes ignored, leaving p(x|m) ∝ p(m|x)p(x).
In several places in this thesis, the posteriori probability density and the

likelihood function are used interchangeably. In this case, we assume so

called flat priors, where we assume an infinitely wide uniform distribution

as the prior density function. To avoid zero-valued probability density

functions that arise with these types of improper priors, we have to use

the priors in unnormalized form. This results in p(m|x) ∝ p(x|m). In

this case, the a posteriori and likelihood probability densities will, up to a

constant factor, coincide.

2.5.1 Model comparison

Using the chain rule one can also write Bayes’ theorem in a form that can

be used for comparing several different measurement models:

p(x(k), k|m) =
p(m|x(k), k)p(x(k)|k)p(k)

p(m)
. (2.10)

In this case, the joint distribution p(x(k), k) is substituted as p(x(k)|k)p(k).
In this equation m denotes the measurements, k ∈ N denotes the model,

and x(k) the corresponding model parameters of model k. This form is

commonly used in multiple hypothesis testing, i.e., to study which of the

many possible models k and their model parameters x(k) best describe the

measurements.
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2.5.2 Estimators

Because the a posteriori probability distribution can often be very high-

dimensional, it is often useful to study various aspects of p(x|m) using

so called estimators, which summarize the distribution p(x|m) to a single

vector, or a lower-dimensional distribution.

Assuming that the distribution has only one strong peak, it is often prac-

tical to inspect the maxima of p(x|m), which is called the maximum a

posteriori (MAP) estimate

x̂MAP = argmax
x

p(x|m). (2.11)

The equivalent estimator that only inspects the likelihood function is

called the maximum likelihood (ML) estimator

x̂ML = argmax
x

p(m|x). (2.12)

Another common estimator is the conditional mean (CM) estimator. When

assuming a n dimensional complex-valued unknown x ∈ C
n it can be writ-

ten as

x̂CM =

ˆ
Cn

xp(x|m)dx. (2.13)

If the density function is well defined, unimodal, and symmetric around

each coordinate axis around its peak, the maximum a posteriori and con-

ditional mean estimators are identical, assuming that x̂CM exists.

In many situations it is also advantageous to study the shape of the

distribution p(x|m), but this can be difficult if the distribution has very

many dimensions. A useful tool for reducing the dimensionality of p(x|m)

is the so-called marginal probability distribution

p(x′|m) =

ˆ
Cn−k

p(x|m)dx′′, (2.14)

where x′′ = {xi | i ∈ M} ∈ C
n−k are the parameters to be integrated

out, and x′ = {xj | j /∈ M} ∈ C
k contains the remaining parameters.

In practice, one or two dimensional marginal distributions are the most

commonly used, as they are easiest to visualize.

2.6 Complex normal random variables

Perhaps the most important type of random variable in probability the-

ory is the normal random variable. One reason for this is the central

limit theorem, which states that the sample mean value of independent
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identically distributed random variables with finite mean and variance

approaches a random variable with a normal distribution.

Because most radar models dealing with high-frequency signals are com-

plex valued, we will emphasize complex normal random variables. The

relationship between band limited high frequency signals and complex

baseband signals is explained in detail in Section 5.1.

We will first introduce augmented complex random variables to show

connections between 2p-variate real normal random variables with p-variate

general complex normal random variables. We will then introduce a spe-

cial class of random variables called circular symmetric complex normal

random variables, which are important for radar measurement models.

We will use the formalism described in [39].

In the most general case [39, 40], a p-variate complex normal random

variable x ∈ C
p can be represented using two real valued vectors of real

normal random variables x = u + iv, where u ∈ R
p and v ∈ R

p. If we

represent u and v in block form

z =

⎡⎣u
v

⎤⎦ , (2.15)

where z ∈ R
2p, the covariance matrix Σz = E(z− E z)(z− E z)T describes

all the possible covariance structures for x. We can then use a linear

transformation Tp ∈ C
2p×2p of the form

Tp =

⎡⎣Ip iIp

Ip −iIp

⎤⎦ (2.16)

to convert z into a complex valued variable. Here Ip is a p× p identity ma-

trix. The transform is unitary up to a constant T−1p = 1
2T

H
p . The conver-

sion between vectors with real valued representation and complex valued

representation is of the following form

x =

⎡⎣x
x

⎤⎦ = Tpz⇐⇒ z =

⎡⎣u
v

⎤⎦ =
1

2
TH

p x, (2.17)

where the transformed complex valued vector contains the unconjugated

and conjugated version of vector x. This type of a representation is called

an augmented representation and it is always denoted with an underline

x ∈ C
2p
∗ . If we now represent our complex valued normal random vector

in augmented form

x =

⎡⎣x
x

⎤⎦ , (2.18)
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and equivalently the augmented mean as

μ =

⎡⎣μ
μ

⎤⎦ , (2.19)

we can then obtain the augmented covariance matrix

Σ = E (x− μ)(x− μ)H

=

⎡⎣Σ Σ̃

Σ̃ Σ

⎤⎦ , (2.20)

where

Σ = E(x− μ)(x− μ)H (2.21)

and

Σ̃ = E(x− μ)(x− μ)T. (2.22)

The covariance matrix Σ must be non-negative definite Hermitian, which

also implies that Σ̃
T
= Σ̃. These type of variables that have non-zero Σ̃

are called generalized complex normal random variables [39].

These definitions might at first seem redundant as it uses C
2p
∗ complex

normal random variables, which are equivalent to R
2p real valued normal

random variables z through a complex linear transformation. But in this

way, the probability density for x can be written in a very compact and

familiar form

p(x) =
1

πp
√|Σ| exp

(
−1

2
(x− μ)HΣ−1(x− μ)

)
. (2.23)

Also, the fact that there are algebraically two random variables x and x

might seem confusing at first, but x is exactly a conjugated version of x

and therefore the density can be written p(x) instead of p(x,x). Complex

normal random variables are completely characterized by μ, Σ, and Σ̃.

The notation x ∼ CN (μ,Σ, Σ̃) is typically used to describe such a random

variable.

2.6.1 Proper complex normal random variables

When Σ̃ = 0, the random variable is called a proper1 [39] or circular

symmetric random variable [41]. In this case the probability density is

1When this condition is not satisfied, the normal random variable is called im-
proper.
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simplified significantly and we do not need to use augmented variables or

matrices

p(x) =
1

πp|Σ| exp
[−(x− μ)HΣ−1(x− μ)

]
, (2.24)

An important characteristic of such random variables is that they re-

tain the circular symmetry also through complex linear transformations

[42]. We will refer to a proper complex normal random variable using

x ∼ N(μ,Σ).

In the case of radar measurements, the measurement noise of raw volt-

age receiver samples can in most cases be modeled as proper complex

normal random variables2. Therefore, we will concentrate on the theory

of proper complex random variables, with the knowledge that we can al-

ways extend all of results to also cover improper complex normal random

variables if necessary.

2.7 Statistical linear inverse problem

We will mainly discuss statistical linear models with additive proper com-

plex normal random noise. For a treatment on real valued inverse prob-

lems, refer to [28].

An important type of measurement equation is the so called linear model

that is linear with respect to parameters and contains a normally dis-

tributed random variable as an error term. This can be expressed using

the following type of matrix equation

m = f(x; ξ) = Ax+ ξ, (2.25)

where A ∈ C
k×n is called the theory matrix, m ∈ C

k is the measurement

vector, x ∈ C
n contains the unknown model parameters, and the error is

a proper complex normal multivariate random variable ξ ∼ N(0,Σ). We

can then write the likelihood function as

p(m|x) = 1

πk|Σ| exp
[−(m−Ax)HΣ−1(m−Ax)

]
, (2.26)

which has the following maximum at the point

x̂ML = (AHΣ−1A)−1AHΣ−1m. (2.27)

If we add a prior assumption that our unknown is a normal random vari-

able x ∼ N(0,Σprior), the posterior probability density function is

p(x|m) =
1

πk+n|Σ||Σprior|p(m)
exp

[
−(m−Ax)HΣ−1(m−Ax)− xHΣ−1priorx

]
.

(2.28)
2with the exception of self-noise in lag-profile inversion
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This has a maximum at the point

x̂MAP = ΣpostA
HΣ−1m, (2.29)

where

Σpost = (Σ−1prior +AHΣ−1A)−1. (2.30)

The estimator x̂MAP itself is a random variable with normally distributed

errors

x̂MAP = x+ ξ′, (2.31)

where ξ′ ∼ N(0,Σpost). Because a normal random distribution is uni-

modal, the conditional mean and the maximum a posteriori estimators

coincide with x̂MAP.

2.7.1 Stacked representation

In some cases it is numerically efficient to represent the statistical lin-

ear inverse problem with a prior covariance assumption Σprior in an al-

ternate form using a modified theory matrix Ã that is a stacked block

matrix. This modified theory matrix consists of the original theory matrix

and additional, possibly sparse regularization terms Pi that add to the

prior assumption Σprior. In many cases, constructing a prior covariance

assumption is also more intuitive when it can be constructed using one

small elementary block at a time.

The stacked formulation also makes it possible to use prior assumptions

when using the QR decomposition method for solving statistical linear in-

verse problems [43]. Full covariance matrix forms that result from dif-

ferent combinations of sparse covariance assumptions have been studied

e.g., by Roininen [44].

The stacked representation for statistical linear models is defined using

modified measurements m̃, theory matrix Ã and errors ξ̃

m̃ = Ãx+ ξ̃, (2.32)

which expands in stacked form to⎡⎢⎢⎢⎢⎢⎢⎣
m

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
A

P1

...

Pn

⎤⎥⎥⎥⎥⎥⎥⎦x+

⎡⎢⎢⎢⎢⎢⎢⎣
ξ

ξ1
...

ξn

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.33)

where A, m and ξ are the original the theory matrix, measurement vector

and measurement errors. The vector 0 = (0, · · · , 0)T ∈ C
N×1 is a zero
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vector and ξi are multinormal errors with E ξiξi
H = I. We also define the

modified measurement error covariance matrix

Σ̃ =

⎡⎢⎢⎢⎢⎢⎢⎣
Σ 0′ . . . 0′

0′ I . . . 0′
... . . .

0′ . . . 0′ I

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.34)

where 0′ = 00T. We also require that the stacked form regularization

terms Pi are related with the prior covariance assumption with the fol-

lowing relation

Σ−1prior =

n∑
i=1

PH
i Pi, (2.35)

where each of the stacked priors Pi can be a relatively sparse matrix, but

the equivalent prior covariance Σprior can be a full matrix.

Using the modified measurement equations, we now obtain the maxi-

mum likelihood estimate

x̂ML = (Ã
H
Σ̃
−1

Ã)−1Ã
H
Σ̃
−1

m̃

= (AHΣ−1A+Σ−1prior)
−1AHΣ−1m

, (2.36)

which is equivalent to the maximum a posteriori estimate with the prior

assumption that x ∼ N(0,Σprior). Thus, the stacked form representa-

tion also suggests an alternative interpretation of the linear statistical

inverse problem with a prior assumption. It is equivalent to adding new

“virtual” zero valued measurements to the model. This result can also

be generalized to include non-zero mean prior assumptions by using the

measurements to define the mean value.

2.7.2 Prior assumptions and bias

Prior assumptions are sometimes required in radar measurement mod-

els, although this can usually be avoided through the use of careful ex-

periment design. If prior assumptions have to be made, one should take

special care as they can also introduce bias. In practice, prior assump-

tions should be introduced only in situations where the maximum likeli-

hood estimate is unstable, i.e., the measurements do not provide enough

information about the unknown variables.

In statistics, bias is defined using the expected value of the estimator

Bias[x̂] = E x̂− x, (2.37)

where x̂ is the estimator and x is the true value of the unknown.
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We will only examine the case of linear theory with Gaussian errors and

possibly a Gaussian prior assumption, which was discussed in Section

2.7. In this case, assuming zero mean measurement errors, the bias for a

maximum a posteriori estimator is

b = x− (AHΣ−1A+Σprior
−1)−1AHΣ−1Ax. (2.38)

In essence, this is the expected value of the systematic error introduced

by the prior assumptions.

In this thesis, we will show that several commonly used radar estima-

tors and signal processing methods can be interpreted in the framework

of statistical inverse problems as maximum a posteriori estimators with

a prior assumption of the unknown radar target.

2.7.3 Complex to real transformation

As discussed in the previous section, a p-variate complex normal variable

is equivalent to a 2p-variate real normal random variable through a linear

transformation. However, in the framework of signal processing theory, it

is often easier to formulate and analyze a problem using complex val-

ued theory. If the model requires the use of the more general augmented

complex random variables, it is numerically more efficient to convert the

problem into a real valued problem. In the case of statistical linear in-

verse problems, the problem can be transformed from a complex valued

problem into a real valued problem using linear transformations.

Consider first a complex linear statistical inverse problem with complex

normal errors

m = Ax+ ξ, (2.39)

where A ∈ C
m×n and ξ ∼ CN(0,Σ, Σ̃). This can be converted into aug-

mented form

m = Ax+ ξ (2.40)

which expands to ⎡⎢⎣m
m

⎤⎥⎦ =

⎡⎢⎣A 0

0 A

⎤⎥⎦
⎡⎢⎣x
x

⎤⎥⎦+

⎡⎢⎣ξ
ξ

⎤⎥⎦ (2.41)

and using the inverse transform T−1 shown in Section 2.6, we can trans-

form the problem into a real valued linear problem

m′ = A′x′ + ξ′,
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which expands to

1

2
TH

mm =

(
1

2
TH

mATn

)(
1

2
TH

nx

)
+

(
1

2
TH

mξ

)
, (2.42)

from where we directly obtain the real valued theory measurement vec-

tors m′ ∈ R
2m and theory matrix A′ ∈ R

2m×2n. The real valued covariance

matrix Σ′ ∈ R
2m×2m is obtained using the expected value of E ξξH = Σ

with the help of the formula for the augmented covariance matrix in Eq.

2.20

m′ =
1

2
TH

mm =

⎡⎣Re{m}
Im{m}

⎤⎦ (2.43)

A′ =
1

2
TH

mATn =

⎡⎣Re{A} −Im{A}
Im{A} Re{A}

⎤⎦ (2.44)

Σ′ =
1

4
TH

mΣTm =

⎡⎣ERe{ξ}Re{ξT} ERe{ξ}Im{ξT}
E Im{ξ}Re{ξT} E Im{ξ}Im{ξT}

⎤⎦ . (2.45)

These can then be solved using formulas for real valued statistical inverse

problems. This also allows us to treat complex valued problems using real

valued analysis in cases where this is beneficial.

This type of a transformation is more important for complex problems

with errors that are not proper complex random variables. Problems with

proper complex normal errors can be efficiently solved as such using the

more straightforward proper complex valued random variable theory.

2.7.4 Tikhonov regularization

The Tikhonov regularization method [45] is a widely used scheme for solv-

ing ill-posed problems. Instead of minimizing the least squares ‖Ax−m‖2,
the idea is to minimize the following modified sum of squares

x̂t = argmin
x

‖Ax−m‖2 + ‖Lx‖2, (2.46)

where L is a suitably formed operator. This can be, e.g., used to enforce

smoothness of the solution. This can be shown to have a minimum point

at [28]

x̂t = (LHL+AHA)−1AHm. (2.47)

The most simple form of regularization utilizes a scaled identity matrix

L = δI, where δ ∈ R is a suitably chosen regularization parameter.

All forms of Tikhonov regularization are equivalent to a maximum a

posteriori estimator of a statistical linear inverse problem with diagonal
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measurement error covariance Σ = αI and a priori covariance structure

Σ−1prior =
1

α
LHL, (2.48)

which is evident from Equation 2.30. However, the statistical linear in-

verse problem formulation is more general, as it allows an arbitrary co-

variance structure ξ ∼ N(0,Σ) for the measurement errors.

2.7.5 Truncated singular value decomposition

Another often used method for regularizing ill-posed problems is the trun-

cated singular value decomposition (TSVD) method [46]. The intuitive

idea behind the method is that if the measurements do not provide enough

information about the unknowns, we remove poorly determined basis vec-

tors from the theory to improve the stability of the solution.

In order to get a statistical perspective of the problem, we will show

how the TSVD estimator can be understood as a maximum a posteriori

estimator for a statistical linear inverse problem with a certain type of

prior assumption about the unknown parameter vector x.

The basic idea behind singular value decomposition is to first represent

the theory matrix of a statistical linear inverse problem

m = Ax+ ξ (2.49)

using the singular value decomposition

A = UDVH, (2.50)

where D = diag (d1, . . . , dn) contains the singular values. The matrices U

and V contain the left and right singular vectors respectively. They are

unitary, i.e., UHU = UUH = I and VHV = VVH = I.

Using the singular value decomposition, the maximum likelihood ma-

trix equations (Eq. 2.27) solution with the assumption that the errors are

proper complex Gaussian with a diagonal covariance of the form E ξξH = I

can now be written as

x̂ML = (AHA)−1AHm = VD−1UHm. (2.51)

However, the term D−1 = diag
(
d−11 , . . . , d−1n

)
is unstable if it has elements

that are very small, and in the worst case it cannot be formed if one of

the elements is zero. The idea behind the truncated value method is to

modify the singular value matrix D−1 and set d−1i = 0 for singular values

that are below a certain threshold |di| < c

D+
c = diag

(
d−11 , . . . , d−1i , 0, . . . , 0

)
(2.52)
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and then solve the least squares equation with the modified singular

value matrix D+
c

x̂TSVD(c) = VD+
c U

Hm, (2.53)

which is the TSVD estimator, where c > 0 ⊂ R is a suitably selected

regularization parameter. In traditional inverse problems literature this

parameter is selected by inspecting the so called L-curve [47], which re-

sults when plotting the singular values in decreasing order. This however

is a fairly heuristic method.

The truncated singular value decomposition method can also be inter-

preted as a statistical linear inverse problem with a certain type of a prior

assumption about the unknown x. To show this, first consider again the

familiar maximum a posteriori estimator for a statistical linear inverse

problem with a prior assumption x ∼ N(0,Σp), which is defined as

x̂MAP = (AHΣ−1A+Σp
−1)−1AHΣ−1m. (2.54)

We also assume that ξ ∼ N(0, I). Note that Σ need not be I, as we can

whiten the noise by using a transformation of the form Λ−
1
2EH, where

EΛEH is the eigenvalue decomposition of Σ.

We now constructively express the prior covariance matrix using an

eigenvalue decomposition for conjugate symmetric matrices

Σp
−1 = Vdiag (s1, ..., sn)V

H = VΛVH, (2.55)

where V is intentionally selected to be the matrix containing the right sin-

gular vectors of the singular value decomposition of A. Using the guess,

we can now get a very simple version of the maximum a posteriori esti-

mator

xMAP = V(DDH +Λ)−1DHUHm = VD†UHm, (2.56)

where

D† = diag

(
d1

|d1|2 + s1
, ...,

dn
|dn|2 + sn

)
. (2.57)

By comparing D† and D+
c , we observe that if

si =

⎧⎨⎩ 0 when |di| > c

∞ otherwise
, (2.58)

then the truncated SVD estimator would coincide with the maximum a

posteriori estimator. To examine what the prior assumption in this case

is, let us examine the distribution of linearly transformed unknowns

y = VHx, (2.59)
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which would have the following form of covariance matrix

EyyH = Λ−1 = diag
(
s−11 , . . . , s−1n

)
, (2.60)

which corresponds to a prior density of the form

p(y) =
∏
i

1

πs−1i

exp

(
−|yi|

2

s−1i

)
, (2.61)

where yi is an element of the transformed vector y. This means that the

truncated SVD estimator can be obtained when applying an improper

prior in transformed coordinates VHx. While it is not possible to form

a normalized density function for this type of a prior assumption, it is

possible to inspect the unnormalized distribution, and it is possible to

form a maximum a posteriori estimator, which has a maximum point cor-

responding to xMAP. This prior has an infinite variance (flat prior) for

the transformed coordinates with corresponding singular values that are

larger than the threshold, and a Dirac delta shaped distribution centered

at zero for transformed coordinates with corresponding singular values

that are lower than the threshold.

