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Outline 

•  The Equatorial ionosphere  
•  The Jicamarca Radio 

Observatory 
–  Incoherent Scatter Radar Modes 
–  Coherent scatter studies 

•  Selected Research Topic 
Related to High Latitudes: 
–  150-km NEILS 



Equatorial Ionosphere 

[from Fejer et al, 1999] 

•  B field is nearly horizontal 
•  Daytime:  

–  E-region E is eastward 
–  Off-equatorial E maps to F above mag. 

Equator -> Upward ExB 
–  Formation of Appleton Anomaly 

•  Around sunset, F region dynamo develops 
and competes with E, generates PRE and 
ExB goes downward (E westward) 

•  At night upward density gradient is opposite 
in direction to g, Rayleigh-Taylor unstable, 
allowing plasma density irregularities to 
form.  



•  24 GPS satellites 
•  Orbits at 20,000 kms altitude and 6 orbital 

planes  
•  Each satellite completes an orbit every 12 

hours 

GPS System 

Applications 
•  Civil, military 
•  Scientific: Geodesy, Meteorology, 

Aeronomy 



The Jicamarca Radio Observatory 

•  Built in 1961 by the US NBS 
and then donated to IGP in 
1969. 

•  Operating frequency: 50 MHz 
•  Antenna type: array of 18,432 

dipoles, organized in 8x8 
cross-polarized modules. 

•  Pointing directions: within 3 
degrees from on-axis. Phase 
changes are currently done 
manually. 

•  Transmitters: 3 x 1.5 MW 
peak-power with 5% duty 
cycle. 

•  Located “under” the magnetic 
equator (dip 1o). 
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EEJ: Equatorial Electrojet 

ESF: Spread F 

150-km echoes 

PEME 

Neutral turbulence 

¿What do we study at Jicamarca? 

• Density, 
temperature, 
composition, 
electric fields 
• Modeling, 
space 
weather 

• Neutral 
atmosphere 
dynamics 
(winds, 
turbulence, 
vertical 
velocities) 
• Meteorology, 
aviation. 

• Ionospheric 
Irregularities 
(EEJ, 150-
km, ESF). 
• SAR, GPS 

Meteors 
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Jicamarca Themes (Stable Ionosphere) 

•  Understanding the stable ionosphere 
–  Topside:  What controls the light ion distribution?  Why are the equatorial 

profiles so different from those at Arecibo?  What is the storm time 
response of the topside? 

–  F region:  Do current theories fully explain electron and ion thermal 
balance?   Do we understand the electron collision effects on ISR theory 
now?  What is the effect of F-region dynamics near sunset on the 
generation of ESF plumes?  What are the effects of N-S winds on inter-
hemispheric transport? 

–  E region:  What are the basic background parameters in the equatorial E 
region?  What is the morphology of the density profiles in this difficult to 
probe region?  How does this morphology affect the E-region dynamo? 

–  D region:  What effects do meteor ablation and mesospheric mixing have 
on the composition in this region?   



Incoherent Scatter Techniques 



Oblique  vs. Perpendicular ISR: 
Geometry 

•  Depending on α: 
–  Oblique: α > 0 
–  Perpendicular: α = 0 

•  What is the α boundary between 
modes? 

•  What are the antenna patterns used? 
•  What are the differences on ACFs 

and spectra between modes? 
•  How is the polarization of returned 

signals? 
•  How are the modes affected by 

coherent scatter echoes? 
•  What can be measured? 
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Oblique ISR: Antenna Patterns 

•  Three standard beam positions 
are used: 
–  On-axis (α = 1.9o) 
–  “4.5” (α = 3.5o) 
–  “6.0” (α = 5.2o) 

•  Maximum antenna gain is 
obtained with “On-axis” and 
less with “6.0”. 

•  Be careful of possible sidelobes 
pointing perpendicular to B, 
since locus of perpendicularity 
changes from year to year. 

•  Scattered signals will be 
convolved with the antenna 
pattern. 



Perpendicular ISR: Antenna Patterns 

•  Three standard beam positions 
are used: 
–  Vertical (both polarizations) 
–  “East” (3.6o with respect to 

vertical). One linear 
polarization. 

–  “West” (~2.1o). The other 
linear polarization 

•  Maximum antenna gain is 
obtained with “Vertical” and 
less with “East”. 

•  Either Vertical or East-West 
modes are run at the time, 
unless wider beams are used 
(i.e., smaller antennas). 

•  Recall that the scattered signals 
will be convolved with the 
antenna pattern. 

 



2 ms 4 

α = 2.00o 

Oblique vs. Perpendicular: ACFs 

Oblique 
•  ACFs are narrow 
•  1 ms = 150 km (for monostatic measurements) 
•  ACFs are very similar to the non-collisional, 

unmagnetized case like those observed with 
EISCAT radars. 

