The US Incoherent Scatter Radars

Anja Strømme
SRI International
With contributions from the other
PIs

Incoherent Scatter Radars

Map of the north...

Useful Constants

c_n = 2.99792458 x 10⁸ ms⁻¹ $\mu_0 = 4\pi \times 10^{-7} \text{ NA}^{-2}$ 1u = 1.66053873 x 10-27 kg $G = 6.673 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-1}$

EISCAT2003

Plasma frequency, $\omega_D = \left(\frac{n_e e^2}{r_e me}\right)^{1/2} = 2\pi \sqrt{80.6 n_e}$ Debye length, $\lambda_0 = \left(\frac{\epsilon_0 k_B T_e}{n_e e^2}\right)^{1/2} = 69 \sqrt{\frac{T_e}{n_e}}$

Ion gyro frequency, $\Omega_i = \frac{-eB}{mi} = 9575 \frac{B}{W}$

W: molecular weight; m = W • u

67°21'49" N

26° 37'37" E 76° 43'

Fully steerable

UT + 2 (UT + 3 summer)

63° 34'N

Geomag. dip angle Invariant latitude Local time

Magnetic time

Elevation

Geomag, dip angle Invariant latitude

69° 35'11" N 19° 13'38' E 77° 30' 66°12' N

78° 09"11" N

75° 10'48" N

360° az., above, 30° elev.*

16° 1'44" E

82° 06'

VHF: ±15° az., 30°-90° elev. (north only)

77° 32' Geomag, dip angle 66° 7' N Local time Magnetic time

65° 7'12" N 74° 43' 46" N. 147° 25' 48" W 94° 54' 16" E

88° 47° UT - 6 (central) UT - 7:45

Sondrestrom

67° 51'38" N

Fully steerable

64° 27' N

309° 03'02" E Geomag. dip angle 80° 24' Invariant latitude Local time Magnetic time 74° 11'24" N

UT - 3 (UT - 2 summer) UT - 1:58 360° az., above 25°-30° elev.*

The Incoherent Scatter RADAR Equation: $Signal, P_r = \frac{Cc_0G\lambda^2}{2} \frac{P_1\tau_P}{r^2} \frac{\sigma_e n_e(r)}{(1+k\lambda_D^2)(1+k\lambda_D^2+T_r)}$

Center transmit frequency, f 500 MHz

10.48 m⁻¹ (2k = 20.96 m⁻¹)

Noise, Pn = PnknTsvs BW : BW - bandwidth

 $\sigma_0 = 4\pi r_0^2 = 9.98 \times 10^{-29} \text{ m}$. Radar cross section of

0.5996 m (\(\lambda\)/2 = 0.2998 m) C = Constant containing loss and antenna shape T. MIW 25% <1 - 2000 us 32 m / 42 m 42.5 dBi / 45 dBi 0.60 55-65 K Parabolic dish Cassegrain

Wavenumber, k

Wavelength, \(\lambda\)

Peak power, P. Max duty cycle

Pulse length, To

Antenna size (dia.)

Antenna gain, G

Polarization

Antenna beamwidth

System temperature, Toy Antenna type

Center transmit frequency, f Wavenumber, k Wavelength, λ Peak power, Pe Max duty cycle Pulse length, To Antenna size (dia.) Antenna gain, G

Antenna beamwidth System temperature, T_{sys} Antenna type Feed system Polarization

EISCAT VHF Center transmit frequency, f Wavenumber, k Wavelength, λ Peak power, Pr

Max duty cycle Pulse length, τ_0 Antenna size Antenna gain, G

Antenna beamwidth* System temperature, T_{sys} Antenna type Feed system Polarization

928.4 MHz 0.3229 m (\(\lambda/2 = 0.1615 m\) 220 km**, \(\lambda/2 = 0.17 m\) 10%

1-2000 us 32 m 48 dBi 0.5° 70 - 80 K Parabolic dish Cassegrain Circular

224 MHz

4.695 m⁻¹ (2k = 9.389 m⁻¹)