This prior assumption also suggests a more general approach to trun-

cated SVD that could be taken. Instead of setting the prior assumption

si = ∞ when |di| < c, one could use a much smaller finite value, i.e., reg-

ularize less, and still maintain some of the information at transformed

coordinate points that would be otherwise completely ignored.

2.7.6 Correlation estimator

There are many cases, especially in the traditional radar pulse decom-

pression methodology, where unknown variables are estimated by multi-

plying the measurements with the conjugate transpose of the theory ma-

trix. In a certain sense, this can be understood as correlating the mea-

surements with the theory. The advantages of this method are two-fold:

it is stable and it is also very efficient to implement numerically. However,

as with Tikhonov regularization and truncated SVD, the method also in

most cases results in bias. In this section we will show how the correlation

estimator can be understood as a maximum a posteriori estimator with a

certain type of prior assumption about the unknown parameter vector x.

Consider a linear measurement equation of the form

m = Ax+ ξ. (2.62)

Assuming ξ is zero mean proper Gaussian random vector with covariance

E ξξH = Σ = σ2I (2.63)
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the maximum likelihood estimator is

xML = (AHA)−1AHm. (2.64)

Now if the theory is orthogonal

AHA = αI (2.65)

with α ∈ R, the maximum likelihood estimator can be simplified to

xML = α−1AHm, (2.66)

which is basically correlating the measurements with the theory. There is

no need to calculate the covariance matrix (AHA)−1, which is a huge ad-

vantage numerically. There are several practical examples where this is

true: deconvolution using a perfect radar transmission code, or a discrete

Fourier transform model.

Now if AHA �= αI, but one still insists on estimating the unknown pa-

rameters using the same efficient formula

xCE = α−1AHm, (2.67)

the resulting estimator is biased and the result does not correspond to a

maximum likelihood estimator, and α is more of a scaling factor. We will

call this approach the correlation estimator. Spectral estimation using the

Lomb-Scargle periodogram [48] is performed in this way. The matched fil-

ter [49] approach to deconvolving radar transmission envelopes is another

example of a situation where this approximation is used (either intention-

ally, or by coincindence).

The correlation estimator xCE can also be understood as the maximum

a posteriori estimator of a statistical linear inverse problem with a prior

assumption that the unknown x is a proper Gaussian random variable

x. To show this, consider the singular value decomposition of the theory

matrix

A = UDVH, (2.68)

where D = diag (d1, ..., dn) and di ∈ C. We then assume that there is

some “magic” prior Σp that results in a maximum a posteriori solution

that is equivalent to the correlation estimator. Writing this prior using an

eigenvalue decomposition for symmetric matrices

Σprior
−1 = Vdiag (s1, ..., sn)V

H = VΛVH (2.69)
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using the same orthonormal matrix V as in the singular value decomposi-

tion of A, we get the following form of the maximum a posteriori estimator

xMAP = V(DDH + σ2Λ)−1DHUHm. (2.70)

Now, if DDH + σ2Λ = αI, then in fact

xMAP = α−1AHm, (2.71)

which has the same form as the correlation estimator xCE, and the under-

lying “hidden” prior is

Σprior = Vdiag

(
σ2

α− |d1|2 , . . . ,
σ2

α− |dn|2
)
VH, (2.72)

as long as α ≥ |di|2 for all squares of singular values. If this requirement

is not satisfied, there is no underlying covariance assumption, because a

covariance matrix has to have non-negative real valued eigenvalues. In

this case, the resulting estimator does not have an interpretation of a

prior covariance assumption. In the case where α = |di|2 the prior distri-

bution is improper, as it has an infinitely wide variance prior distribution

on this axis. This corresponds to a flat or non-informative prior in the cor-

responding axis. Still, it is possible to, e.g., study the bias of the estimator,

which is

b = x− α−1AHx. (2.73)

In the case of stationary radar targets, the bias is often studied for a radar

target consisting of a single point x = (0, . . . , 0, 1, 0, . . . , 0)T. The artefacts

caused by the estimator bias are called range sidelobes in this case.

When the theory is sufficiently orthogonal (AHA ≈ αI), the correlation

estimator is a good first order approximation of the maximum likelihood,

or a weakly regularized maximum a posteriori estimate. But it is impor-

tant to be aware of what type of a prior assumption or bias is associated

with this estimator.

2.8 Toeplitz models

When a matrix has constant values along its diagonals Ai,j = Ai+1,j+1, it

is called a Toeplitz operator [25, 26]. This type of an operator is nearly

ubiquitous in radar measurement theory. For example, consider the fol-

lowing discretized convolution equation

mt =
∑
r

σrεt−r + ξt, (2.74)
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which can be used to describe backscatter from a range spread coherent

target. Here the unknown convolved variables are represented with σr,

the convolution kernel or the radar transmission envelope is εt, and the

last term ξt ∈ C is the measurement error. This equation can be described

with a Toeplitz form linear theory matrix:

m = Ax+ ξ, (2.75)

or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

m2

m3

...

mm+n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1 0 . . . 0 0

ε2 ε1 . . .
...

...

ε3 ε2 . . . 0 0
... ε3 . . . ε1 0

εm−1
... . . . ε2 ε1

εm εm−1
...

... ε2

0 εm . . . εm−2
...

0 0 . . . εm−1 εm−2
...

...
... εm εm−1

0 0 0 . . . εm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

σ3
...

σm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2

ξ3
...

ξm+n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.76)

In addition to range spread coherent targets, also range and Doppler

overspread targets can be modeled with a convolution model [20, 21].

Toeplitz matrices are also important as measurement errors are almost

always characterized with a covariance matrix of Toeplitz form. In ad-

dition to this, incoherent scatter from a volume filled with independent

scatterers can be assumed to be a stochastic process characterized by a

covariance matrix of this form [20, 4, 22]. Stochastic processes character-

ized by this type of a covariance matrix are called weakly stationary, or

wide sense stationary processes [50].

Toeplitz matrices can also be used to represent arbitrarily high dimen-

sional convolutions, so the same considerations also apply for two dimen-

sional convolutions that are commonly encountered in image processing.

2.9 Circulant model

Circulant matrices are a special class of Toeplitz matrices that have both

numerical and analytic properties that make them useful. This section

will give some of the important results described in more detail in [25], or

even more detail in [26] or [51].
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Circulant matrices C ∈ C
n×n have the property that

Ck,j = cj−k mod n, (2.77)

i.e., each row is cyclically shifted by one compared to the previous row

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2
... c1 c0

. . . ...

cn−2
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.78)

Furthermore, all circulant matrices have an eigenvalue decomposition of

the form

C = UΨUH, (2.79)

where U is a discrete Fourier transform matrix with ωn = e−2πi/n

U =
1√
n

⎡⎢⎢⎢⎢⎢⎢⎣
ω0·0
n ω0·1

n . . . ω
0·(n−1)
n

ω1·0
n ω1·1

n . . . ω
1·(n−1)
n

...
... . . . ...

ω
(n−1)·0
n ω

(n−1)·1
n . . . ω

(n−1)·(n−1)
n

⎤⎥⎥⎥⎥⎥⎥⎦ (2.80)

and Ψ = diag (ψ1, . . . , ψn) is a diagonal matrix containing the discrete

Fourier transform of the first row of the circulant matrix C

ψm =
n−1∑
k=0

cke
−2πimk/n. (2.81)

The matrix U is unitary, i.e., UUH = UHU = I. This has several implica-

tions:

1. The matrix multiplication of two circulant matrices commutes CD =

DC. If C = UΨcU
H and D = UΨdU

H, then

CD = UΨcU
HUΨdU

H = UΨcΨdU
H, (2.82)

where ΨcΨd is the product of two diagonal matrices, which commutes

and is a diagonal matrix, and thus CD is also a circulant matrix.

2. The sum of two circulant matrices is a circular matrix of the form

C+D = U(Ψc +Ψd)U
H. (2.83)

3. The inverse of a circular matrix is

C−1 = UΨc
−1UH, (2.84)

and C is non-singular if ψm �= 0 for all m.
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These are essentially the properties of discrete Fourier transformed se-

quences, which is not a coincidence, as U and UH correspond to the for-

ward and inverse discrete Fourier transform operators.

2.9.1 Additivity of spectral information

Consider a block matrix that consists of stacked circulant matrices

C =

⎡⎢⎢⎢⎣
C1

...

Cn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
UΨ1U

H

...

UΨnU
H

⎤⎥⎥⎥⎦ , (2.85)

where Ci ∈ C
N×N . These types of stacked circulant matrices are often

encountered in radar models where the unknown radar target is constant

over multiple radar transmission pulses, i.e., the convolution measure-

ment is repeated multiple times and the unknowns do not change during

this time. The statistical analysis of such models requires operations of

the form CHC and CHm, where m ∈ C
Nn is a vector. Because of the diago-

nalization property of circulant matrices, these turn out to have relatively

simple solutions of the form

CHC = U

(
n∑

i=1

|Ψi|2
)
UH (2.86)

and

CHm = U

(
n∑

i=1

ΨiMi

)
(2.87)

where Ψi is a diagonal matrix containing the discrete Fourier transform

of the first row of Ci and Mi is a diagonal matrix containing the discrete

Fourier transform of the ith block of vector m of size N .

It should be noted that similar spectral additivity also applies to arbi-

trary repeated measurements where the singular value decomposition of

the repeated measurement has the same left and right hand vectors.

2.9.2 Kolmogorov-Wiener filtering

One important application for circulant matrices is in filtering. Consider

first a standard statistical linear inverse problem

m = Ax+ ξ (2.88)

with a Toeplitz form theory matrix A = UÂUH and error covariance ma-

trix ξ = UΣ̂UH. Here Â = diag (â1, . . . , ân) is the discrete Fourier trans-

form of the first row of the theory matrix A and Σ̂ = diag (σ̂1, . . . , σ̂n) is
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the Fourier transform of the first row of the error covariance matrix Σ.

In general, in this section all matrices marked with a hat will be diag-

onal matrices with the frequency domain representation of the circulant

matrix on the diagonal.

Because all of the matrices involved are of Toeplitz form, the maximum

likelihood can be reduced to a very simple form

xML = (AΣ−1A)−1AHΣ−1m (2.89)

= (UÂ
H
UHUΣ̂

−1
UHUÂUH)−1UÂ

H
UHUΣ̂

−1
UHm (2.90)

= UÂ
−1

UHm (2.91)

UHxML = Â
−1

UHm (2.92)

This essentially means that the maximum likelihood estimator is division

in frequency domain. It is important to notice that the only matrix oper-

ation involved is multiplication with UH and U, and these correspond to

the forward and inverse discrete Fourier transforms. This type of a max-

imum likelihood estimator of a convolution problem is called the inverse

filter.

The error covariance of the inverse filter estimator is a circulant matrix

of the form

Σpost = (AHΣ−1A)−1 = UΣ̂(ÂÂ
H
)−1UH. (2.93)

Now if one were to assume a priori that the unknown x is also a normal

random variable with a circulant covariance matrix

Σprior = UΣ̂priorU
H, (2.94)

then our MAP estimator can be obtained as

xMAP = (AHΣ−1A+Σ−1prior)
−1AHΣ−1m (2.95)

= U((Â
H
Â+ Σ̂Σ̂

−1
prior)

−1Â
H
)UHm, (2.96)

where the central term

(Â
H
Â+ Σ̂Σ̂

−1
prior)

−1Â
H

(2.97)

contains only diagonal matrices containing the freqeuency domain repre-

sentation of the theory and covariance matrices.

This type of MAP estimators were for the first time introduced by Kol-

mogorov [27] and Wiener [52], and this solution is typically referred to as

a Kolmogorov-Wiener filter. The continuous frequency domain estimator

is typically represented in the following form

x̂MAP(f) =
â(f)m̂(f)

|â(f)|2 + σ̂2(f)
σ̂2
p(f)

, (2.98)
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where all of the Toeplitz operators and unknowns are represented in their

Fourier domain form. This estimator also corresponds to Tikhonov regu-

larization for Toeplitz formed theory and covariance matrices.
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3. Numerical methods

All radar measurement analysis problems can be seen as statistical prob-

lems that involve inspection of the a posteriori probability density func-

tion p(x|m) of the model parameters, given the measurements. Due to

the data-intensive nature of radar measurements, computational perfor-

mance of the numerical methods used to inspect p(x|m) plays an impor-

tant role.

In this chapter, we will discuss several important numerical methods

that can be applied to radar measurement problems. We will only give an

overview of the methods and try to give an idea of what their strengths

and weaknesses are. We won’t go into very specific details or underlying

proofs of these methods, since they can be found in the supplied refer-

ences.

3.1 Fast Fourier Transform

Perhaps the single most important numerical algorithm for radar data

analysis is the Fast Fourier Transform (FFT) [53]. It is an efficient algo-

rithm for computing the discrete Fourier transform

x̂k =

N−1∑
t=0

xte
− 2πi

N
kt k = 0, . . . , N − 1, (3.1)

and its inverse

xt =
1

N

N−1∑
k=0

x̂ke
2πi
N

kt t = 0, . . . , N − 1. (3.2)

Here x̂k is the frequency domain representation of the discrete time signal

xt.

The main advantage of FFT is that it is has a very slowly growing com-

putational complexity. Complex-valued vectors of lengthN can be forward

or inverse transformed in 5N log2N floating point operations [54] instead
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of the O(N2) complexity of a more naive discrete Fourier transform imple-

mentation. Because of this, a common optimization recipe for numerical

algorithms is to attempt to utilize the FFT in some way.

The different applications of FFT are too numerous to exhaustively list

here. On pages 2 and 3 in Brigham [55] there are 78 different topics

in physics, mathematics and engineering where FFT can be applied, but

this is just the tip of the iceberg. In the case of signal processing and sta-

tistical analysis of radar measurements, the method can be used to e.g.,

implement an efficient convolution operation, perform spectral analysis,

perform beamforming, or to approximate Toeplitz-formed matrix opera-

tions. In addition to calculating a discrete Fourier transform, FFT can

also be used to approximate many related transforms such as the discrete

Fourier transform with non-uniformly spaced times and frequencies in

arbitrary dimensions [56].

The FFT algorithm has been used ubiquitously in the underlying work

for this thesis. In Section 5.3 we will show how it can also be used to

perform a grid search for the Doppler shift parameter of a moving point-

like target. In Section 5.6.1 we will show how a wide band linear chirped

transmission target backscatter maximum likelihood estimator can be ob-

tained with FFT. The algorithm can also be used to efficiently calculate

the variance of radar target estimates [57, 4, 12].

3.2 Linear problems

Linear statistical problems are ones that can be described using the fol-

lowing type of matrix equation

m = Ax+ ξ, (3.3)

where m and x are the measurement and model parameters vectors. The

theory matrix A relates the model parameters with the measurements.

The measurement errors ξ are often assumed to be normal random vari-

ables ξ ∼ N(0,Σ).

While the matrix equations given in Section 2.7 can be directly used to

solve these types of problems, they are not necessarily optimal in many

practical cases. Often the theory matrix has some sort of properties that

can be used to efficiently compute the maximum a posteriori estimator,

and possibly the posteriori covariance matrix too. For example, if the

linear theory matrix is Toeplitz-formed, it is possible to diagonalize the
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theory using FFT and transform the problem into vector operations, re-

ducing the complexity from O(N3) to O(N logN) with very little or no

approximation errors.

When the theory matrix has a lot of rows and relatively small amount

of columns (parameters), one efficient algorithm for estimating the maxi-

mum a posteriori parameters is the QR decomposition method [58]. The

method also has the advantage that it can be calculated using a small

number of theory matrix rows at a time if necessary, which reduces the

amount of required run-time memory. Parameters can also be marginal-

ized out on the fly, which makes the method applicable also to Kalman

filtering type problems [43].

If the theory matrices are very large, but relatively sparse, one can re-

sort to iterative methods to solve the problem [59]. In this case, there

is only need to repeatedly evaluate Au or AHv in each iteration, where

u and v are arbitrary vectors. These operations are typically relatively

efficient if the theory matrix is sparse.

If the theory matrix is sufficiently close to orthogonal, the correlation

estimator x̂ = c−1AHm discussed in Section 2.7.6 is relatively efficient

computationally. This type of an approach is in fact relatively popular in

radar signal processing, and it is essentially what a typical radar corre-

lator does, although this matrix operation is typically implemented us-

ing FFT. There is no need to calculate the posteriori covariance matrix,

which typically is much more dense than the theory matrix. However,

one should be aware of the bias introduced if the theory is not close to

orthogonal, AHA �= cI. We will discuss the resulting bias more in Section

5.5.2.

3.3 Non-linear inverse problems

In some cases, typically when fitting a physical theory to radar measure-

ments, the measurement model

m = f(x; ξ) (3.4)

cannot be represented in linear form. In some cases it is possible to lin-

earize the problem and use methodology from linear inverse problems to

study the posterior probability density p(x|m). Another possibility is to

use some other means to study the underlying probability distribution

p(x|m), e.g., by using an optimization algorithm to search for the peak

53



Numerical methods

of the distribution, or by using Monte-Carlo methods to estimate the full

shape of the distribution.

In radar measurements, non-linear problems are typically encountered

when fitting a physical theory to the measurements. A plasma parame-

ter fit to the estimated incoherent scatter autocorrelation function is one

example of such a problem.

3.3.1 Linearized model

Assume that our model is described by an analytic complex valued func-

tion f : Ck → C
n and the measurement equation is of the form

m = f(x) + ξ, (3.5)

where ξ ∼ N(0,Σ). It is possible to approximate the equation by lineariz-

ing f using a first order Taylor series expansion around some point x0

f(x) ≈ f(x0) + Jx, (3.6)

where Ji,j = ∂fi
∂xj

is the Jacobian of f(x) evaluated at x0. This results in

the following linear measurement equation

m− f(x0) = Jx+ ξ, (3.7)

which has the following maximum likelihood solution

x̂ = (JHΣ−1J)−1JHΣ−1(m− f(x0)). (3.8)

This however only applies around the point x0 and therefore x̂ is not nec-

essarily the true maximum likelihood estimator. In order to obtain an

improved estimate, we can iteratively solve the problem around the pre-

vious estimate:

x̂n+1 =
(
Jn

HΣ−1Jn

)−1
Jn

HΣ−1(m− f(x̂n)), (3.9)

where Jn is the Jacobian of f(x) at x̂n. This algorithm is known as the

Gauss-Newton algorithm. A variation of this is the Levenberg-Marquardt

algorithm [60]

x̂n+1 =
(
Jn

HΣ−1Jn + λndiag
(
Jn

HΣ−1Jn

))−1
Jn

HΣ−1(m− f(x̂n)), (3.10)

where λn ∈ R
+ is a regularization parameter used to control the conver-

gence of the iteration. Notice that this also corresponds to a prior covari-

ance assumption of the unknown parameters x. The posteriori errors can

also be estimated in a similar way

Σpost =
(
Jn

HΣ−1Jn

)−1
. (3.11)
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It should be noted that the error covariance matrix estimated in this way

is not necessarily a very good one if the true underlying probability distri-

bution is not close to a unimodal Gaussian distribution. Also, it is possible

that the iteration procedure converges into a local maximum of the pos-

sibly multimodal probability density function, resulting in incorrect MAP

or ML estimators.