•  ACFs are dominated by the dynamics of the ions 
•  Within the pulse (or IPP) estimation is needed to 

avoid range ambiguity 
•  Critical angle: α = 0.334o (where ions and 

electrons behave as they had equal “mass”). 

Perpendicular 
•  ACFs are very wide. Coulomb collisions and 

magnetic field effects need to be considered. 
•  ACFs dominated by the dynamics of the electrons 

(electrons behave “heavier” than ions). 
•  Very quickly gets wider (small α values). 
•  Due to long correlation times, pulse-to-pulse 

estimation can be performed, and very accurate 
vertical and zonal drifts are estimated. 

[from Woodman, 2004] 

collisionless 

with collisions 

α = 0.25o 

2 4 

α = 0.00o 

ms 



Oblique vs. Perpendicular: Spectra 

Oblique 
•  Spectra are wide (>1000 m/s or 300 Hz at 

50 MHz) and independent of α within 
typical antenna beam widths. 

Perpendicular 
•  Spectra get narrower (less than 150 m/s) for 

smaller α and change very quickly. 
•  Measured spectra results from a convolution 

of  spectra with different widths due to finite 
antenna beam width. 

[from Kudeki et al., 1999] [from Kudeki et al., 1999] 

without electron collisions 

with electron collisions 
[Milla and Kudeki, 2009] 



Oblique vs. Perpendicular: Faraday 
Rotation 

Oblique 
•  Quasi-longitudinal approximation is 

valid for α > 0.4o. 
•  Two-circular polarizations are 

transmitted and received. 
•  Small “cross-talk” due to elliptical 

modes need to be corrected for α < 
2.0o We do this correction by flipping 
every other pulse.   

Perpendicular  
•  Quasi-transverse approximation. 
•  A linear polarization is transmitted to 

excite both quasi-transverse modes 
(parallel and transverse to B). 

•  On reception two linear polarizations 
are received.  

•  Each linear polarization is a convolution 
of linear and highly elliptical modes due 
to the finite beam width. 

•  Faraday “rotation” arises from the difference between the 
indexes of  refraction corresponding to the two 
characteristic modes of  a magnetoionic medium. 

•  Phase difference between these modes of  propagation is 
proportional to the integrated electron density. 

•  Given Jicamarca’s 50 MHz frequency (the lowest of  all 
ISRs), significant “rotation” from ionospheric signals is 
observed and from this absolute electron densities are 
obtained. 
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[from Kudeki et al., 2003] [from Farley, 1969] 



Oblique vs. Perpendicular: Power 
measurements 

•  Electron density 
measurements can also be 
obtained from absolute ISR 
power measurements. 

•  However, the absolute ISR 
power is also highly 
dependent on the pointing 
angle with respect to B. In 
addition, it is dependent on 
electron to ion temperature 
ratio (Te/Ti).  

[from Milla and Kudeki, 2006] 



Oblique vs. Perpendicular: Altitude 
issues 
•  Depending on the altitude of interest, 

collisions, temperatures and different ion 
composition, are the main parameters 
that changed the ISR spectrum shape. 
This is particularly true for Oblique 
measurements.  

•  Perpendicular spectra show very little, or 
none, dependence on these parameters. 

•  For example: 
–  at E and D region altitudes, collisions 

with neutrals are important, the spectrum 
gets narrower as the altitude decreases. 

–  At valley altitudes, in addition to typical 
[O+], [NO+] and [O2

+] need to be 
considered [Nicolls et al.] 

–  At topside altitudes, more ion species are 
present [O+],[H+] and [He+]. 

[from Chau and Kudeki, 2006] 

[from Hysell et al., 2006] 
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Oblique ISR Examples 

• This modes combines the 
Faraday Double Pulse mode 
with a long pulse mode, 
allowing the use of  the 
available duty cycle. 
• It provides: 
-Absolute electron density 
(from Faraday rotation) and 
temperatures below 500 km. 
-Density, temperatures and 
composition above 500 km. 
• Preliminary results [Hysell et 
al. 2008]. 
- Good for Topside work and 
sunrise observations. 



Perpendicular ISR Examples 

• Simultaneous measurements of  
vertical and zonal drifts, with 15 km 
and 5 min resolutions. 
• JRO provides the most precise 
electric field measurements in the 
ionosphere. 

[from Kudeki and Batthacharyya, 1999] 



3 beam mode: EW Drift +Faraday (3BF) 



3BF Transmitting beams 



3BF examples: Vz, Vx, Ne, Te, Ti 



Plasma irregularities: What do we know 
from traditional radar studies? 