3.3.2 Optimization algorithms

Optimization algorithms are algorithms that attempt to maximize or min-

imize the value of a function. They can readily be applied to maximize the

posteriori density p(x|m) in order to find a maximum a posteriori esti-

mate. In fact, the iteration given in the previous section is one such al-

gorithm. Other examples are simulated annealing [61], the Nelder-Mead

algorithm [62], and differential evolution [63].

One of the largest problems when applying optimization algorithms to

non-linear models with multimodal distributions is that they can con-

verge to a local maximum of the probability distribution. Many of the

algorithms are designed to avoid this, but unless the algorithms are re-

peated infinitely many times at different random initial positions, there

is still a possibility that this can happen.

Selecting a good initial approximation is one way to minimize the risk of

converging to a local minimum. However, this requires good knowledge of

what the unknown parameters are, which is not always the case. Another

possibility is to combine a simple grid search with some optimization algo-

rithm. Inspecting the residuals ‖f(x̂MAP)−m‖2 can also give some idea of

how good the fit is. However, there is no guaranteed method to completely

avoid converging to a local minimum in practice. Most of the radar mea-

surement problems that involve fitting a non-linear theory into measure-

ments are inherently multimodal, with a large number of local maxima of

the probability density.

3.3.3 Markov chain Monte-Carlo

Markov chain Monte-Carlo (MCMC) [64] methods can be used to ran-

domly draw samples x(i) from an arbitrary density π(x). This density

is typically either the likelihood function p(m|x) or more commonly the

posteriori probability density p(x|m). These samples can then be used to

estimate marginal probability densities using histograms, or to produce
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conditional mean estimates by sample averaging

x̂CM =

ˆ
xp(x|m)dx ≈ 1

N

N∑
i=1

x(i). (3.12)

The method can also be used as an optimization algorithm, to search for

the peak of the distribution.

Perhaps the most common form of MCMC is the Metropolis-Hastings

sampling method [65], which is a very general algorithm that allows much

freedom when implementing it [66]. Improvements, such as the Delayed

Rejection Adaptive Metropolis-Hastings (DRAM) [67] method allow the

study of more complicated distribution shapes with higher sampling effi-

ciencies. A variant of the algorithm also exists for sampling from multiple

different models [68, 69], which can be used from model comparison.

The only necessary prequisite for the Metropolis-Hastings algorithm is

that one can evaluate the density cπ(x) up to some constant c ∈ R. This

constant is canceled out in each step of the algorithm, so it doesn’t need

to be known. One also needs define a proposal distribution q(x,x′), which

provides proposal samples x′ when our current sample in the chain is x.

The choice of this function can be fairly arbitrary. One fairly commonly

used proposal distribution is the random walk distribution q(x,x′) = q(x−
x′), where x′ = x+ ξ, and ξ is a small random increment to x.

Finally, the probability that we accept the proposed jump from x to x′ is

defined as

α(x,x′) = min

(
π(x′)q(x′,x)
π(x)q(x,x′)

, 1

)
. (3.13)

Using these definitions, the algorithm can then be summarized as follows:

• Initialize x(j) to some arbitrary value.

• Repeat for j ∈ {2, . . . , N}.

• Generate x′ from the proposal distribution q(x(j), ·).

• Generate u from uniform distribution U(0, 1).

• If u < α(x(j),x′), then set x(j+1) = x′.

• Else set x(j+1) = x(j).

• The samples {x(1), . . . ,x(N)} are samples from π(x). Typically a fraction
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of the samples in the beginning are ignored.

Most of the difficulties with the method arise from finding a proposal

distribution q(x,x′) that results in an efficient sampling from the distri-

bution π(x). Another difficulty with the MCMC methods is that they are

not as fast as optimization methods.

The MCMC method has been used for example in [19] to study the full

distribution of plasma parameters.
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4. High Power Large Aperture Radars

4.1 History

After the theoretical prediction of the existence of electromagnetic waves

by James Clerk Maxwell in 1864, Heinrich Hertz was the first to confirm

them in 1887. He also noticed experimentally that electromagnetic waves

are reflected from certain materials [70].

In 1904, Christian Hülsmeyer was the first to successfully build a de-

vice (called “Telemobiloskop”) for detecting ships using a simple spark

gap transmitter. The system could detect ships at distances of up to 3 km.

Hülsmeyer also designed a system for ranging targets using triangulation

and the intensity of the return. Despite successful public demonstrations

of the Telemobiloskop, Hülsmeyer failed to attract commercial interest

and his invention was forgotten.

In 1925, Appleton and Barnett [71] used the interference between the

ground wave and the ionospheric reflection of BBC transmissions to prove

the existence of an ionized layer in Earth’s atmosphere, which had been

hypothesized earlier by Lodge, Kennelly and Heaviside [72]. In the next

year, Breit and Tuve [73] used the time of flight of pulsed 4.3 MHz radio

transmissions to infer the reflection altitude of the conducting layer in

the ionosphere. Nowadays, this type of radar soundings are routinely

performed by instruments called ionosondes all around the world. Instead

of using a single frequency, these instruments typically cover a wide band

of different frequencies between 0 and 30 MHz in order to determine the

electron density profile of the ionosphere. We will discuss an ionospheric

chirp sounding model in Section 5.6.1.

Radar devices were also actively developed for military purposes since

the late 1920s and all major countries utilized radar systems in the second
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world war, mainly for aircraft surveillance. The acronym RADAR itself

originates from the name of a US military program and comes from the

words Radio Detection And Ranging.

Today radar and sonar instruments are widespread and part of everyday

life. They are used for everything between mapping the rings of Saturn

[74] to measuring the content of the soil beneath our feet [75]. For a broad

overview on different uses of radars, refer to [76] or [77].

4.2 Operating principles

In general, a radar system can be thought of as a collection of arbitrar-

ily positioned transmitters εi(t) and receivers mi(t) which can modify and

record the electromagnetic field with the intention of gaining information

about the medium Ω in which the electromagnetic waves propagate. Ex-

amples of several different types of radar systems are shown in Fig. 4.1.

A radar with shared transmitter and receiver antenna is perhaps the

most common type of radar. Most radars also have a narrow beam, which

makes it possible to measure a small region of space at one moment of

time. The most common radar measurement consists of repeated pulsed

transmissions, which scatter from the medium, and are subsequently mea-

sured with a receiver that determines the scattering power and deter-

mines the distance of the scatterer using the time delay between trans-

mission and reception. In addition to time of delay and scattering power,

there are also many other parameters that can typically be measured with

a radar system. These include e.g., the Doppler spectrum of the scattering,

scattering power at different polarizations, and the time of delay between

different polarizations.

Radar systems can also have receivers located apart from the transmit-

ter. An ionospheric tomography measurement [78] is one such example.

This measurement is done using multiple ground based receiver antennas

that measure the transmitted signal from a satellite. The receivers then

determine the relative time difference between different ray paths and

then reconstruct a two or three dimensional map of the ionospheric in-

dex of refraction, which is related with electron density and tropospheric

moisture content [79]. The receivers can also determine the accurate orbit

of the satellite.
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Figure 4.1. Conceptual diagrams of several different types of radars. Top left: A modern
phased array radar with control over the signal going into each of the an-
tenna elements, allowing the most flexibility in terms of, e.g., beam stearing
and interferometry. Top right: An example of an inverse synthetic aperture
radar where the measured object (the Moon) and the observe (on Earth) is
moving with respect to each other. This movement is used to allow high reso-
lution imaging of the object by simulating a huge antenna with the help of the
relative movement of the observer and the target. Middle left: High power
large aperture radars typically have narrow beam widths. They can also have
external receiving antennas observing the common volume, possibly at multi-
ple locations simultaneously if phase array receivers are used. Middle right:
An ionospheric tomography measurement is made with a transmitter on a
satellite and ground based receivers measuring the signal delay caused by
ionospheric refraction along the ray path. Bottom left: An ionosonde consists
of a transmitter and one or more receivers measuring the reflection height
at multiple different frequencies. Bottom right: An interferometric meteor
radar has a wide transmitter beam and multiple receiving antennas, which
allow meteor trail position determination using echo arrival time difference
between receivers.
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4.3 High power large aperture radars

High power large aperture radars, which are the main topic of this the-

sis, were first envisioned as instruments that can measure the incoherent

scatter from free electrons in the Earth’s ionosphere, the sun, and also

to obtain echoes from various planetary targets [80]. The first experimen-

tal measurement of ionospheric incoherent scatter was soon thereafter re-

ported by Bowles [81], and many of the other goals were also soon realized

when the Jicamarca Radio Observatory [82] and the Arecibo Ionospheric

Observatory [83] were built. Both these radars are still the largest of their

kind in the world, and they have contributed much to our knowledge of

Earth’s atmosphere and space. The Jicamarca radar located in Peru has

a square shaped phased array antenna field with dimensions of 300×300

m. The Arecibo Ionospheric Observatory in Puerto Rico has a spherical

dish with a diameter of 305 meters.

Since the early days, many more high power large aperture radars have

been built in various places around the world: These include the Millstone

Hill, Svalbard, Tromsø UHF, Tromsø VHF, Kharkov, Irkutsk, MU, Son-

drestrom, PROUST, Poker Flat, and Resolute Bay radars. There are also

various large radars of comparable size around the world used for space

surveillance purposes. The most recently built Poker Flat and Resolute

Bay radars are digital phased array radars, which allow fast beam steer-

ing and allow 3D imaging of the ionosphere. Some of the listed radars are

shown in Fig. 4.2.

As the name already suggests, high power large aperture radars are

radars with large antenna aperture and large transmission powers. As

the beam width of an antenna is typically a reciprocal of collecting area,

these radars also have fairly narrow beams. They also typically trans-

mit fairly long coded pulses in order to increase the average transmitted

power. In some bi-static planetary radar applications the transmission

can be continuous. Transmission powers, aperture sizes and beam widths

are listed in Table 4.1 for many of the worlds high power large aperture

radars.

While the primary purpose of most high power large aperture radars is

the study of ionospheric plasma, they can also be used for a large variety

of other uses, including meteor [84, 85], space debris [5, 6], planetary [86],

and lower atmospheric [87] studies.
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Figure 4.2. High-power large aperture radar systems of the world. Photograph cred-
its: Arecibo (NAIC), Jicamarca (JRO), Tromsø (EISCAT), Svalbard (Tony
van Eyken), Millstone Hill (MIT Haystack), Kharkiv (Institute of Ionosphere,
Kharkov), Poker Flat and Resolute Bay (Craig Heinsleman).
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Name Frequency Antenna size Gain Power Beam width

(MHz) (m) (dBi) (MW) (deg)

Jicamarca1 49.92 300×300 43 2 1

Arecibo 430 305 60 2.5 1
6

Arecibo2 2380 305 71 1

Millstone Hill3 440 68 45.5 2.5 0.6

Millstone Hill 440 46 42.5 2.5 1.2

Svalbard3 500 42 45 1 0.6

Svalbard 500 32 42.5 1 2

Tromsø UHF 929 32 48 2 0.5

Tromsø VHF 224 120× 40 46 1.5 0.6× 1.7

Søndrestrøm 1290 32 49 3.5 0.5

Poker Flat1 449 30× 30 43 2 1

Resolute Bay1 449 30× 30 43 2 1

Kharkiv 158 100 42 2 1.3

Irkutsk 158 246× 12.2 38 3.2 0.5× 10

MU1 46.5 103 32 1 3.6

1 Phase array
2 S-band transmitter mainly used for planetary radar.
3 Fixed zenith antenna.

Table 4.1. A list of the specifications for several high power large aperture radars in the
world.
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4.4 Incoherent scatter from ionospheric plasma

One of the first applications of high power large aperture radars was the

measurement of the incoherent scattering from the electrons [80] of the

Earth’s ionosphere moving in random thermal motion. The movements of

the electrons within the plasma are influenced by the heavier ions, which

results in a unique double humped spectrum observed for incoherent scat-

tering from the E- and F-regions of the ionosphere. The theory that relates

the backscatter spectrum to the various plasma parameters was formu-

lated by several authors [88, 89, 90, 91, 92, 93]. For a good overview of the

theory incoherent scattering from ionospheric plasma, refer to [94].

This theory can then be used to infer various plasma parameters from

incoherent scatter spectrum measurements. In typical situations, one can

measure electron density, ion temperature, electron temperature and bulk

velocity [95, 96]. These measurements, however, typically rely on various

assumptions on ion composition. For a study on the information content

of incoherent scatter spectrum measurements, refer to [97].

4.5 Meteor echoes

Each year 2000 to 200000 tons of micrometeors burn up in Earth’s atmo-

sphere (see [98] and references therein). These mostly consist of inter-

planetary dust separated from comets or asteroids. Radars can be used

both for astronomical [99, 100] and atmospheric studies [101, 102] of these

meteors. While most of the meteor radar work has been done with rela-

tively small interferometric radar systems [103], there has recently been

a interest in using high power large aperture systems for meteor studies

[104, 85, 84].

Due to the narrow beam width and higher frequencies, most high power

large aperture radars do not directly observe meteor trail echoes that are

routinely observed using meteor radars [103]. Instead, they observe the

ionized plasma in the direct vincinity of the ablating meteor itself, which

is often called a meteor head echo. This allows more direct measurements

of the ablation process [105], as well as better trajectory measurements

using interferometric or multistatic means [106, 85].

In some cases, the detection rates (up to 2000 detections per hour with

the EISCAT VHF system) are actually so high that they cause serious

problems for D-region ionospheric measurements unless removed during
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the processing [19]. As a byproduct of this removal, it is possible to obtain

measurements of meteor head echoes. However, most of the echoes mea-

sured with high power large aperture radars are monostatic detections,

which do not allow unambiguous orbital elements measurements. Still, it

is possible to perform statistical studies of interactions with meteors and

the atmosphere.

4.6 Space debris

Space debris is an ever growing environmental problem occurring in space

[107]. After over 50 years of rocket launches, our near space is littered

with approximately 106 objects larger than 1 cm in diameter, weighing a

total of 5500 tons [108]. As the atmosphere is very thin in near-Earth

space, these objects do not deorbit very quickly, causing danger to Earth-

orbiting spacecraft for tens or hundreds of years to come.

Once these objects are in space, there is also a probability that they will

eventually collide with each other and create even more debris. As the

probability of in-flight collisions increases as a function of debris in orbit,

a catastrophic collisional cascade process that renders regions of near-

Earth space unusable is a real risk. This scenario is often referred to as

the Kessler syndrome [109]. Recent simulations suggest that some orbital

regimes have already passed the critical point where random collisions

between space objects will increase the number of objects even if no new

space launches would be made [110].

High power large aperture radars are important for statistical measure-

ments of low earth orbit1 space debris as they are more sensitive than

space surveillance radars, which can typically only track objects that are

larger than 10 cm in diameter. High power large aperture radars, on the

other hand, can detect and track Earth orbiting objects that are larger

than 1 cm in diameter [5].

Most of the measurements performed with non-military high power large

aperture radars are so called beam-park measurements [111] where the

antenna is positioned at a fixed pointing. During a 24-hour period, while

the Earth rotates around its axis, a representative statistical sample of

debris is measured, containing information on orbital elements of the de-

bris. The time of day provides information about the longitude of the

ascending node, while the Doppler shift gives information about the incli-

1300-3000 km
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Figure 4.3. A monostatic beam-park space debris measurement on 14-15.05.2009 using
the Tromsø 930 MHz incoherent scatter radar. Each point in the figure repre-
sents a detection of space debris above the radar. The Doppler velocity of the
target is represented using color, which can be determined from the Velocity
vs. Altitude plot. The radar beam was pointed towards west at a zenith angle
of 22.7◦.
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nation of the object [111]. An example measurement produced at EISCAT

after the collision of the Iridium and Cosmos satellites is shown in Fig 4.3.

This measurement is also part of Publication V of this thesis.

The sensitivity of a radar for detecting space debris is strongly deter-

mined by the frequency of the radar. A large fraction of the objects in

space are < 5 cm sized objects, meaning that the dominant scattering

mechanism is Rayleigh scattering [6] where the backscatter power in-

creases proportionally to the sixth power of the object diameter P ∝ d6. In

this sense, the most sensitive radars for space debris work are the Arecibo,

Søndrestrøm and EISCAT UHF radars, as they have the shortest wave-

lengths. Still, a large number of space objects can be detected with all

high power large aperture radars.

4.7 Planetary radar

Planetary radar is a field of research that involves using radars to study

objects in our solar system. These include the Sun, planets and their

moons, comets and asteroids [80, 86]. The advantage of using a radar is

the ability to control the signal that is used to illuminate the target. This

allows measurements of various properties of targets through the use of

time of delay, polarization and Doppler shift. Planetary radar measure-

ments have been used, e.g., to determine and refine orbital elements and

spin vectors, to study surface and subsurface composition, and to study

the shape and topography of planetary objects [112, 86, 113].

Most of the planetary radar work has been conducted with various Earth

based radar systems, such as Arecibo, Goldstone and VLA, but recently

space probes have also been used to conduct radar measurements of vari-

ous targets, such as the Moon [114], Venus [115, 116] and Mars [117].

Ground based planetary radar measurements typically involve measur-

ing the same and opposite circular returns of the backscatter to determine

the surface reflecticity and roughness [86, 118, 119]. Because the targets

are typically far away, the spatial resolution is obtained by combining

rotational Doppler shift and time of delay. The resulting range-Doppler

or delay-Doppler images of the targets are not completely ambiguous, as

several different parts of a rotating object can result in identical Doppler

shift and round-trip delay.

In Publication IV of this thesis, we describe the first EISCAT UHF lu-

nar imaging measurements. In this study we investigated the feasibility
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Figure 4.4. An inverse synthetic aperture radar image of the Moon, obtained with the
EISCAT Tromso UHF radar.

of using a relatively small Earth-based radar system for lunar imaging

measurements. For this study, we had to utilize longer pulse codes and

use the beam nulls to mitigate Doppler north-south ambiguous echoes.

A range-Doppler image obtained with the EISCAT UHF radar in 2008 is

shown in Fig. 4.4. These are also the first 930 MHz lunar opposite circu-

lar reflectivity images. Further work is in progress to obtain opposite and

same circular focused images of the Moon using this frequency.
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5. Radar measurement models

In this chapter we will first go through the basic concepts of baseband

signals and radar transmission envelopes as prequisites. We will then go

through three of the most important different radar target models:

• Point-like target with trajectory

• Range spread radar target

• Range and Doppler spread radar target

We will also describe a random scattering model that can be used to model

and characterize incoherent beam-filling radar targets.

5.1 Baseband signal

Radar measurement models deal with complex baseband signals, even

though the actual radar signals themselves are real valued. This is merely

due to convenience as most signals are band-limited and concentrated

around the carrier frequency. Complex baseband signals allow represent-

ing a high frequency real-valued signal with a narrow band signal cen-

tered around the carrier frequency. A complex baseband signal is some-

times also referred to as an IQ signal

zbb(t) = I(t) + iQ(t), (5.1)

the real part represented with I(t) ∈ R and the complex part with Q(t) ∈
R. This section will describe what these signals mathematically are, and

how they can be formed.

Consider a real-valued bandlimited high frequency signal z(t) ∈ R. Be-

cause it is real-valued, it has a conjugate symmetric Fourier transformed
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representation ẑ(ω) = ẑ(−ω) ∈ C. If all of the relevant spectral informa-

tion is contained only within a narrow band ω ∈ B centered at ω0 ∈ R, it is

often convenient to deal with a band-limited signal zbb(t) ∈ C containing

only the band of interest, which is shifted in frequency to zero.

To see how zbb(t) can be obtained, let us consider the Fourier transform

of our high frequency real valued signal z(t), which is defined as

ẑ(ω) =

ˆ ∞
−∞

z(t)e−iωtdt. (5.2)

We can first obtain a signal containing the band of interest by integrating

over either the positive or negative frequencies within the band of interest

B = (ω0 − Δω/2, ω0 + Δω/2), where Δω ≤ 2|ω0|. We will call this signal

the carrier band complexified signal

zc(t) =
1

2π

ˆ
ω∈B

ẑ(ω)eiωtdω. (5.3)

The signal zc(t) ∈ C is complex-valued, as we omit the conjugate symmet-

ric half of the spectrum. The resulting signal zc(t) is now a band limited

signal still centered around the original frequency, hence the name car-

rier band signal. This signal is complex valued, as the opposite frequen-

cies have been filtered out and the spectrum of the signal is not conjugate

symmetric around zero anymore. The information within the band of in-

terest is still retained, as the opposite side of the spectrum is merely a

conjugated mirror image, allowing reconstruction of the real-valued band-

limited signal. In practice, a window function w(ω) with localized time

and frequency domain response is used in this filtering operation, and

thus a more realistic representation would be

zc(t) =
1

2π

ˆ ∞
−∞

w(ω)ẑ(ω)eiωtdω. (5.4)

It should also be noted that obtaining zc(t) from z(t) is simply a convolu-

tion operation. Now, in order to obtain the complex band limited baseband

signal zbb(t) that is centered around zero, we simply modulate the signal

with the center frequency ω0

zbb(t) = zc(t)e
−iω0t. (5.5)

This can then be sampled at a rate corresponding to the bandwidth of B

with Δt ≥ 1/Δω

zn = zbb(nΔt), (5.6)

and the Nyquist-Shannon sampling theorem [120] guarantees that the

discretized sequence zn ∈ C, n ∈ Z retains the information within zbb(t).
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Figure 5.1. Two alternative methods for producing a baseband signal zbb(t) from a real
valued high frequency signal z(t). The carrier band method first band-pass
filters the band of interest on one side of the spectrum, resulting in the carrier
band signal zc(t). Then the remaining band is translated around 0 to obtain
the baseband signal zbb(t). In the down conversion method, the signal is first
modulated and then filtered.

In practice, baseband signals are often obtained by a combination of

analog and digital down conversion steps. For sufficiently low carrier fre-

quencies, the baseband conversion can be done completely digitally using

analog-to-digital converter samples. The device performing this type of

digital processing is called a digital down converter [121] in engineering

literature. The steps associated with this approach are nearly identical

to the above presentation, except that the signal is first modulated to

zero frequency and then band-pass filtered and discretized. We will re-

fer to this alternative approach as the downconversion method, while the

method described earlier in this section will be referred to as the carrier

band method. The two alternative ways of forming a baseband signal

zbb(t) are depicted in Fig. 5.1.

In wide band applications, such as the LOFAR radio telescope [122],

multiple different frequencies can be simultaneously downcoverted using

a so called polyphase filterbank. This is essentially a combination of a

filter and an FFT, which simultaneously performs downconversion on all

the discrete Fourier transform frequencies on the positive or negative half

of the spectrum, and produces narrow band IQ samples of all of these

frequencies. This also has advantages in terms of beamforming, as beam-

forming (digital delay) can be approximated with a multiplication with a

complex constant over a narrow frequency band.
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5.1.1 Carrier band signals

A useful fact is that the carrier band complexified signal zc(t) can also

be discretized with the same sample rate as the baseband signal without

loss of information. While this form might not be convenient when formu-

lating radar measurement models, it could be useful as an intermediate

signal in large scale phased array receivers. This form can be used to

reduce the number of processing steps as the band-limiting and time de-

lays required for beam forming can be combined within the same filtering

operation

zc(t− τ) = 1

2π

ˆ ∞
−∞

e−iτωw(ω)ẑ(ω)eiωtdω =
1

2π

ˆ ∞
−∞

wτ (ω)ẑ(ω)e
iωtdω, (5.7)

where the time delay τ and band limiting performed by w(ω) are com-

bined as a single filter wτ (ω) = e−iτωw(ω). Beam forming by summation

of different antenna signals znc (t− τn) with different delays τn can also be

done with the carrier band signals and the final base band signal can be

modulated only after the beam forming

zbb(t) = e−iω0t
∑
n

znc (t− τn). (5.8)

This way there is only need for one modulator in the whole signal process-

ing chain.

5.2 Transmission envelope

The waveform transmitted by a radar, which we will refer to as the trans-

mission envelope, is an important factor in radar experiment design. It is

one of the easiest ways to control the error variance of estimated quanti-

ties in a radar measurement. The transmission envelope determines the

range and Doppler resolution, as well as the range extent of the param-

eters that can be estimated. A poorly chosen transmission waveform can

even prevent certain quantities from being estimated.

When describing radar measurement models, we will denote a baseband

transmission envelope with ε(t) ∈ C when we are dealing with continuous

waveforms, or εt ∈ C when we are dealing with discretized models. In all

measurement models presented in this thesis, the transmission envelope

will be a baseband signal with amplitude linearly proportional to the am-

plitude transmitted by the radar. When the radar is not transmitting, the

envelope has an amplitude of zero.
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Typically, the constraints apply to the maximum bandwidth, and max-

imum and mean transmission power. The mean transmission power is

often referred to as the duty-cycle. Often there is also a lower and upper

limit to the transmission pulse length and the pulse repetition interval.

The transmission pulse repetition time is also referred to as the inter-

pulse period (IPP). Most high power radars also allow only transmission

of constant amplitude pulses and rely only on phase coding, most com-

monly binary phase coding. However, some high power large aperture

radars can transmit pulses that contain amplitude modulation, e.g., the

recently installed waveform generator at the Millstone Hill incoherent

scatter radar allows amplitude modulation.

In practical applications, it is often important that the transmission

waveform actually transmitted by the radar is known. This is because

real-world transmission hardware never actually transmits the analytic

waveform that it has been programmed to send. Limitations in power sup-

plies often cause droop in the transmitted signal power and phase chirp-

ing also occurs. Magnetron transmitters used in low end weather radars

have significant frequency drift in the center frequency of the transmis-

sion pulse [76]. It is therefore a good practice to coherently record the

actual transmitted waveform and use this when analyzing the measure-

ments.

5.2.1 Types of transmission envelopes

While a transmission envelope can essentially be an arbitrary waveform

in theory, there are practical reasons to study more restricted waveforms.

The reason for this is two-fold:

1. Radar transmission hardware often imposes limitations to what can be

transmitted and which types of waveforms can be synthesized.

2. A more restricted set of waveforms sometimes makes it easier to study

the theoretical performance of waveforms, such as in the case of alter-

nating codes [21, 123].

That being said, radar transmission hardware is developing in a direc-

tion that allows more flexible use of different types of transmission codes,

which often translates to improved radar measurements.

We will only shortly discuss the various different types of transmission
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Figure 5.2. Examples of different codes accompanied with their autocorrelation func-
tions. The autocorrelation function is mainly relevant for the performance of
the codes for range-spread coherent target deconvolution, as it is the inverse
of the row of the posterior covariance matrix for the inverse filter errors. It is
also the response of a matched filter.

waveforms in this section and focus on the implications of transmission

envelopes to radar target estimation error variance in chapter 6, after first

introducing various radar measurement models later on in this chapter.

Examples of the transmission envelope types, which are discussed later

on in this section, are shown in Fig. 5.2.

Pulse codes

Pulse codes are transmission envelopes that consist of concatenated con-

stant length pulses with constant phase and amplitude. General pulse

codes of length L can be represented in this form:

ε(t) =
L∑

n=1

ˆ
φnδ(t− nl − τ)b(τ, l)dτ, (5.9)

where δ(t) is the Dirac delta function and

b(τ, l) =

⎧⎨⎩ 1 when τ ∈ [0, l)

0 otherwise
(5.10)

76



Radar measurement models

is a boxcar function of length l, which corresponds to the baud length. The

phase and amplitude of the baud is determined by φn ∈ C.

In practice, these waveforms are also convolved with the transmitter

and antenna impulse response p(t) as the waveform would otherwise have

infinite bandwidth. This can be modeled by replacing the boxcar b(t, l)

with the filtered boxcar

bp(t, l) =

ˆ
b(t− τ, l)p(τ)dτ (5.11)

in Equation 5.9. However, the impulse response of the transmitter is often

assumed to be fairly short and the contribution of p(t) is often assumed to

be fairly minimal.

The most common type of pulse codes are binary phase codes, which are

of constant amplitude and have only two possible phases φn ∈ {−1, 1},
assuming that the amplitude is normalized to one. These types of codes

can be transmitted with nearly all high power large aperture radars in the

world, including the EISCAT radars. There are many different types of bi-

nary phase codes known to be optimal for various types of radar targets.

Examples include alternating codes [21, 124, 125], Barker codes [126],

and complementary codes [127]. Binary phase codes have also been re-

cently studied for variance of deconvolved range spread target estimates

[128, 129].

Polyphase codes are a generalization of binary phase codes that allow

φn to be an arbitrary complex number on the unit circle φωn = e−iω with

ω ∈ [0, 2π). However, typically the phases are restricted to a set of N

distinct equally spaced phases φn = e−2πicn/N = ρcn and cn ∈ {0, . . . , N−1}.
In this case ρ is the Nth root of unity. These types of codes were recently

used by us to describe a class of optimal phase codes for incoherent scatter

radar called polyphase alternating codes [123], which is a generalization

of binary phase alternating codes [21, 125] that allow for more freedom

when selecting the code lengths. Polyphase variants of Barker codes [130,

131] and complementary codes also exist [132]. We have recently also

conducted a search for optimal quadriphase codes that minimize variance

of deconvolved range-spread target estimates [133].

While pulse codes with amplitude modulation, i.e., |φn| ∈ [0, amax] ⊂ R,

are not that often discussed in the literature, allowing arbitrary ampli-

tudes has some interesting theoretical benefits. In a recent study [1], I

showed that with the combination of phase and amplitude modulation it

is possible to obtain very close to perfect finite length transmission codes

in terms of estimation variance of coherent range spread targets. It was
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also shown that amplitude modulation is required for finite length perfect

transmission codes. Since then, it has been shown that perfect codes can

also be analytically designed, if amplitude modulation is allowed [134].

Amplitude modulation for incoherent scatter has been studied in the case

of incoherent scatter measurements in Publication II, which is included

in this thesis. Recently amplitude modulation has also been proposed for

use with the Arecibo incoherent scatter radar [135].

Fractional baud-length code

Fractional baud-length codes were introduced in Publication III. Frac-

tional baud-length codes are otherwise similar to the standard phase codes

presented above, with the exception that the pulse length can vary from

pulse to pulse. Fractional baud-length codes can also be represented as a

sum of boxcars

ε(t) =
L∑

n=1

ˆ
φnδ

(
t−

n−1∑
k=1

lk − τ
)
b(τ, ln)dτ, (5.12)

where ln is a pulse with variable length. The codes are uniquely defined

by the pulse lengths ln and the complex amplitude of each pulse φn.

Fractional baud-length codes have several advantages when analyzing

radar targets at resolutions smaller than the smallest pulse length min(lk),

assuming that the transmit and receive bandwidths are large enough.

Frequency stepped transmission envelope

A frequency stepped phase code can be seen as concatenated phase codes

εn(t) in separate frequency channels

ε(t) =

Nf∑
n=1

e−2πifntεn(t), (5.13)

where fn ∈ R is the center frequency of each code εn(t).

This scheme has several advantages. First of all, the effective band-

width of the transmission code is determined by the bandwidth of the

summed channels if analyzed as one transmission waveform, allowing

high resolution target estimation. Also, if the bands of the different trans-

mission channels do not overlap, the transmission codes can be filtered

into separate channels and treated separately, allowing for a possibility

to perform low resolution target estimation, e.g., in the case of interfer-

ence in some parts of the spectrum.

A frequency stepped fractional baud-length code was used in a recent

EISCAT lunar imaging measurement. In this experiment, several dif-

ferent transmission envelopes were sent one after another at increasing
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center frequencies. This allowed us to transmit effectively at 2.5 MHz

bandwidth, even though the single band limit was only 1 MHz. Thus, al-

lowing improved range resolution, and also allowing the use of only part

of the bandwidth at the Sodankylä receiver, which has a narrow band

interference filter due to nearby cellular phone base station interference.

Frequency chirped code

One popular transmission code that is not a pulse code per se, is the fre-

quency chirp code

ε(t) = A(t) exp (−iω(t)) , (5.14)

where A(t) is the amplitude envelope and ω(t) ∈ R is a smooth function.

Typically a linear chirp is used

ε(t) = A(t) exp

(
−2πi

(
ω0 +

1

2
ω1t

)
t

)
, (5.15)

where ω0 is the frequency at t = 0 and ω1 is the frequency change rate,

or chirp rate. The amplitude shaping envelope A(t) can be used to shape

spectral shape, or alternatively it can be used to shape the autocorrelation

function of the transmission envelope and remove range sidelobes. An

example of such a weighting is a Gaussian envelope

ε(t) =
1√
2πl2

exp

(
−(t− t0)2

2l2

)
exp

(
−2πi

(
ω0 +

1

2
ω1t

)
t

)
, (5.16)

which is shown in Fig. 5.2.

Chirped waveforms are widely used in radars in various different ways

[76]. They are most common in surveillance radars, weather radars, and

ionosondes. By a clever usage of the properties of ionospheric plasma, they

have also been used for ionospheric plasma line measurements [136].

5.3 Point-like target with trajectory

In the previous Sections we have described baseband signals and different

types of radar transmission envelopes. In the rest of this Chapter, we will

use these definitions to describe different radar target models. We will

start with the point-like target model, and then continue to beam filling

targets.

A point-like radar target model is used to describe targets that have

a very narrow range extent. Examples of these types of targets include

space debris, satellites, and meteor head echoes. Point-like targets are

fairly well researched radar targets. For example, Skolnik [76] includes a
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fairly lengthy discussion on the topic. However, these books concentrate

on air-surveillance radar measurements of airplanes, while high power

large aperture radars are typically used for measuring space objects and

meteors. These measurements differ from air surveillance measurements

in several aspects: the target radial velocities are fairly large1, the trans-

mission pulses are typically very long2, and the main source of clutter

is the ionosphere. Most of the literature also concentrates on incoherent

(power domain) integration for target detection, while we focus on the

maximum likelihood detection of radar targets, which is equivalent to co-

herent integration in the radar literature.

In this section, we will describe two different radar models for a point-

target: an accurate model suitable for precise target parameter fitting,

and a fast approximative model, which is suitable for target detection and

coarse parameter estimation. We will first describe the accurate model

and then develope the coarse model based on it. The point-like target

model is loosely similar to the one given by Markkanen [5, 6], with the ex-

ception that we also consider the possible Doppler spread of a point-target.

We also consider the use of the non-uniform time and frequency step Fast

Fourier Transform approximation [56] to solve the fast grid search instead

of simple concatenation of echoes.

The unfiltered continuous time radar echo m(t) from a point-like target

with a trajectory can be written as

m(t) = ε(t−R(t))A(t) exp{iφR(t)}+ ξ(t)

= f(t) + ξ(t)
(5.17)

using the monochromatic incident wave approximation. The term ε(t −
R(t)) is the round-trip time of flight delayed transmission envelope, the

backscatter amplitude is A(t), the radar wavelength dependent coefficient

is φ = 2πfradar, the radar receiver noise ξ(t), and the round-trip time of

flight radial trajectory is R(t).

The radial trajectory R(t) is the transmitter-target-receiver distance in

round-trip time of flight, measured at the time when the echo is received.

If the target is moving very fast, then the speed of light needs to be taken

into account in order to accurately determine the true radial trajectory of

the target at instant of time t, as the target has scattered the transmission

envelope approximately at time t − R(t)/2 instead of t. However, this

correction can be performed with a separate step.

10-72 km/s
2duty cycles between 5-25 %
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Figure 5.3. An example of a point-like target radar measurement. In this example the
target is coherently measured using four transmission pulses. The radial
trajectory is exaggerated.

The amplitude envelope A(t) ∈ C describes the variation of the tar-

get backscatter amplitude as a function of time. This includes beam-

pattern variation and possible target rotation induced variations in com-

plex backscatter coefficient. This can include both variations in radar

cross-section, and also variations in phase caused by rotation of a target

larger than the wavelength.

It should be perhaps noted that the measurement equation 5.17 holds

also over multiple transmission pulses. When there is no transmission,

the transmission envelope has an amplitude of zero |ε(t)| = 0. The num-

ber of transmission pulses that can be included in the same model, in

practice, depends on the characteristics of the radial trajectory and the

radar beam width. For example, in typical space debris measurements

a 0.1 s time interval can still be included in the same model (this corre-

sponds to 10-100 transmission pulses with the EISCAT UHF radar). An

example measurement is shown in Fig. 5.3.

5.3.1 Discretization

In a digital receiver the measured signal is first filtered (convolved) with

the combined analog and digital receiver filter w(t), and then discretized

at sample intervals of Δt, which typically corresponds to the inverse of

the filter bandwidth

mn = (w ∗m)(nΔt). (5.18)

In typical EISCAT space debris measurements, the actual transmitted

waveform is also measured using the same digital receiver coherently

εn = (w ∗ ε)(nΔt). (5.19)
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Measuring the actual transmitted waveform has the advantage that any

high power amplifier artefacts, such as amplitude droop, phase chirping,

or frequency offset can be taken into account correctly in the measure-

ment model.

Assuming that the filter width is contained in the sampled bandwidth,

the Nyquist-Shannon sampling theorem [120] then guarantees that (w ∗
ε)(t− τ) can be reconstructed from εn, where τ is an arbitrary delay. This

can be done by e.g., upsampling the measured waveform.

5.3.2 Model parametrization

When fitting a model to radar measurements, one typically parametrizes

R(t) and A(t) in some way. In the case of space debris measurements,

one typically considers fairly short integration periods, where a sufficient

model for R(t) is a low order polynomial, e.g., a second order Taylor series

expansion

R(t) = r0 + r1(t− t0) + 1

2
r2(t− t0)2. (5.20)

The target backscatter amplitude A(t) is assumed to be a sufficiently

narrow band signal, which can be approximated with a Fourier series with

NB adjacent frequencies:

A(t) =

�(NB−1)/2�∑
k=�−(NB−1)/2�

ak exp{ikΔωt}. (5.21)

This type of model is suitable for detection of targets where only a few

Fourier components are sufficient to cover the typical bandwidth of the

target. The model presented here differs from that presented by Markka-

nen [5, 6] in respect that we allow A(t) to be a Fourier series instead of a

constant, which is equivalent to the case where there is only one term in

the Fourier series expansion with k = 0.