•  Coherent echoes are typically 2-6 orders of magnitude stronger 
than ISR echoes. 

•  Range-time distributions (Intensity=RTI, Velocities) 
–  Day-to-day  and seasonal variability 
–  Time periodicities (Gravity waves, tides) 

•  Spectral characteristics 
–  Spectral shape (Gaussian, Lorentzian, more than one Gaussian) 
–  Mean Doppler and Spectral width 

•  Multi-beam observations 
–  Spatial Characteristics 
–  3D velocity vector 

•  Interferometry 
–  Zonal velocity 
–  Aspect Sensitivity (scale lengths) 

•  Imaging 
–  Resolve space-time ambiguities 



Jicamarca Themes (Unstable 
Ionosphere) 

•   Understanding equatorial instabilities 
–  F region:  What are the fundamental plasma processes, including 

nonlinear processes, that govern the generation of plasma plumes?  
What are the precursor phenomena in the late afternoon F region 
that control whether or not an F-region plume will be generated 
after sunset? 

–  Daytime Valley echoes (or so-called 150-km echoes). What are the 
physical mechanisms causing them? (still a puzzle after more than 
40 years!). 

–  E region:  What are the nonlinear plasma physics processes that 
control the final state of the electrojet instabilities?  To what extent 
do these instabilities affect the conductivity of the E region, and by 
extension, the conductivity of the auroral zone E region, where 
similar, but stronger and more complicated, instabilities exist? 
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Coherent echoes over Jicamarca (2) 
RTI below 200 km 

150-km echoes 
Daytime 

Mesospheric  
echoes 
Daytime 

Meteor echoes 
All Day 
(head, non-specular 
and specular trails) 

Stratospheric and 
Tropospheric 
echoes 
All Day 

EEJ echoes 
All Day 
(Daytime stronger) 



ESF: Type of echoes 

•  Nighttime 
•  Main type (interchange or 

generalized Rayleigh-Taylor 
instabilities) 
–  Bottomtype layers 

•  Composed of kilometer scale waves 
•  Drift westward 

–  Bottomside 
•  Drift eastward 
•  Greater vertical displacement 

–  Topside (Plumes) 
•  Drift eastward and upward 
•  A variety of spectra shapes 

–  Valley-type 

[from Hysell and Burcham, 1998 and Hysell 2000] 



150-km Echoes: FAI and NEILS 



Main features  

• Daytime phenomena 

• Occur between 130-180 km 

• Necklace shape  

• Come from field-aligned 
irregularities (?) 

• Observed at different 
longitudes and within “few” 
degrees away from Mag. 
Equator 

• At Jicamarca they are 
observed all seasons  

• Vz ~ vertical F-region ExB. 

[from Kudeki and Fawcett., 1993 and Fawcett, 1999] 

Perpendicular to B main features 

Proposed Mechanisms 
• Gravity wave wind driven interchange instability [Kudeki 
and Fawcett, 1993 
• Low-latitude Es layer instability providing free energy for 
the growth of interchange instability at equatorial 150-km 
[Tsunoda and Ecklund, 2004] 



Equatorial Daytime Valley Region (1) 

•  In this region occurs the transition 
between the dominant molecular 
ions of lower altitudes and F-region 
dominant atomic oxygen ion. 

•  Collisions with neutrals start to be 
less important as the altitude 
increases. 

•  Magnetic !eld lines around 140–
170 km are mapped to both the 
north and south E regions that are 
located outside the EEJ belt. 

•  Intermediate layers are known to 
occur at these altitudes but so far 
they have not been observed at 
equatorial regions during the day. 

•  Large electron to temperature ratios 
are expected and observed during 
the day. 

•  Maximum photoelectron 
production rate occurs around 150 
km. 

•  Asymmetry in the Oblique spectra 
•  NS oscillations of scattering centers 
 



150-km NEILS and 150-km EW 
Structure 

(a) Perpendicular [Data]
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(b) Perpendicular [Data & Theory]
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(c) Oblique [Data]
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(d) Oblique [Data & Theory]
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Perpendicular Spectrograms 
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[from Chau et al., 2009] 



Oblique spectrogram 
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[from Chau et al., 2009] 



150-km Perpendicular Parameters 
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[from Chau et al., 2009] 



150-km Oblique Parameters 
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[from Chau et al., 2009] 



Solar flare 07-Sep-2005 
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Spectrum and NS Structure: Off-Perp. 