The radar target is thus determined by the parameters defining the ra-

dial trajectory R(t) and the amplitude of the target A(t). These parame-

ters can also be combined in a vector, which would be θ = (r0, r1, r2, a1, . . . , aNb
)

for the above parametrisation.

The above parametrisation is not the only possible one. For targets with

longer integration times and more irregular trajectories higher order or

piecewise polynomials can be used for the trajectory R(t). The target am-

plitude A(t) can also be parametrized in a way that takes into account the

rotation ωr and precession ωp rate of the target. This can also be done

with the help of a periodic function Fourier series representation, but we
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will not go into the details here.

5.3.3 Discretized parametric model

With the help of the parametrized model for R(t) and A(t), we can then

represent the measurements mn with the help of measured transmission

envelope εn.

mn = (w ∗ f)(nΔt) + (w ∗ ξ)(nΔt) (5.22)

In most cases, it is possible to approximate this with

mn = εround(n−R(nΔt)/Δt)A(nΔt) exp{iφR(nΔt)} = fn(θ) + ξn, (5.23)

here the approximative model function is denoted with fn(θ), as it de-

pends on the model parameters θ. This approximation requires that

• Both A(t) and exp{iφR(t)} can be taken out of the convolution by w(t)

without significantly altering f(t). This requires A(t) exp{iφR(t)} to be

sufficiently narrow band.

The first requirement is nearly always satisfied, and the second criteria

can be satisfied by selecting a large enough sample rate. Otherwise one

must resort to evaluating the forward theory (w ∗ f)(t) in a more tedious

way, which includes the effect of filtering the model function f(t) by w(t).

The filtered and discretized measurement errors ξn = (w∗ξ)(t+nΔt) are

assumed to be identically distributed proper complex Gaussian normal

random variables. In most cases, when the filter length is matched to the

sample interval, the errors can be assumed to be independent (i.e., the

error covariance matrix is diagonal E ξnξn′ = σ2δn,n′).

If we also join the discretized measurements in a vector m = (m1, . . . ,mN ),

the likelihood function for the measurements can now be written as

p(m|θ) =
N∏

n=1

1

πσ
exp

{
− 1

σ2
|mn − fn(θ)|2

}
, (5.24)

or equivalently as

p(m|θ) = 1

πNσN
exp

{
− 1

σ2
‖A(θ)−m‖2

}
, (5.25)

where the theory matrix A(θ) is a vector of the model function fn(θ) eval-

uated for specific parameter values θ

A(θ) = (f1(θ), . . . , fN (θ)). (5.26)
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The tricky part in the case of moving point-targets is the search for the

peak of the distribution in Equation 5.25. This is due to the fact that

the distribution is highly multimodal. Provided a sufficiently good initial

guess for the parameters θ, this can be done using a combination of a grid

search and an optimization algorithm. However, it is not possible to per-

form such a search when there is a vast amount of radar measurements,

which mostly do not contain radar targets. Therefore, it is important to

have a fast approximative method that can provide a good initial guess

for the parameters.

5.3.4 Fast approximative model

In real world applications, a fast approximative method for evaluating

and inspecting the likelihood function given in Equation 5.25 is needed in

order to detect targets. This can be achieved by approximatively perform-

ing a exhaustive grid-search of the logarithmic likelihood with the help

of FFT. The algorithm given here is a slight modification of the original

FastGMF algorithm described by Markkanen [6], the main difference is

the use of the non-uniform fast Fourier transform [56], which is a more

accurate approximation than a simple concatenation of the vectors.

The algorithm relies on several key points: first of all, we assume that

the target Doppler spread is negligible and that the target is point-like,

i.e., A(t) = a ∈ R. Also assume that the target trajectory is described by

a polynomial R(t) = r0 + r1t+
1
2r2t

2 (again in round-trip time units, when

measured at the receiver).

Additionally, we assume that the target moves slow enough that the

echo can be assumed to be a Doppler shifted copy of the transmission

envelope, i.e., the effect of range migration does not affect the value of the

discretized transmission envelope

εround(n−R(nΔt)/Δt) ≈ εround(n−r0/Δt). (5.27)

Using this approximation, we now can write the measurement model as

mn = εround(n−r0/Δt)c exp

{
iφ

(
r1nΔt+

1

2
r2(nΔt)

2

)}
, (5.28)

where c = a exp{iφr0} or

mn = f ′n(θ)c, (5.29)

where f ′n(θ) is the fast approximative forward model, which can be writ-

ten in vector form as f(θ)a = (f ′1(θ), . . . , f ′N (θ))c, where θ = (r1, r2). The
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likelihood function for this fast approximative theory can be written as

p(m|θ, c) = 1

πNσN
exp

{
− 1

σ2
‖f(θ)c−m‖2

}
, (5.30)

which has a peak for parameter c at

ĉ = (f(θ)Hf(θ))−1f(θ)Hm =
f(θ)Hm

‖f(θ)‖2 (5.31)

for any given parameter vector θ. To determine how to find the peak of

the distribution for the rest of the parameters θ, we observe that the sum

of squares term can be factored as

‖f(θ)c−m‖2 = ‖m‖2 +
∣∣∣∣|c|‖f(θ)‖ − c0f(θ)Hm

‖f(θ)‖
∣∣∣∣2 − ∣∣∣∣ f(θ)Hm‖f(θ)‖

∣∣∣∣2 , (5.32)

where c0 = c/|c|. The second term is zero when c = ĉ and the third term

is independent of c. Thus, the maximum likelihood parameters θ̂ are ob-

tained by maximizing

θ̂ = argmax
θ

∣∣f(θ)Hm∣∣2 (5.33)

and

ĉ =
f(θ̂)Hm

‖f(θ̂)‖2 . (5.34)

Fast grid search

The approximative model results in a fairly straightforward maximum

likelihood solution, which also suggests an efficient numerical method for

performing a grid search of parameter vector θ̂.

In practice, there is a pretty good idea of what is a valid range of values

for the parameters r0 ∈ R0 ⊂ R, r1 ∈ R1 ⊂ R, and r2 ∈ R2 ⊂ R. Therefore,

it makes sense to inspect the problem in terms of a Bayesian a posteriori

estimation problem with the posteriori density

p(θ|m, c) ∝ p(m, c|θ)p(θ)p(c), (5.35)

where p(θ) is the prior density for the parameters and p(c) is the prior

distribution for the target scattering amplitude. We will assume that p(c)

is uniformly distributed over all values in C. However, we will assume

that the prior p(θ) is uniformly distributed in R0×R1×R2, and elsewhere

zero. Therefore, our search needs search through onlyR0×R1×R2, and the

posteriori density is up to a constant the same as the likelihood function

within these bounds.

The search algorithm (Algorithm 1) that searches for the maximum a

posteriori performs a grid search with a grid in R0 × R1 × R2. In typical
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high power large aperture radar measurements, there are several thou-

sand values of r0, several values for r2 and several thousand values for

r1. The efficiency of the algorithm results from the fact that the vector dot

product f(θ)Hm can be efficiently calculated for all of the grid values of r2
simultaneously using FFT with the NFFT approximation. Typically radar

duty-cycles are 5-25%, which means that only 5-25% of the measurement

vector actually needs to be used in the NFFT evaluation of f(θ)Hm for

each grid point of r0, as the rest of the values are analytically zero be-

cause the transmission envelope is zero.

Algorithm 1 Fast grid search algorithm for point-targets
for each data block m = (mb+1, . . . ,mb+B) do

for each range gate in search grid r0 ∈ R′0 ⊂ R0 do

for each acceleration in search grid r2 ∈ R′2 ⊂ R2 do

Perform a grid search over possible values of r1 using NFFT to

simultaneously evaluate
∣∣f(θ)Hm∣∣2 for all possible values of r1 ∈

R′1 ⊂ R1.

if new peak of the posteriori density is found then

Store peak parameter values θ̂ = (r̂0, r̂1, r̂2)

end if

end for

end for

end for

One key feature of the algorithm is that it is trivial to parallelize. The

three for loops can all be parallelized with minimal communication nec-

essary. The only requirement is that all parallel nodes of execution need

to be able to access the measurement vector m. This makes it possible

to use both GPU accelerated parallelization and computer cluster paral-

lelization, and this has also been implemented in practice.

5.4 Random scattering model

The previous section discussed targets that were point-like. A radar tar-

get that is spread in range requires a different type a radar model. We

will approach this problem by initially introducing a random scattering

model that can be used to characterize and represent radar targets that

consists of a large number of independent scatterers within the radar

measurement volume. As an example, we will then show how this scat-

86



Radar measurement models

Figure 5.4. Scatter from volumes A and B. A point in space is denoted by �r, which in this
case is scaled to time of round-trip flight.

tering model can be physically derived in the case of weather radar. In

the following sections, we will then use these definitions to develope vari-

ous radar measurement models for targets with long and short scattering

correlation times.

The Itō measure [137] is an important concept for modeling beam filling

incoherent radar targets. This mathematical construct, that is used to

integrate random processes, can be used to describe the radar receiver

induced voltage of the incoherent scatter originating from a volume of

space that has dimensions larger than the radar wavelength, and contains

a large enough number of uncorrelated scatterers that are stationary in

time with respect to their range and Doppler distribution. An example of

such a radar target is ionospheric plasma measured using an incoherent

scatter radar. Another example is the distribution of rain drops measured

using a weather radar. A random scattering model that utilizes the Itō

measure was first presented by Lehtinen [21]. A similar model is also

known in the signal processing and communications community as the

wide sense stationary uncorrelated scattering medium [138, 22].

The random baseband signal received from a scattering volume A ∈ R
3

at time instant t ∈ R is denoted with the measure function μ(A; t) ∈ C.

This can be thought of as the received complex baseband voltage from

scattering integrated over a volume of space. The measure function μ(A; t)

can also be thought of as a wide sense stationary stochastic process in time

[50].
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5.4.1 Independent volumes

If the volumes do not overlap (i.e., A ∩ B = ∅), the expected value of the

conjugated cross-product Eμ(A; t)μ(B; t′) of the received voltage is zero

Eμ(A; t)μ(B; t′) = 0, ∀t, t′, (5.36)

which essentially means that the scattering from the disjoint volumes is

uncorrelated.

The physical intuition behind this is that the physical scatterers within

two disjoint volumes have radial trajectories which are different. Due

to the fact that their positions are random, the conjugated cross product

consists of cross products of scattering from individual scatterers with

random phases uniformly distributed between [0, 2π]. If we denote the

locations of the individual scatterers within volume A at time t with �xAn,t,

and the locations of individual scatterers within volume B at time t + τ

with �xBm,t+τ , we can express the conjugated cross-product of scattering

from a continuous wave as

E
∑
n

∑
m

aAn exp (−ik|�0− �xAn,t|)aBm exp (ik|�0− �xBm,t+τ |) = 0, (5.37)

where �0 is the location of the radar. The terms aAn and aBm denote the

amplitude of the scattering originating from each scatterer. Due to the

random locations of the scatterers, assuming that the volume is signif-

icantly larger than k, the two exponential terms become two different

independent unit magnitude random complex numbers with phases uni-

formly distributed between [0, 2π], from which it follows that the expected

value of each of the cross-products is already zero.

The above reasoning applies, e.g., disjoint volumes containing rain droplets

measured with weather radar. The general idea also applies to disjoint

volumes containing refractive index fluctuations within ionospheric plasma

measured with incoherent scatter radar, although the details are more

complicated in this case, as the we cannot consider the scattering from

refractive index fluctuations as individual isolated scatterers per se.

5.4.2 Additivity

For two disjoint volumes A∩B = ∅, the combined scattering from volumes

A and B is the sum of the scattering from the individual volumes

μ(A ∪B; t) = μ(A; t) + μ(B; t). (5.38)
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This is simply a consequence of the fact that radar echoes received simul-

taneously are summed together.

5.4.3 Structure function

The conjugated cross-product between the scattering from two infitesimal

volumes d�r and d�r′ is defined as

Eμ(d�r; t)μ(d�r′; t′) = X(�r, t− t′)δ(�r − �r′)d�rd�r′, (5.39)

where X(�r, τ) is the structure function of the Itō-measure. The expected

value of the structure function is non-zero only when the volumes over-

lap, which is a consequence of Eq. 5.36. This is the function that is

typically measured with incoherent scatter radar. This can also be un-

derstood as the autocorrelation function of the wide sense stationary [50]

target backscatter process originating from the scattering volume, and its

shape depends on the underlying physics of the scattering process.

The physical reasoning for this is that only the scattering originating

from the same individual scatterers within a volume results in a non-zero

mean conjugated cross-product for scattering from a continuous wave.

5.4.4 Overlapping volumes

To determine what is the expected scattering from two overlapping vol-

umes Eμ(A; t)μ(B; t′), we use the fact that

μ(A; t) =

ˆ
�r∈A

μ(d�r; t), (5.40)

and then

Eμ(A; t)μ(B; t′) =

ˆ
�r∈A

ˆ
�r′∈B

Eμ(d�r; t)μ(d�r′; t′)

=

ˆ
�r∈A

ˆ
�r′∈B

X(�r; t− t′)δ(�r − �r′)d�rd�r′ (5.41)

which simplifies to

Eμ(A; t)μ(B; t′) =
ˆ
�r∈A∩B

X(�r; t− t′)d�r. (5.42)

This can be understood as the autocorrelation function of the scattering

from the overlapping volume A ∩B.

5.4.5 Monostatic volume

In the case of a monostatic radar measurement, a natural scattering vol-

ume arises when we investigate the volume in space that the transmitted
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Figure 5.5. A conceptual drawing of incoherent scattering from a volume of rain drops in
the case of weather radar.

radio wave has travelled through between two instants of time. This way

we can reduce the three-dimensional volume d�r ∈ R
3 definition with a one-

dimensional coordinate system r ∈ R. With a highly directive antenna,

most of the contribution to the scattering is obtained from the main lobe

of the radar antenna beam, and thus the dimensions of the scattering vol-

ume in the transverse direction to r can be assumed to be the dimensions

of the main lobe of the antenna beam. This is shown in Fig. 5.4.

A similar approach can also be often taken in the case of multistatic

radar measurements, but the antenna gains and their relationship with

the geometry are trickier to determine.

5.4.6 Example: Monostatic weather radar

As a simple physical motivation for the purely mathematical random in-

coherent scattering model, we will show how the physically derived in-

coherent scatter from rain drops in the case of a weather radar can be

shown to be equivalent with the random scattering model presented in

the previous section.

If we ignore ground clutter, the weather radar target consists of ran-

domly located rain droplets within the radar beam. With the help of sev-

eral convenience functions, we can present the complex baseband voltage

received by a monostatic radar. We first define the round-trip time of flight

for the radar target, ignoring any refractive index variations within the

path of flight

Rn(t) =
2|�rn(t)− �r0|

c
. (5.43)

Here �rn(t) is the position of the nth rain droplet at time instant t and �r0
is the location of the receiver. To simplify the equations, we will use a

one-dimensional coordinate system for range. We also assume that the
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trajectories of the individual rain droplets are randomly distributed and

of the form Rn(t) = vnt + rn, where vn and rn are random variables with

distributions vn ∼ πv(v, r) and rn ∼ πr(r).

The rain droplets are assumed to be small enough that the scattering

mechanism can be assumed to be Rayleigh scattering [139]. Using the

formula for Rayleigh scatter from dielectric spheres, we get the following

scattering cross-section for the rain droplets

σn =
π5

λ4
|K|2D6

n. (5.44)

Here the most significant parameter is the diameter of the nth rain drop

D6
n.

As this example deals with monostatic radar, the antenna gain can be

assumed to depend only on the angular distance of the scatterer from the

center of the beam G(�rn(t)) = G(φ1n(t), φ
2
n(t)) = Gn(t).

We now get the following equation for the backscattered voltage received

from rain drops within a certain volume. Here IA denotes the set of in-

dices n that correspond to rain drops located volume A ⊂ R
3, ignoring the

scaling factor that arises from the radar hardware3

μ(A; t) ∝
∑
n∈IA

Gn(t)σnε(t−Rn(t))e
i2πfRn(t), (5.45)

where ε(t) is the radar transmission envelope.

We can now examine the expected value of Eμ(A; t), which is

Eμ(A; t) =
∑
n∈IA

Gn(t)σnε(t−Rn(t))

ˆ
r∈(r0,r1)

ei2πf(vt+r)πv(v, r)πr(r) drdv ≈ 0,

(5.46)

Where the interval (r0, r1) corresponds to volume A along the beam axis.

As the phase of each individual scatterer is approximately uniformly dis-

tributed between (0, 2π], and integral term evaluates to approximately

zero. This relies on the fact that πr(r) is sufficiently evenly distributed.

When we examine Eμ(A; t)μ(B; t′), we rely on the the property that all

cross-products between different rain droplets have a zero mean value,

and the only non-zero term arises from the self products between the same

rain droplets

Eμ(A; t)μ(B; t′) ∝ E
∑

n∈IA∩B
G2

n(t)σ
2
nε(t−Rn(t))ε(t′ −Rn(t′))ei2πfvn(t−t

′).

(5.47)
3including e.g., transmission power and receiver filters.
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Now, assuming that the radar cross sections and number density of droplets

are random variables distributed as σn ∼ πσ(σ, r) and n ∼ πn(n, r) we can

get the following form for the expected value of the second moment:

Eμ(A; t)μ(B; t′) =
ˆ
r∈A∩B

ε(t− r)ε(t′ − r)X(r, t− t′)dr, (5.48)

where

X(r, t− t′) = G2

˚
σπσ(σ, r)nπn(n, r)πv(v, r)e

i2πfv(t−t′)dσdndv, (5.49)

where the beam factor G2 is defined with the help of the beam gain in the

transverse dimensions θ1 and θ2

G2 =

¨
G2(θ1, θ2)dθ1dθ2. (5.50)

It should also be noted, that the structure function can have a more

complicated form. For example, the radar cross-sections of the individual

rain droplets could also be dependent on velocity for example σ ∼ πσ(σ, v),

or all of the parameters could be modeled using a joint probability density

function (σ, n, v, r) ∼ π(σ, n, v, r).

5.5 Coherent range spread target

Coherent range spread targets are targets with complex backscatter am-

plitude that does not significantly change during a certain time interval.

In terms of the random target scattering model, the target is assumed to

have a constant structure function in time

X(�r, t− t′) = σ(�r) when |t− t′| < T (5.51)

over some time interval T , which is longer than the radar transmission

pulse. This is typically assumed to be one or several interpulse periods,

depending on the characteristics of the target. Examples of these types of

radar targets include: tropospheric, stratospheric and mesospheric echoes,

meteor trails, lunar echoes, weather radar returns, and the D-region of

the ionosphere.

We will present two different schemes for estimating range spread co-

herent radar targets. The first we will call inverse filtering, and the sec-

ond we will call matched filtering. These two approach have several fun-

damental differences, mainly that inverse filtering can be viewed as a

sidelobe-free maximum likelihood estimator of the target backscattering

coefficient, while the matched filtering approach is a biased estimator,
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which can result in range sidelobe artefacts, which are dependent on the

radar transmission envelopes used to estimate the target. However, there

are specific cases where these two approaches in fact coincide with each

other, i.e., with certain types of radar transmission envelopes the matched

filtering approach is identical to the inverse filtering approach.

5.5.1 Inverse filtering

Inverse filtering is simply a maximum likelihood estimator of the complex

target backscatter coefficient, which can often be obtained using filtering,

when certain conditions are met. The deconvolution analysis has some

resemblance to the one presented by Lehtinen [129, 134]. However, we

will use continuous time, allow for different range resolutions, and allow

multiple transmission envelopes.

The amplitude domain measurement equations for n transmission en-

velopes εn(t) convolved with a coherent target σ(r) ∈ C and filtered with

the receiver filter w(t) are

m1(t) = (w ∗ ε1 ∗ σ)(t) + (w ∗ ξ1)(t)
...

...

mn(t) = (w ∗ εn ∗ σ)(t) + (w ∗ ξ1)(t)
, (5.52)

with ∗ representing a convolution, and the scattering volume given in

one-dimensional round-trip time along beam axis. In this case σ(r) is

equivalent to the amplitude domain backscatter μ(r, t), and not the struc-

ture function. Because of the long correlation time, we can assume that

σ(r) = μ(r, t) = μ(r, t′) when |t− t′| < T .

The set of convolution equations can also be written in frequency domain

using multiplications

m̂1(ω) = ŵ(ω)ε̂1(ω)σ̂(ω) + ŵ(ω)ξ̂1(ω)
...

...

m̂n(ω) = ŵ(ω)ε̂n(ω)σ̂(ω) + ŵ(ω)ξ̂n(ω)

. (5.53)

Here m̂i(ω), ŵ(ω), ε̂i(ω), σ̂(ω), and ξ̂i(ω) are the Fourier transforms of the

measurements, the receiver impulse response, transmission envelopes,

the unknown range dependent backscatter coefficient, and measurement

noise.

If our transmission envelope is a pulse coded transmission waveform, it

can be described as a convolution of a boxcar b̂(ω), the transmitter impulse

response p̂(ω) and the pulse code ε̂′(ω) consisting of Dirac deltas

ε̂i(ω) = b̂(ω)p̂(ω)ε̂′i(ω). (5.54)
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Figure 5.6. The decomposition of the pulsed transmission envelope into a boxcar b(t),
transmitter impulse response p(t) and elementary impulse code ε′(t), which
is a sum of Dirac delta functions multiplied with the phases and amplitudes
of the individual pulse code bauds – in this example this is a 3-bit Barker
code +−−.

This is depicted in Fig. 5.6.

The measurement equations cannot be directly solved by dividing with

ε̂(ω) as there are always zeros in the frequency domain representation of

b̂(ω). However, we can solve the equations of the unknown target con-

volved with the receiver impulse response, the boxcar function and the

transmitter impulse response σ̂′(ω) = b̂(ω)ŵ(ω)p̂(ω)σ̂(ω). This gives us a

modified set of measurement equations

m̂1(ω) = ε̂′1(ω)σ̂′(ω) + ŵ(ω)ξ̂1(ω)
...

...

m̂n(ω) = ε̂′n(ω)σ̂′(ω) + ŵ(ω)ξ̂n(ω)

. (5.55)

Thus, our unknown is now the target convolved with the receiver and

transmitter impulse response, and the boxcar that has the length of one

baud of the pulse code

σ̂′(ω) = ŵ(ω)b̂(ω)p̂(ω). (5.56)

Typically ŵ(ω) is selected to be b̂(ω) and p̂(ω) is sufficiently narrow band,

so that

ŵ(ω)b̂(ω)p̂(ω) ≈ b̂2(ω), (5.57)

and our unknown is basically convolved with a boxcar convolved with it-

self, resulting in a triangular impulse response in range. However, in-

creasing the length of the receiver impulse response ŵ(ω) can be used to

reduce the range resolution even further.

The posteriori measurement errors can be obtained by considering the

linear measurement equation for the maximum likelihood estimator of

σ̂′(ω)

σ̂ML = (Â
H
Σ̂
−1

Â)−1Â
H
Σ̂
−1

m̂, (5.58)

94



Radar measurement models

where

Â =

⎡⎢⎢⎢⎣
diag (ε̂′1(ω))

...

diag (ε̂′n(ω))

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Â1

...

Ân

⎤⎥⎥⎥⎦ (5.59)

and

Σ̂ =

⎡⎢⎢⎢⎢⎢⎢⎣
Σ̂1 0 . . . 0

0 Σ̂2 . . . 0
... . . .

0 . . . 0 Σ̂n

⎤⎥⎥⎥⎥⎥⎥⎦ , (5.60)

where Σ̂i = diag
(
|ŵ(ω)|2E {|ξ̂i(ω)|2}

)
and m̂ = (m̂1(ω), . . . , m̂n(ω))

T.

As the matrices involved are diagonal matrices, the posterior covariance

can be written as

Σ̂post = (Â
H
Σ−1Â)−1

=
(∑n

i=1 Â
H
i Σ̂

−1
i Âi

)−1
=

(∑n
i=1 diag

(
|ŵ(ω)|−2E {|ξ̂i(ω)|−2}|ε̂′i(ω)|2

))−1
.

(5.61)

Now assuming that the measurement noise is white, we get E |ξ̂i(ω)|2 = s,

and

Σ̂post = diag

(
s|ŵ(ω)|2∑n
i=1 |ε̂′i(ω)|2

)
. (5.62)

and by Plancherel’s theorem, we obtain the time (or range) domain esti-

mation variance for the target:

Var σ′(r) =
s

2π

ˆ π

−π
|ŵ(ω)|2∑n
i=1 |ε̂′i(ω)|2

dω. (5.63)

In other words, the variance of the target backscatter amplitude estimate

depends on the sum of the Fourier transforms of the delta-train of the

transmission codes ε′n(t) and the receiver filter w(t). It also depends on

the receiver noise s, but this is simply a constant, which is unaffected by

the codes of the receiver filter. A code optimization procedure will thus

have to consider only the receiver filter, and the transmission codes.

5.5.2 Matched filtering

Perhaps the most commonly used method for estimating radar target

backscatter is the matched filtering approach [49], which is equivalent to

the correlation estimator discussed in Section 2.7.6. Again, if we consider

multiple measurements of the same unknown σ(t), we have the following
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set of measurement equations

m1(t) = (ε1 ∗ σ)(t) + ξ1(t)
...

...

mn(t) = (εn ∗ σ)(t) + ξn(t)

, (5.64)

and we again assume that ξi(t) are equally distributed wide sense station-

ary random processes. We can represent this in frequency domain using

m̂1(ω) = ε̂1(ω)σ̂(ω) + ξ̂1(ω)
...

...

m̂n(ω) = ε̂n(ω)σ̂(ω) + ξ̂n(ω)

. (5.65)

We can also write the theory matrix for these measurement equations

Â =

⎡⎢⎢⎢⎣
diag

(|ε̂1(ω)|2)
...

diag
(|ε̂n(ω)|2)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Â1

...

Ân

⎤⎥⎥⎥⎦ , (5.66)

and the correlation estimator of σ̂(ω) is then

σ̂CE = Â
H
m̂+ Â

H
ξ̂, (5.67)

or without matrix formalism

σ̂CE(ω) =

(
σ̂(ω)

n∑
i=1

|ε̂i(ω)|2
)

+
n∑

i=1

ε̂i(ω)ξ̂i(ω), (5.68)

which is the target σ̂(ω) convolved with the sum of the autocorrelation

functions of the transmission envelopes εi(t). This sum can be made a sin-

gle peaked autocorrelation function with e.g., complementary codes [140],

or using perfect codes [134]. The noise term is a sum of the noise terms

convolved with the conjugated transmission envelopes ε̂i(t).

5.6 Coherent range spread target with uniform Doppler shift

In the case of inverse synthetic aperture radar measurements of the Moon,

we can assume that, during one transmission pulse, the radar target has

a uniform Doppler shift over the whole range extent. For longer periods of

time this assumption of course does not apply, as it is the non-uniformity

of the Doppler shift that we use when making a range-Doppler map of the

target. However, during short periods of time this approximation is valid,

and this has the advantage that we can use radar transmission coding and

analysis that resembles that of a coherent target with no Doppler shift.
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This is exactly the idea behind the lunar range-Doppler measurements

presented in Publication IV, which used long coded pulses to increase sig-

nal to noise ratio.

Consider a coherent radar target with constant complex target backscat-

ter amplitude at each range during the time that the transmission pulse

travels through the target. If this target also has a uniform Doppler shift,

we obtain the following measurement equation, assuming a monochro-

matic incident wave

m(t) = ξ(t) +

ˆ
ε(t− r)σ(r) exp(iν(t− r))dr, (5.69)

where m(t) is the measured voltage at the receiver, ε(t) is the radar trans-

mission envelope, σ(r) is the target backscatter envelope, ν is the target

Doppler shift, and r is range in round-trip time of flight.

If we then multiply the measurements with exp(−iνt), we obtain

m(t) exp(−iνt) = exp(−iνt)ξ(t) +
ˆ
ε(t− r)σ(r) exp(iνr)dr, (5.70)

or

m′(t) = ξ′(t) +
ˆ
ε(t− r)σ′(r)dr, (5.71)

which is equivalent to a range spread coherent target and can be ana-

lyzed in the same way. The only exception is that the unknown target

backscatter amplitude is of the form σ′(r) = σ(r) exp(iνr), but this can be

corrected after first estimating σ′(r) and then multiplying with exp(−iνt).
If ξ(t) is white noise, i.e., E ξ(t)ξ(t′) = sδ(t− t′), then ξ′(t) is uneffected by

multiplication with exp(−iνt).

5.6.1 Wide band chirped transmission

Wide band linear chirped transmission waveforms are commonly used in

ionospheric chirp sounders. Because the transmission is essentially con-

tinuous and covers a wide range of frequencies with different propagation

characteristics, a conventional coherent spread target model with trans-

mission envelope cannot be used, as it would only apply in a narrow band.

The target is also assumed not to contain any Doppler shift.

A continuous linear chirped transmission can be expressed as

ε(t) = A exp{i2π(f0 + 0.5f1t)t}, (5.72)

where A is the amplitude of the transmission, f0 is the initial frequency

and f1 is the rate of frequency increase. While the transmission cannot
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be continuous for an infinitely long period, it can in practice be 30 s to

several minutes in the case of an ionosonde sounding.

The radar measurement equation m(t) can be expressed using σ(r) as

the complex backscatter coefficient, the term b(t) includes interference

signals, such as radio transmissions and ξ(t) is the noise entering the

receiver. Range r is indicated as round-trip time r = 2R/c

m(t) = b(t) + n(t) +

ˆ
σ(r)ε(t− r)dr. (5.73)

Multiplying this with the normalized conjugate of the transmission enve-

lope exp{−i2π(f0+0.5f1t)t} and ignoring effects near the beginning of the

transmission, we get

m(t) exp{−i2π(f0 + 0.5f1t)t} = m′(t) = A

ˆ
σ′(r) exp{−i2πf1rt}dr + ξ′(t)

(5.74)

where the modified target backscatter coefficient is

σ′(r) = σ(r) exp{−i2π(f0 − 0.5f1r)r} (5.75)

and the chirped interference and noise term is

ξ′(t) = exp{−i2π(f0 + 0.5f1t)t}(b(t) + n(t)). (5.76)

If we now exchange some variables, and set r = r′/f1 and use σ′′(r) =

σ′(r/f1) we can see the Fourier transform relation between σ′′(r′) and

m′(t)

m′(t) = ξ′(t) +
A

f1

ˆ
σ′′(r′) exp{−i2πr′t}dr′. (5.77)

If we discretize m(t), e.g., by simple boxcar filtering that results in a band-

width of B = (Δt)−1

m′k =
1

Δt

ˆ (k+1)Δt

kΔt
m(t)dt, (5.78)

we can approximate the Fourier transform as

mt = ξt +
A

f1

N−1∑
r=0

σr exp{−2πirt/N}, (5.79)

where σr consists of the integrated backscatter from one range gate. The

range resolution is determined by the frequency resolution, which on the

other hand is determined by the length of the discrete Fourier transform

and the bandwidth of mt. Time of propagation range is translated from

frequency with

R(r) =
cΔfr

2f1
, (5.80)
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where Δf = (NΔt)−1 is the frequency of the Fourier vector, and f1 is the

chirp frequency rate of the sounding.

If we consider a sequence of measurements (mt+t0, . . . ,mt+t0+N ) of length

N , we can write Eq. 5.79 in matrix form

m = Fx+ ξ (5.81)

with the help of the discrete Fourier transform matrix F. Here ωN =

e−2πi/N

F =
A

f1

⎡⎢⎢⎢⎢⎢⎢⎣
ω0·0
N ω0·1

N . . . ω
0·(N−1)
N

ω1·0
N ω1·1

N . . . ω
1·(N−1)
N

...
... . . . ...

ω
(N−1)·0
N ω

(N−1)·1
N . . . ω

(N−1)·(N−1)
N

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.82)

We now assume that ξt is noise dominated and zero mean. This is in fact

not always true. In the case of ionosonde soundings, a broadcast radio

station can often be much stronger than the background noise signal. We

however ignore this.

Because our theory matrix F is orthonormal and the covariance matrix

Σ = EξξH = αI is assumed to be constant diagonal, the maximum a

posteriori estimator for parameters σ can be significantly simplified

σ̂ = (FHΣ−1F)−1FHΣ−1m = FHm, (5.83)

where FHm is merely an inverse discrete Fourier transform of m. Also,

the posteriori covariance matrix

Σp = (FHΣ−1F)−1 =
αf21
A2N

I (5.84)

of the errors is diagonal, meaning that the errors of the estimated backscat-

ter coefficient of the neighbouring ranges is not correlated. The variance

of the estimates is proportional to the square of the chirp rate f21 and

inversely proportional to the transmitted power A2 and analysis vector

length N .

Example: Sodankylä ionosonde

Fig. 5.7 shows an example ionogram analyzed from a single transmis-

sion of the Sodankylä “Alpha wolf” ionosonde. The signal was received

with a single linear component magnetic loop antenna and the data was

recorded using a USRP2 digital receiver device sampling a 10 MHz band

between 0.5 and 10.5 MHz. Each column of the ionogram is an estimate

of 10 log10 |σr|2 using Eq. 5.83 at a narrow band in frequency during the

chirp.
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Figure 5.7. Above: The simple software ionosonde receiver. Below: Example ionogram
produced from the Sodankylä chirp ionosonde located ≈ 1 km away from the
receiver.
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Ionosonde considerations

Even though the variance of the measurements is proportional to f21 , the

range resolution is inversely proportional to f1. Even though increasingN

both increases range resolution and reduces variance, it is not possible to

increase N above a certain limit, because the ionospheric refractive index

changes strongly as a function of frequency and the target backscatter

cannot be considered to be constant over a wide band of frequencies. Also,

the ionosphere itself changes as a function of time, and cannot be assumed

to be stationary for extremely long periods of time. This sets a lower

limit to f1, as an ionogram is assumed to be a sounding of a stationary

ionosphere over a wide band of frequencies.

Strong constant frequency interference, e.g., from broadcast stations,

can be included in this analysis scheme by encoding this information in

Σ, by first estimating the average power of the band of interest and using

it in Equation 5.83.

5.7 Range and Doppler spread target

In the previous sections we have discussed radar models with correlation

times that are significantly longer than the time that the pulse travels

through the medium. These targets were called coherent targets. The

opposite to this, is a target that has temporal backscatter correlation

times shorter than the time T that the pulse, or group of pulses, trav-

els through the target. In this case, the scattering structure function

X(�r, t−t′) �= X(�r, 0) from a volume of space is not constant when |t−t′| < T .

These types of targets are commonly referred to as incoherent targets, or

range and Doppler spread targets.

A classic examples of this type of a radar target is the F-region of the

ionosphere, where the decorrelation times are typically measured in hun-

dreds of microseconds. This is a time that is often shorter than the radar

transmission pulse. While echoes from the D-region of the ionosphere, and

from rain droplets measured with a weather radar, typically are coherent

over the time that a transmission pulse travels through the medium, on

longer timescales they also can be considered incoherent. In these cases,

the backscatter structure function (or autocorrelation function) is not any-

more constant over several milliseconds – or typically over many radar

interpulse periods.

There are several ways that one can analyze range and Doppler spread
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targets. First we will present an amplitude domain method for analyz-

ing sufficiently narrow layers of incoherent scatter, which was introduced

in Publication I and Publication III in this thesis. We will then discuss

a power domain estimation method called lag-profile inversion [20], and

discuss several extensions to this method.

5.7.1 Amplitude domain method

Using discretized time and range, and assuming that our receiver impulse

response is sufficiently close to a boxcar function that is matched to the

sample rate, the direct theory for a signal measured from a radar receiver

can be expressed as a sum of the range lagged transmission envelope mul-

tiplied by the target backscatter amplitude

mt =
∑
r∈R

εt−r ζr,t + ξt. (5.85)

Heremt ∈ C is the measured baseband raw voltage signal,R = {Rmin, ..., Rmax} ⊂
N is the target range extent, εt ∈ C is the transmission modulation enve-

lope, and ξt ∈ C is measurement noise consisting of thermal noise and

sky-noise from cosmic radio sources. The range and time dependent tar-

get backscatter coefficient ζr,t ∈ C is assumed to be discretized in such a

way that the time dependent behaviour is properly sampled. The mea-

surement noise is assumed to be a zero mean complex Gausian white

noise with variance E ξt ξt′ = δt,t′ σ
2. Ranges r are defined in round-trip

time at one-sample intervals, t also denotes time in samples. By conven-

tion, we apply a range dependent constant r
2 delay to t in ζr,t, so that the

range dependent backscatter amplitude is ζr,t instead of ζr,t− r
2
. Fig. 5.8

depicts backscatter from three range gates probed with two transmission

samples.

We can further regularize the problem by assuming that ζr,t is a band

limited process, e.g., by assuming that the target backscatter can be mod-

eled using a B-spline [141], as was done in Publication III. Our model

parameters will consist of Ns control points that model the backscatter

at each range of interest. The frequency domain characteristics are de-

fined by the spacing of the knots and the order of the spline n. Using

the definition of B-splines, the target backscatter ζr,t is modeled using the

parameters Pr,k ∈ C as:

ζ̂r,t =

Ns−1∑
k=0

Pr,kbk,n

(
t− 1

L− 1

)
, (5.86)
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Figure 5.8. Simplified range-time diagram of backscatter from a strong narrow region
(notice that this is not in round-trip time). In this example there are two
transmit samples and three ranges that cause backscatter. The gray area
represents the area where the backscatter of one sample originates from,
assuming boxcar impulse response. A longer impulse response will cause
more range spreading.

where bk,n(·) is the B-spline basis function and coefficients Pr,k are the

control points with k ∈ {1, ..., Ns}. We assume that the control points

are evenly spaced and that the end-points contain multiple knots in order

to ensure that the second order derivatives are zero at both ends of ζ̂r,t.

Notice that we can also define a special case of one spline control point as

ζ̂r,t = Pr = ζr. This corresponds to a completely coherent target.

When equation 5.86 is substituted into equation 5.85, we get

mt =
∑
r∈R

Ns−1∑
k=0

Pr,kεt−rbk,n
(
t− 1

L− 1

)
+ ξt. (5.87)

This model is linear with respect to the parameters Pr,k and one can con-

veniently represent it in matrix form as

m = Ax+ ξ, (5.88)

where m = [m1, ...,mN ]T is the measurement vector, A is the theory ma-

trix containing the εt−rbk,n(·) terms, x = [P1,1, P1,2, ..., PNr,Ns ]
T is the pa-

rameter vector containing the control points and ξ = [ξ1, ..., ξN ]T is the

error vector with the second moment defined as

E ξξH = Σ = diag(σ2, ..., σ2). (5.89)

The number of parameters is the number of rangesNr times the number

of B-spline control points Ns per range. The number of measurements

N = Nr + L − 1 is a sum of target ranges and transmission envelope

length L. As long as N ≥ NrNs and the theory matrix has sufficient rank,

the problem can be solved using statistical linear inversion. In practice,

the number of model parameters that can be succesfully modeled with
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sufficiently small error bars depends on the signal to noise ratio. The

estimation of strong range and Doppler spread echoes is shown in [13].