• Above 150 km: 
Spectra is wider and 
with an oscillating 
peak with a  period 
~5-10 min. 
• Below 150 km: 
Spectra is narrower, 
peak is not well 
defined. 
• Spectra structure 
appear to be 
associated to 
changes in location 
of  the scattering 
center.   
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Sudden Stratospheric Warming and the 
Equatorial Ionosphere 



SSW Jan 2008: SSW Main parameters 

•  Minor SSW event. Westerly winds 
slowed down 

•  One of the largest temperature 
increases in the last 30 years. 

•  Low solar #ux (close to 70) 
•  Magnetically quiet conditions 
•  Many ground-based instruments 

operated 8-10 days in December 
2007 and 10-14 days in January 
2008. 

[from Chau et al. 2009] 



SSW Jan 2008: ExB Daytime Drifts 

Average + variability 
from 35 years of  ISR 

data 

[from Chau et al. 2009] 



SSW Jan 2008: ΔSSW vs ΔExB 

•  ΔExB: average morning ExB 
difference with respect to expected 
averages, after !tting a semidiurnal 
wave. 

•  ΔSSW: differences with respect to 
30-year median values. 

•  High correlation/anticorrelation: 
ΔExB vs. ΔT/ΔU during SSW. 

•  Note the “persistence” of the ExB 
drift pattern during SSW period. 

 

[from Chau et al. 2009] 



Perennial Equatorial Mesospheric Echoes 
(PEME) 



PEME: Main Characteristics 

•  Daytime occurrence, between 60-85 km, with preferred 
occurrence around 70-75 km. 

•  Mesospheric dynamics and turbulence are obtained from 
these echoes. 

•  RCS much weaker than PMSE and PMWE 
•  Rich temporal and altitudinal structure obtained from 3-

m irregularities. 
•  Dependence on solar flux and X flares, indicate that high 

electron densities and strong density gradients enhance 
the strength of the echoes. 



PEME: Fine structure 

[from Sheth et al. 2006] 



SNR (dB) vs. 
altitude(km), 
time (min) 

Spectral 
Width, 
Variance 
(m2/s2) 

Meridional 
wind (m/s) 

High resolution mesospheric echoes show evidence for KHI, braided structures with 
enhanced edges (top); turbulent fluctuations are intermittent (middle); layers are 
often strongly sheared (bottom).  Observations: 8x3 days in 2005 and 2006.   

PEME: KHI (1) 

[from Lehmacher et al. 2007] 



PEME: KHI (2) 



PEME: Turbulence 

•  εfrom spectral widths. A small 
beam broadening effect has been 
removed from the observed spectral 
widths. 

•  The daily median energy dissipation 
rates ε increase from 5 to 30 mW/
kg between 67 and 80 km, and the 
eddy diffusivities increase from 3 to 
20 m2/s result at Japan and India.  

•  The energy dissipation rates are 
about the same magnitude as the ε 
estimates for low-latitudes from a 
global model and are larger than the 
averages from rocket observations 
at high-latitudes. 

[from Guo et al. 2007] 



PEME: RCS (1) 

[from Akgiray 2007] 



PEME: RCS (2) 

[from Lehmacher et al. 2009] 



PEME: RCS (3) 

[from Lehmacher et al. 2009] 



PEME: RCS (4) 

•  PEME RCS range from 10-18 to 10-16 m-1, 3 orders of magnitudes 
smaller than RCS reported for PMWE during solar proton events 
and 6 orders of magnitude smaller than PMSE. 

•  For typical conditions, volume scattering coefficients for 
stationary, homogeneous, isotropic turbulence at 3 m are also in 
the range 10-18 to 10-16 m-1. 

•  Theoretical values are still a matter of order-of-magnitude 
estimation, since the Bragg scale of 3 meters is near or inside the 
viscous subrange (turbulence spectrum is not well known). 

•  Steep electron density gradients can increase RCS significantly. 
•  For thin layers with large RCS and narrow spectra, isotropic 

turbulence theory fails and scattering or reflection from 
anisotropic irregularities maybe the cause, as suggested by 
numerical simulations. 

[from Lehmacher et al. 2009] 



PEME: Some open questions 

•  What are the scattering mechanisms in aspect-sensitive 
layers and near the edges of layers?   
–  As far as we know only one rocket experiment has reported 

sharp gradients density gradients in the 70-75 km region [Smith 
and Klaus, 1975]. 

•  Is there “enhanced” electron diffusion in this region?  
–  A heater experiment may be helpful with that.  There is 

certainly a lot of water in the equatorial mesosphere and 
therefore also large water cluster ions.  

•  Are there mesospheric aerosol layers? 
–  Rocket experiments with sensitive particle detectors 



Lower Atmospheric Kelvin Helmholtz 
Instabilities 



KHI Billows and turbulence 



SOUSY: High resolution ST measurements 

[Woodman et al., 2007] 