Fig. 5.9 shows an example theory matrix for a target range extentNr = 14

with Ns = 8 spline guide points per range. The transmission code is a

uniform baud-length 13-bit Barker code with baud length lj = 10.

B−Spline theory matrix

row

c
o
lu

m
n

20

40

60

80

100

50 100

−1.0

−0.5

0.0

0.5

1.0

Figure 5.9. A theory matrix for a range and Doppler spread target with Nr = 14 range
gates and Ns = 8 B-spline guide points per range. The code is a simple 13-bit
Barker code with 10 samples per baud. The matrix is transposed.

The probability density for Eq. 5.88 can be written as:

p(m|x) ∝ exp

(
− 1

2σ2
‖m−Ax‖2

)
(5.90)

and assuming constant-valued priors, the maximum a posteriori (MAP)

estimator, i.e., the peak of p(m|x) is at point

xMAP = (AHA)−1AHm (5.91)

and the a posteriori covariance is:

Σp = σ2(AHA)−1. (5.92)

5.7.2 Lag-profile inversion

The lag-profile inversion is a maximum likelihood estimator of the inco-

herent scatter autocorrelation functions at a user defined range resolu-

tion. The analysis is performed on lagged products of the measured raw
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voltage radar echoes [20, 142] using linear-least squares methods. For a

good description of the method, refer to Virtanen [20]. We will only give a

brief description of the method here.

Consider the measurement equation for range and Doppler spread tar-

gets, but in this case using multiple different radar transmission envelopes

indexed with c:

mc
t =

∑
r∈R

εct−r ζr,t + ξt. (5.93)

We then take conjugated self-products of these measurements with a lag

τ . These can be organized as

mc
tm

c
t+τ =

∑
r∈R

εct−rεct−r+τ σ
τ
r + ξ′t, (5.94)

where στr = E ζr,tζr,t+τ , and ξ′t is a zero-mean noise term, which is domi-

nated by the receiver noise in the case of low signal to noise ratio measure-

ments. In the case of high signal to noise ratio measurements, this will

also have significant zero mean contributions from the incoherent scatter

cross-products ζr,tζr′,t+τ , where r �= r′.

In more concise form, the lag-product equations can be stated as

mc,τ
t =

∑
r∈R

εc,τt−rσ
τ
r + ξ′t, (5.95)

which is equivalent to the measurement equation for coherent (station-

ary) range-spread radar targets. For each lag τ , the measurement equa-

tions are different, as the ambiguity functions εc,τt−r depend on the lag (and

also transmission envelope). The equation is linear, i.e., the relationship

between the unknown στr and the measurements mc,τ
t can be represented

in matrix

mc,τ = Wc,τστ + ξ′, (5.96)

where the measurement vector mc,τ spans over all time indices that con-

tribute to the unknown στ .

Typically, we assume the target scattering autocorrelation function to

be constant over a certain integration period, i.e., we assume that many

different measurements c contain the same unknown. We can add these

into our equation by simply stacking the measurements:⎡⎢⎢⎢⎢⎢⎢⎣
m1,τ

m2,τ

...

mc,τ

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
W1,τ

W2,τ

...

Wc,τ

⎤⎥⎥⎥⎥⎥⎥⎦στ + ξ′′ (5.97)
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In addition to this, we can also combine several different lag measure-

ments, if we assume that the autocorrelation function is indentical at

these lags στ ′r = στr = στ+1
r = · · · = στ+n

r :⎡⎢⎢⎢⎢⎢⎢⎣
mc,τ

mc,τ+1

...

mc,τ+n

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
Wc,τ

Wc,τ+1

...

Wc,τ+n

⎤⎥⎥⎥⎥⎥⎥⎦στ ′
+ ξ′′ (5.98)

In a similar way, we can also decrease the range resolution from the

nominal sample rate by assuming that n range gates have the same backscat-

tering autocorrelation στr′ = στr = στr+1 = · · · = στr+n. This allows analysis

with different range resolutions at different altitudes, e.g., using a fine

resolution in the E-region where the scale height is small, and a more

coarse resolution in the top-side of the F-region where the signal to noise

ratio is much smaller and the scale height is large.

While the equations can be solved using frequency domain methods, this

is not necessarily always ideal, as incoherent scatter radar measurements

often contain strong signals that can interfere with the much weaker in-

coherent scatter signal. In these cases it is useful to be able to remove

the individual echoes from the raw voltage data, and analyze the problem

using linear theory matrices. This also has the advantage that different

range and lag resolutions can be used at different regions. Also, issues

such as missing measurements due to ground clutter can be more opti-

mally dealt with by using linear theory matrices than by using simple

filtering methods.

5.7.3 Dual polarization lag-profile inversion

The lag-profile inversion idea can also be extended to dual-polarization

measurements. Such a measurement can be used for several different

purposes. Polarization can be used to measure the propagation and scat-

tering effects [143, 144]. The most common use of dual-polarization mea-

surements in incoherent scatter is the measurement of Faraday-rotation,

which can be used to obtain absolutely calibrated electron densities from

the ionosphere, independent of received power.

Polarization can also be used for transmission coding [145], although it

has not been commonly used. As we will see in this section, coding is also

important if one wants to measure the full scattering matrix.

In this section, we will introduce dual-polarization scattering equations
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and show how the full statistical scattering matrix can be estimated using

lag-profile inversion.

Dual polarization scattering equation

By using the Jones representation for polarized electromagnetic plane

waves, we can write the dual-polarization incoherent scattering equation

in discretized form as

mt =
∑
r

Sr,tεt−r + ξt, (5.99)

which is similar to the one-dimensional single polarization equation, ex-

cept that the measurement, the transmission envelope, and the receiver

noise are two-dimensional vectors mt ∈ C
2, εt ∈ C

2 and ξt ∈ C
2. The

two components denote two orthogonal polarizations. Also, the incoherent

scatter term is a 2× 2 matrix Sr,t ∈ C
2×2, which can include propagation,

scattering, and radar system effects.

Example: Single polarization

In the case of a monostatic circular polarization incoherent scatter radar

measurement, which is not close to perpendicular to the magnetic field,

the scattering matrix can be considered diagonal.

If denote the two circular polarizations with a and b, the equation for

transmitting polarization a is

mt =

⎡⎣ma
t

0

⎤⎦ =
∑
r

⎡⎣ζar,t 0

0 ζbr,t

⎤⎦⎡⎣εat−r
0

⎤⎦+ ξt (5.100)

In this case, we represent the incoherent scatter amplitude with ζar,t and

ζbr,t. The noise is E ξtξt′
H =

⎡⎣σ2 0

0 σ2

⎤⎦ δt,t′ . And the transmission code

is εat . We use the convention that the received wave is opposite circular

polarized. This simplifies to

ma
t =

∑
r

ζar,tε
a
t−r + ξt, (5.101)

which is the same as the monostatic single polarization B‖ field aligned

circular polarization incoherent scatter equation.

If we were to transmit polarization b, we would have

mt =

⎡⎣ 0

mb
t

⎤⎦ =
∑
r

⎡⎣ζar,t 0

0 ζbr,t

⎤⎦⎡⎣ 0

εbt−r

⎤⎦+ ξt (5.102)

which simplifies to

mb
t =

∑
r

ζbr,tε
b
t−r + ξt (5.103)
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which again is the same as the monostatic single polarization B‖ field

aligned circular polarization incoherent scatter equation. There are no

cross-polarization terms in the scattering matrix, because we assume per-

fect isolation between the polarizations on receiver, and we assume that

the propagation and scattering doesn’t result in cross-polarization of the

transmitted wave.

For single polarization measurement, where one only uses one polariza-

tion for transmission, one can only estimate the incoherent scatter auto-

correlation function E ζar,tζ
a
r,t+τ or E ζbr,tζ

b
r,t+τ . If one were to transmit two

different polarizations, it would be possible to also estimate the cross-

correlation function E ζar,tζ
b
r,t+τ = σabr,τ by inspecting cross-polarization lags

ma
tm

b
t+τ =

∑
r

σabr,τ ε
a
t−rεbt−r−τ + ξt. (5.104)

which is again similar to the single polarization equation, except that

the inspect use lagged products between two polarizations and use the

transmission waveforms of each of these polarizations.

Full scattering matrix

In the more general situation scattering, propagation, and the radar sys-

tem imperfections can cause polarization cross-talk. In this case, the more

appropriate scattering equation is

mt =
∑
r

Sr,t + ξt =
∑
r

⎡⎣ζar,t νbr,t

νar,t ζbr,t

⎤⎦ εt−r + ξt (5.105)

There are thus four different incoherent scatter processes: ζar,t, νar,t, ζbr,t,

and νbr,t. The measurement noise is still assumed to be uncorrelated:

E ξtξt′
H =

⎡⎣σ2 0

0 σ2

⎤⎦ δt,t′ .
mt =

∑
r

⎡⎣εat−rζar,t + εbt−rνbr,t
εbt−rζbr,t + εat ν

a
r,t

⎤⎦+ ξt. (5.106)

Because there are four unknowns, it is now possible to calculate 16 dif-

ferent second order products from these (the covariance matrix of four
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variables).

maa,τ
t =

∑
r

εat−rεat−r−τσ
1,τ
r + εat−rεbt−r−τσ

2,τ
r +

εbt−rεat−r−τσ
2,τ
r + εbt−rεbt−r−τσ

3,τ
r + ξ1t

mab,τ
t =

∑
r

εat−rεbt−r−τσ
4,τ
r + εat−rεat−r−τσ

5,τ
r +

εbt−rεbt−r−τσ
6,τ
r + εbt−rεat−r−τσ

7,τ
r + ξ2t

mba,τ
t =

∑
r

εbt−rεat−r−τσ
4,τ
r + εbt−rεbt−r−τσ

6,τ
r +

εat−rεat−r−τσ
5,τ
r + εat−rεbt−r−τσ

7,τ
r + ξ3t

mbb,τ
t =

∑
r

εbt−rεbt−r−τσ
8,τ
r + εbt−rεat−r−τσ

9,τ
r +

εat−rεat−r−τσ
9,τ
r + εat−rεbt−r−τσ

10,τ
r + ξ4t

These are still linear equations, which can be solved with generalized lin-

ear least-squares methods, albeit in this case we have 16 unknowns.

However, due to symmetry, 10 of them are unique:

σ1,τr = E ζat ζ
a
t+τ (5.107)

σ2,τr = E ζat ν
b
t+τ (5.108)

σ3,τr = E νbt ν
b
t+τ (5.109)

σ4,τr = E ζat ζ
b
t+τ (5.110)

σ5,τr = E ζat ν
a
t+τ (5.111)

σ6,τr = E νbt ζ
b
t+τ (5.112)

σ7,τr = E νbt ν
a
t+τ (5.113)

σ8,τr = E ζbt ζ
b
t+τ (5.114)

σ9,τr = E ζbt ν
a
t+τ (5.115)

σ10,τr = E νat ν
a
t+τ (5.116)

and this information can be used when fitting a physical theory into the

lag-product inversion results.

Now, if we are interested in ma
tm

b
t+τ lags (Faraday rotation), which is

included in Arg{σ4,τr }, we can use the following two equations

mab,τ
t =

∑
r

εat−rεbt−r−τσ
4,τ
r + εat−rεat−r−τσ

5,τ
r +

εbt−rεbt−r−τσ
6,τ
r + εbt−rεat−r−τσ

7,τ
r + ξ2t

mba,τ
t =

∑
r

εbt−rεat−r−τσ
4,τ
r + εbt−rεbt−r−τσ

6,τ
r +

εat−rεat−r−τσ
5,τ
r + εat−rεbt−r−τσ

7,τ
r + ξ3t
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Figure 5.10. Faraday rotation measured on 13.09.2010 (starting at 22 UT) with the Ji-
camarca incoherent scatter radar using a dual circular polarization trans-
mission pulses. The propagation delay between the two different modes is
given in radians. The plume with zero propagation difference is scattering
from equatorial spread F, which is perpendicular to the magnetic field, and
has very little difference in refractive index.

as Arg(σ4,τr ) contains the information about propagation delay. This is be-

cause the Appleton-Hartree equation results in two refractive indices for

two orthogonal propagation modes, which always have a circular compo-

nent, unless the propagation is perpendicular to the magnetic field. Fig.

5.10 shows an example of a Faraday rotation measurement, the figure

shows the propagation delay between the polarization as measured in ra-

dians Arg(σ4,τr ).

For example, the mab,τ
t can be written as a linear theory matrix using

the following shorthands

wt
r,τ =

[
εat−rεbt−r+τ , εat−rεat−r+τ , εbt−rεbt−r+τ , εbt−rεat−r+τ

]
and

σ′r,τ =
[
σ4r,τ , σ5r,τ σ6r,τ σ7r,τ

]T
The linear relationship between the lagged product measurements and
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the unknown parameters m = Ax+ ξ can now be written as:⎡⎢⎢⎢⎣
mab,τ

1
...

mab,τ
t

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w1
1,τ . . . w1

r,τ

... . . . ...

wt
1,τ . . . wt

r,τ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
σ′1,τ

...

σ′r,τ

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
ξ′1
...

ξ′t

⎤⎥⎥⎥⎦ ,
which can be solved using standard statistical linear least squares solu-

tion methods, assuming that the transmission envelopes result in a non-

singular covariance matrix.

Faster filtering solution

If the transmission waveforms εat and εbt are designed in such a way that

for some τ : ∣∣∣εat εbt+τ

∣∣∣ > 0

εat ε
a
t+τ = 0

εbtε
b
t+τ = 0

εbtε
a
t+τ = 0

Then our measurement equation is a convolution of Faraday rotated backscat-

ter σ4r,τ and the lagged product of the transmission envelopes εat−rεbt−r+τ :

mt =
∑
r

εat−rεbt−r+τσ
4
r,τ + ξ′t.

This can be used to perform dual-polarization measurements of Faraday-

rotation with very little computational resources compared to the full ma-

trix equations.

5.7.4 Other methods

Lag-profile inversion is a fairly new method of analysing range and Doppler

spread targets. However, previous methods do have certain similarities

to this method. For example, the integrated correlator method used at

EISCAT can be thought of as a correlation estimator of the same mea-

surement equations that are used in lag-profile inversion. The down-side

to this method, however, is that it cannot account for missing data on the

raw voltage level, and thus this method is potentially more vulnerable

to interfering space debris and meteor head echoes, as they have to be

detected in power domain instead of amplitude domain. Also, if the trans-

mission envelopes are not “perfect”, the resulting integrated correlator

dumps will have range sidelobes as bias, whereas the lag-profile inver-

sion method can readily use the actual transmitted waveform sampled

from the waveguide.
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Another method for analyzing incoherent scatter targets is the so called

full-profile inversion method [95, 146, 147]. This method operates directly

on the averaged lag-products mtmt+τ and makes no attempt to estimate

unambiguous autocorrelation functions, but fits the full profile of iono-

spheric parameters using incoherent scatter theory directly to the am-

biguous lag-product matrices. This method assumes that the plasma pa-

rameters that define the measured backscatter autocorrelation functions

are characterized by functions that vary smoothly with altitude. This can

be seen as a form of regularization. While this method is optimal in the

sense that it uses all of the information optimally, the method has a draw-

back that one needs to assume a certain theory in advance. Also, one can-

not escape the range ambiguities with full-profile inversion either. If the

experiment has wide range ambiguities, this will result in poor resolution

when fitting the theory to the measurements.

The principle behind lag-profile inversion is to first make an unbiased

estimate of the incoherent scatter autocorrelation functions at each range

gate, and then fit a theory to it. Thus, there is no reason why lag-profile

inversion couldn’t be used together with full-profile inversion when fit-

ting the plasma parameters to the estimated autocorrelation functions –

such processing would certainly be beneficial when fitting the incoherent

scatter theory to the measured autocorrelation functions.
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6. Optimal radar experiment design

The purpose of optimal experiment design is to minimize the estimation

errors that are described by the a posteriori probability distribution of the

measurement model. In the case of radar measurements there are a mul-

titude of experiment configurations typically available in a radar system.

For example, in traditional fixed antenna radar systems, one typically

can modify transmission pulse intervals, transmission coding (transmis-

sion waveform) and radar pointing direction. In newer phased-array sys-

tems there are even more possibilities, such as locations of the individual

antennas that comprise the aperture [22] or beam shape [148]. These fac-

tors affect the posteriori distribution of the parameters estimated from

the measurements.

Traditionally, optimal experiment design [10] deals with one-dimensional

optimality criteria that are derived from the posteriori error covariance

matrix of the estimated parameters. One example of this is the so called

A-optimality, which is the sum of the diagonal of the estimation error co-

variance matrix.

A more recent and less well known framework that can be applied to

optimization of experiments is the theory of comparison of experiments

[11]. This is a more powerful framework, which can be used to test if

some “measurement is always as good as or better than some other ex-

periment”. In simplified terms, a measurement m1 is better or equal to

another m2 only if one can simulate m2 using m1 using some transfor-

mation and possibly adding some sort of noise. The measurements are

equally good if the converse is also true. In the case of linear models, one

measurement is better than another measurement if all of the elements

of the a posteriori covariance matrix are smaller than the elements of

the posteriori covariance matrix of the other measurement. This frame-

work is nicely demonstrated for comparison of radar transmission codes
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by Lehtinen [134], where codes are characterized as being at least as good

as a perfect code with some transmission power.

Traditionally, code optimality has been studied mainly from the per-

spective of minimizing artefacts that result from correlating the mea-

surements with the theory matrix, which in the case of a coherent tar-

get means correlating the measurements with the transmission envelope.

This is analogous to the correlation estimator discussed in Section 2.7.6.

The historical reason for this is perhaps that radar measurements used

to be analyzed with specialized hardware with very limited computational

capabilities, which dictated the use of the less computationally demand-

ing correlation estimate. While this sort of optimality does heuristically

make sense, a more correct approach is to use the characteristics of esti-

mation errors to determine what experiment setup is optimal.

In this section we will briefly go through some aspects of radar experi-

ment design, which have played some role during the thesis work. These

include transmission code optimization for stationary range spread tar-

gets1, as well for range and Doppler spread targets2. We will also briefly

discuss transmission pulse spacing without going very deep into the topic.

6.1 Range spread targets

Range spread targets can be characterized as radar targets that consist

of scatterers or a scattering medium which is approximately stationary

during the time when the transmission pulse travels through the medium.

This has several advantages in terms of target backscatter estimation –

mainly that the measurement equation can often be approximated as a

convolution over the duration of one transmission pulse. Range spread

targets are the most typical type of a radar target, and therefore this type

of a radar target has been studied extensively in terms of experiment

optimization.

The literature on traditional code optimization mostly discusses mini-

mization of the off-diagonal elements of AHA [149, 126], where the theory

matrix containing the measurement equations is contained in A, typically

in the form of a convolution equation or variants of it, which also possi-

bly take into account that the target is stationary over several interpulse

periods.

1Also referred to as a coherent target.
2Also referred to as incoherent scatter target.
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In terms of maximum likelihood estimation of the target backscatter

estimation, it is also easy to directly inspect the covariance matrix of the

measurement errors Σ = (AHA)−1.

6.1.1 Barker codes

An important class of codes for coherent targets are so called Barker codes

[126], which have the property that the off-diagonal elements of the au-

tocorrelation function (rows of AHA) are always less or equal than one

|rt| ≤ 1. There are seven known binary phase sequences with this prop-

erty, with the longest code length of only 13. Recently longer polyphase

Barker sequences have been found at lengths up to 77 [130, 131], and it

is likely that even longer sequences can be found in the future.

Binary phase Barker codes have also been found to be optimal in terms

of maximum likelihood estimation (sidelobe free decoding) of target backscat-

ter amplitude [128, 129]. The autocorrelation function of a certain trans-

mission code is also related with the backscatter estimation error covari-

ance matrix, as it is the inverse of the covariance matrix Σ−1 = AHA.

6.1.2 Complementary codes

Complementary codes [127] or Golay sequences are pairs of codes that

are optimal for measuring targets. There is an underlying assumption

that the target has to be stationary over the duration of two transmission

pulses. In this case, the theory matrix is a set of two stacked convolution

equations

A =

⎡⎣A1

A2

⎤⎦ , (6.1)

with one convolution equation Ai for each code. Complementary codes

are optimal in the sense that the theory matrix for the target backscat-

ter results in a diagonal covariance matrix (AHA)−1 = L−1I, where L

is the combined power of the two transmission envelopes, assuming that

the measurement errors have a diagonal covariance matrix of the form

Σ = I. In addition to this, the correlation estimate AHm is also the un-

scaled maximum likelihood estimate for target backscatter, if the error

covariance matrix is diagonal.

An example of a complementary code pair is

C = {++−+−+−−++,++−+++++−−}, (6.2)

where the two phases are represented with a plus and a minus signs.
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Golay sequences are know to exist at lengths N = 2α10β26γ , where

α, β, γ ≥ 0. Longer codes can be generated recursively from shorter com-

plementary codes (c1, c2) using the follow rule

(c′1, c
′
2) = (c1|c2, c1| − c2), (6.3)

where | is the concatenation operator.

It is also possible to form polyphase complementary code pairs. In addi-

tion to this, longer groups of codes with the complementary code property

can be formed, although these are perhaps not that practical, as one has

to assume stationarity of the target over the whole transmission cycle of

the codes.

6.1.3 Kronecker product codes

The Kronecker product construction formula is useful for forming very

long transmission codes with good performance in terms of maximum

likelihood estimation of a stationary target. This is a method for form-

ing long codes from known good short codes. This is because it is easy to

exhaustively search for shorter codes, while it is impossible to perform an

exhaustive search for longer codes.

Consider pulse codes with phases and amplitudes determined by finite

vectors ε1 ∈ C
p and ε2 ∈ C

q. The Kronecker product ε1 ⊗ ε2 ∈ C
pq of these

codes is defined as

ε1 ⊗ ε2 =
[
ε11ε

2, ε12ε
2, · · · , ε1pε

2
]
, (6.4)

which has beneficial properties in terms of code construction, as it can be

shown that the deconvolution estimation variance of an inverse filter for

a code of this form “inherits” the variance of the codes ε1 and ε2. The con-

tinuous time Kronecker product code ε1,2(t) can be seen as a convolution

of the two continuous time Dirac delta spike trains ε1(t) and ε2((p+1)−1t)

ε1(t) =
N∑
i=1

ε1i δ(t− iΔt)

ε2(t) =

N∑
i=1

ε1i δ(t− iΔt)

ε1,2(t) =

∞∑
τ=−∞

ε1(τ)ε2((p+ 1)−1(t− τ))

An example Kronecker product code is shown in Fig. 6.1.

As the discrete Fourier transform of ε2((p + 1)t) is a periodic function

with p + 1 periods between 0 and 2π, we can obtain the following lower
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Figure 6.1. A Kronecker product code constructed from codes ε1 = (1,−1,−1) and ε2 =

(1, 1,−1).

and upper bounds for the Kronecker product code variance
ˆ 2π

0

1

max |ε̂1(ω)|2max |ε̂2(ω)|2dω ≤
ˆ 2π

0

1

|ε̂1(ω)|2|ε̂2((p+ 1)ω)|2dω ≤
ˆ 2π

0

1

min |ε̂1(ω)|2min |ε̂2(ω)|2dω (6.5)

Perhaps the most useful estimate of variance can be obtained by multiply-

ing the variance of the two codes that form the Kronecker product. This

gives a useful way of predicting the performance of a long code based on

the performance of two shorter codes:
ˆ

pq

|ε̂1(ω)|2|ε̂2((p+ 1)ω)|2dω ≈
ˆ

p

|ε̂1(ω)|2dω
ˆ

q

|ε̂2(ω)|2dω. (6.6)

The approximation assumes that the ε̂1(ω) is constant over one cycle of

ε̂1((p + 1)ω), therefore the approximation accuracy depends on p. The

larger p is, the more accurate the approximation is. The approximation

approaches the exact value when p→∞.

Kronecker product codes can be used as an initial guess for very long

optimized codes. They can be used to create extremely long codes that

are very close to perfect e.g., from long polyphase Barker codes [130, 131].

Optimized binary phased codes and frequency stepped codes were created

using a Kronecker product code from shorter binary phase Barker codes

as an initial code in the lunar mapping experiment described in Publica-

tion V.

6.1.4 Perfect and almost perfect transmission codes

Perfect codes [134] are codes that have the smallest theoretically possible

estimation variance, i.e., they are equivalent to a short one-baud uncoded

pulse of the same power. Such a transmission sequence has to include

amplitude modulation. This can be seen by inspecting the autocorrela-

tion function of a constant amplitude transmission envelope, which has
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at least one unit amplitude sidelobe on the outer reaches of the autocorre-

lation function, as it is a product of two arbitrary complex numbers with

a non-zero amplitude. Perfect codes are also infinitely long, but they can

be made infinitely long in only one direction. Also, the amplitude of a

perfect code can be designed in such a way that it decreases rapidly, in

which case a truncated version of the transmission envelope is already

extremely close to perfect.

Nearly perfect finite length codes were initially discovered using opti-

mization searches for phase and amplitude modulated pulse codes [1]. In

this study it was found that the estimation error variance could be made

extremely small (the estimation error variance was 10−6 from perfect) by

allowing amplitude modulation to a finite length transmission sequence.

In practical applications, such codes will already be very close to optimal.

Since then, several different analytic methods have been developed for

producing perfect codes. Of these, there are two noteworthy versions.

The first method transforms an arbitrary non-ideal transmission enve-

lope into a perfect one, by scaling the frequency domain modulus to unity,

and then transforming the projected perfect transmission envelope back

into time domain [134]. This method involves initially selecting a radar

transmission code ε(t) which is not perfect. This code is then Fourier

transformed ε̂(ω), and the Fourier representation of the perfect code is ob-

tained by scaling with |ε̂(ω)|, the perfect code εp(t) is obtained by inverse

Fourier transforming this scaled code back to time domain

εp(t) =

ˆ ∞
−∞

ε̂(ω)

|ε̂(ω)|e
−iωtdω. (6.7)

This constructive method can also be used in iterative searches for nearly

perfect codes with constraints applied to the shape of the amplitude enve-

lope [134].

Another method3 relies on the autoregressive moving average all-pass

filter design equation [150]

H(ω) =
a1 + a1e

−iω + a2e
−i2ω · · · aNe−iNω

aN + aN−1e−iω + a2e−i2ω · · · a1e−iNω,
(6.8)

where ai ∈ C are autoregressive moving average filter coefficients. This

design equation has by definition the property that the modulus in fre-

quency domain is constant |H(ω)| = α, which guarantees that the trans-

mission code is perfect. The perfect radar transmission code would be the

impulse response of the filter in time domain. In other words, any digital

3Roininen 2012, publication in review
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autoregressive moving average all-pass filter can be used to produce a per-

fect radar transmission code. This has the advantage that in some cases

the transmission code has non-zero amplitude that extend to infinity only

on one side. However, the disadvantage of these types of codes is that the

amplitude envelope of these waveforms is typically not very flat, which is

often necessary in order to maximize of duty-cycle of a high power radar

transmitter.

While perfect codes have the property that they have theoretically op-

timal estimation error variance, they always require at least some form

of amplitude modulation. This is sometimes difficult to realize in com-

mon high power amplifier designs, as there is typically some peak power

that cannot be exceeded. Also, radar transmission envelopes for a monos-

tatic radar should be as compact as possible in time, so that one can start

receiving the echoes as soon as possible. Also, as there exist constant am-

plitude transmission codes, such as Barker codes, with only 3-15 % worse

estimation error variance, the improvement obtained with perfect trans-

mission coding is not always very significant.

6.1.5 Fractional baud-length coding

Fractional baud-length coding is a novel coding method presented in Pub-

lication III. The main goal of this method is to improve target range

and Doppler estimation accuracy, which is achieved by using non-uniform

baud lengths. With this method it is possible to improve the sub-baud

range-resolution of phase-coded radar measurements while maintaining

a narrow transmission bandwidth. By using non-uniform baud-lengths,

it is possible to avoid zeros in the frequency domain representation of

the transmission code, which would otherwise make sub-baud resolution

impossible or extremly ill-posed. In other words, using non-uniform baud-

lengths reduces the backscatter estimation error variance when analyz-

ing the target at resolutions that are better than the minimum allowed

baud-length would otherwise allow.

6.1.6 Periodically perfect codes

In certain cases when the radar target has a finite range extent and there

is a possiblity of bi-static receiving and 100% duty-cycle transmit, one can

use a class of codes that are perfect in terms of periodic autocorrelation.

In this case, one makes use of the fact that the radar echoes are confined
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into a narrow region, and that the backscatter from the previous and next

transmit pulse are approximately the same. This assumption makes it

possible to model the radar measurement from a single echo using a peri-

odic convolution equation with a theory matrix of the form shown in Eq.

2.78.

There are at least two types of related codes that are optimal for this

type of a measurement equation, Frank codes and Zadoff-Chu codes [151].

Asteroid measurements and lunar ISAR are examples of targets that are

confined in range extent and can be approximated as stationary targets

over a short period of time due to the fact that they have a bulk Doppler

shift that is well known.

6.1.7 Random code groups

Random code groups were introduced by Sulzer [3] for measuring incoher-

ent scatter autocorrelation functions with minimal sidelobes. This relied

on the property that random sequences are nearly orthogonal when there

are enough of them. This relies on the fact that provided with enough

random codes in the measurement, the theory matrix A for the lag-profile

measurement is orthogonal enough, i.e., AHA ≈ αI. In this case, the cor-

relation estimate discussed in Section 2.7.6 is a fairly good approximation

of an unbiased maximum likelihood estimate.

When using lag-profile inversion methods for analyzing random code

groups, the error variance of the lag-product estimates obtained using

randomly selected code groups is very close to theorethically optimal, as

was shown in Publication II of this thesis.

6.1.8 Alternating codes

Alternating codes were first introduced by Lehtinen [21]. They provide

sidelobe-free decoding of the incoherent scatter autocorrelation function

for inter-pulse lags, i.e., the theory matrix is orthogonal AHA = αI. In

addition to this, so called strong alternating codes are known, which can

also be used to remove the effect of receiver impulse response. Since their

introduction, shorter type II alternating code groups have also been intro-

duced by Sulzer [124].

Although the first binary phase shift keying alternating code groups

were initially found using a clever exhaustive search method, a method

for generating arbitrarily long sequences have since been found for both
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binary phase [125] and polyphase alternating codes [123].

When inspecting the lag estimation error variance, alternating codes

have been shown to be optimal, i.e.., no code groups of similar length and

power, utilizing a uniform transmission amplitude have better estimation

error variance [21].

The original alternating codes are known to result in strong correlations

between autocorrelation function estimates in adjacent range gates when

measuring a high SNR target. This, however, can be remedied by ran-

domizing the alternating code group, i.e., by multiplying all codes in a set

of alternating codes with a random phase vector, which is randomized at

the beginning of each cycle [15].

6.1.9 Optimized code groups

While randomized code groups and alternating codes can be shown to be

close to optimal or optimal, there are cases where one would like to utilize

shorter tranmission code groups, e.g., to simplify ground clutter removal.

In this case, one can use optimization algorithms to find code groups that

have small estimation variance [152] and result in a short code group.

This was studied in Publication II included in this thesis.

It is also possible to optimize other aspects, like, e.g., the estimation

error variance of ranges where one can only measure the target with a

small portion of the transmission code (lower altitudes), or in the case

where different altitudes are analyzed with different range resolutions

[14].

6.2 Transmission pulse spacing

Transmission pulse spacing plays an important role in radar measure-

ments. For incoherent scatter in the E- and F-region, the decorrelation

time of the target is so short that typically only intrapulse lags can be

estimated. In this case, the main criteria for experiment design is the

length of the transmission pulse, which has to be long enough to be able

to measure long enough lags, so that the incoherent scatter autocorre-

lation function can be effectively measured. In the D region of the iono-

sphere, the correlations are longer, and pulse-to-pulse correlations need to

be estimated. As the decorrelation times depend on the radar frequency,

different radars typically require different timings.
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In the case of monostatic radar, measurements cannot be made when

transmitting. Part of the echo is also lost because of receiver protection

and ground clutter before and after the transmission pulse. If equal pulse

spacing is used, there will be persistent areas in range where no measure-

ment can be made. This however can be remedied with the use of aperi-

odic interpulse intervals [76, 153, 154, 155, 156, 16, 17, 14, 157, 158]. In

this way, the transmission pulse gap appears at different ranges, and over

a sufficiently long integration time echoes can be obtained from all ranges

and at a more diverse set of lags.

Uniform pulse spacing also typically suffers from what is known as the

range-Doppler dilemma, which applies for radar measurements that uti-

lize uniform interpulse periods and pulses always coded in the same way.

The problem is two-fold. Decreasing the interpulse period allows better

spectral width for pulse-to-pulse measurements, but at the same time de-

creases the unambiguous range. Inversely, increasing the interpulse pe-

riod on the other hand decreases unambiguous spectral width, while it in-

creases the unambiguous range. Typically incoherent scatter radar mea-

surements utilize long groups of coded pulses, which can already be used

to solve the range aliasing problem. Utilizing non-uniform pulse spacings

also allows increased spectral resolution. Combining non-uniform spac-

ing and radar transmission coding can be thus seen as a solution to the

range-Doppler dilemma [153, 154, 155, 156, 157, 158].
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7. Conclusions

This introduction has attempted to cover many important aspects related

to statistical analysis of radar measurements with emphasis on the types

of measurements that I have encountered during my work. This includes

probability theory, numerical methods, high power large aperture radars,

radar measurement models, and radar experiment optimization. The

work has also included a great deal of software engineering with digi-

tal receiver hardware, radars, and numerical analysis software. Unfortu-

nately there was not enough space to include any of this in the introduc-

tion to this thesis.

The main results of this thesis include a novel amplitude domain inco-

herent scatter analysis method presented in Publication I and Publica-

tion III. Publication III introduces a new type of radar transmission code

that can be used to perform high resolution incoherent scatter measure-

ments using a narrow effective transmission bandwidth. Publication II

presented a stochastic optimization method that can be used for finding

near-optimal radar transmission waveforms that minimize the variance

of incoherent and coherent scatter radar estimates. Publication IV of this

thesis presents the first EISCAT 32-cm wavelength radar mapping mea-

surements of the Moon. Finally, Publication V presents two beam-park

measurements of the Iridium-Cosmos satellite collision that occured in

2009. This event raised the public awareness of the man-made environ-

mental problem called space debris, which can negatively affect our abil-

ity to safely operate satellites and spacecraft in the future. The EISCAT

measurements shown in this thesis were one of the few publicly available

measurements produced shortly after this collision.

It is evident that future radar and signal processing hardware will al-

low radar measurements with more receiver channels and more receiver

bandwidth. Cheap solutions for data transfer and absolute timing will
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also allow easier deployment of multi-static receivers. This will allow the

use of multiple beams and polarization diversity. These features can be

used to e.g., improve imaging of radar targets [159], or to extract physical

parameters from polarization measurements [139]. Many of the possibil-

ities that these technological advances will allow are yet to be invented.

The possibility of being able to deploy a low cost sparse field of antennas

has a potential to revolutionize traditional geophysical instruments, such

as ionosondes and riometers.

Incoherent scatter radars of the future will be more geared towards con-

tinuous environmental monitoring, instead of the campaign based obser-

vation modes of the past. A good example of this is the new AMISR sys-

tem, which operates constantly in low power mode, providing a contin-

uous measurement of the ionosphere. Future incoherent scatter radars

should also provide more than just ionospheric plasma parameters. With

little extra effort, the same instrument and radar measurement modes

can also be used to provide a continuous measurement of trajectories of

meteors entering our atmosphere and space debris orbiting our planet.

In order to obtain the maximum amount of information from these con-

tinuous measurements, new types of general purpose radar experiments

[16, 14] and flexible analysis methods [20] need to be developed. Such

types of experiments and analysis methods should allow monitoring of as

many regions of the ionosphere and as many types of phenomena as pos-

sible. Some care also needs to be taken in order to preserve the necessary

information to allow flexible analysis of the radar measurements. Typi-

cally this can be done by storing the raw voltage samples from the radar

receiver, preferably with multiple channels that provide interferometric

information. Preferably the raw voltage samples should be the primary

method of storing the measurements, in order to allow more sophisticated

post processing of interesting events, or even allowing reprocessing of the

data with methods that perhaps haven’t even been developed yet.

One future challenge for high power large aperture radars is the auto-

matic recognition of the various sporadic radar targets. The most notable

ones are meteor head echoes and space debris (see Section 5.3, [5], and

[6]). Another example of these types of special events are the so called

naturally enhanced ion acoustic line echoes [160]. These radar targets

are interesting in their own right, but they also need to be detected and

removed from ionospheric measurements in order to avoid these echoes

from degrading the quality of ionospheric plasma parameter measure-
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ments. In terms of statistical theory, the optimal method for detecting

these types of targets is Bayesian model selection. The main challenge is

to make such model selection and comparison fast enough to be used in

real time.

While polarization diversity has been used already in a few radars for

over 40 years [143], most ionospheric radars still utilize only one circu-

lar polarization. Not only can polarization diversity be used to obtain

information about the physical properties of the medium [139, 77], recent

developments in coding theory [145] show that polarization can also be

used to significantly reduce the error variance of these measurements.

Section 5.7.3. of this thesis attempts to address dual polarization inco-

herent scatter radar measurements by extending the lag-profile inversion

method [20, 142] for the case of dual polarization measurements.

Even after over 50 years history, the theory of incoherent scatter is still

developing, a good example of this is that the theory of incoherent scatter

for perpendicular to magnetic field pointing direction was only recently

developed [161, 162]. For a radar with the capability of pointing per-

pendicular to the field lines, this theory also allows us to obtain more

information about the plasma parameters by simultaneously pointing off

perpendicular and perpendicular.

Much has already been done with ground based high power large aper-

ture radar measurements, but there is still much more to be done. New

instruments, such as AMISR and the planned EISCAT 3D, will be capable

of nearly autonomous operation. These instruments will collect far more

data than any of the existing systems, and a major challenge will be to

extract as much useful information from these measurements as possible,

in order to justify the cost of operating them.
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