32 m

0.5°

Anv

48 dBi

30 - 35 K

Parabolic dish

Cassegrain

1.3384 m (\(\lambda\)/2 = 0.6692 m) 2 x 1.5 MW 12.5% 120 x 40 m (4 x (30 x 40 m)) 46 dBi

250 - 350 K Offset parabolic cylinder Line feed Circular

449 MHz Center transmit frequency, f 9.4 m⁻¹ (2k = 18.82 m⁻¹) Wavenumber, k Wavelength, λ 0.6677 m (\(\lambda\)/2 = 0.3338 m) Peak power, P. 2 MW 10% Max duty cycle Pulse length, To $1 - 2000 \, \mu s$ 128 x (1.5 x 3.5 m) Antenna size Antenna gain, G 43 dBi Antenna beamwidth* System temperature, Tour 120 K Crossed dipole phased array Antenna type

Distributed amplifiers Feed system Circular Polarization

* Full width, half power ** Tromsø field line

Kiruna UHF Sodankylä UHF

19.46 m⁻¹ /2k = 38.92 m⁻¹ | 220 km**, 2k sin 0 = 36 m⁻¹ 220 km**, 2k sin 8 = 33 m-1 220 km**, λ/2 = 0.19m

32 m 48 dBi 0.50 30 - 35 K Parabolic dish Cassegrain Any

Whole antenna: 0.6° EW x 1.7° NS; Half antenna: 1.2° EW x 1.7° NS

Sondrestrom

Wavenumber, k Wavelength, λ. Peak nower P. Max duty cycle Pulse length, To Antenna size (dia.) Antenna gain, G Antenna beamwidth* System temperature, Trus Antenna type Feed system Polarization

27.04 m⁻¹ (2k = 54.07 m⁻¹) 0.2323 m (\(\lambda/2=0.1162 m\) 3.5 MW 3%

 $2 - 500 \, \mu s$ 32 m 49 dB 0.5° 85 K Parabolic dish Cassegrain Circular

^{*} nitial locations. Poker Flat (one face) operational Spring 2005. Resolute Bay (two faces) operational Winter 2006. One face = 128 panels.

^{*}Dependent on azimuth. No transmission below this elevation.

How it works - political

 All the US Incoherent Scatter Radars are funded by the National Science Foundation (NSF) and are governed under the Upper Atmosphere Facility (UAF) program.

How it works - political

- All the US Incoherent Scatter Radars are funded by the National Science Foundation (NSF) and are governed under the Upper Atmosphere Facility (UAF) program.
- The Operation and Maintenance (O&M) is done by a host institution through a cooperative agreement renewed every 5 years.

From South to North...

- Jicamarca Cornell University (in collaboration with Instituto Geofísico del Perú)
- Arecibo Cornell University (currently in the process of an open re-bid)
- Millstone Hill MIT
- PFISR SRI International
- Sondrestrom SRI International
- RISR-N SRI International

How it works - practically (1)

- The radars are available to all US users, and in reality to all users.
- Analyzed data is available in the madrigal database
 - http://jro.igp.gob.pe/madrigal/ (Jicamarca)
 - <u>http://madrigal.naic.edu/</u> (Arecibo)
 - http://madrigal.haystack.mit.edu/madrigal/ (Millstone Hill)
 - <u>http://isr.sri.com/madrigal/</u> (SRI International)
 - http://www.eiscat.se/madrigal/ (EISCAT)

Contact information Principal Investigator

- Jicamarca: Jorge L. (Koki) Chau jorge.chau@jro.igp.gob.pe
- Arecibo: Sixto Gonzales sixto@naic.edu
- Millstone Hill: Phil Erickson pje@haystack.mit.edu
- PFISR: Mike Nicolls <u>michael.nicolls@sri.com</u>
- RISR (+AMISR): Craig Heinselman craig.heinselman@sri.com
- Sondrestrom: Anja Strømme anja.stromme@sri.com

How it works - practically (2)

- There are annual "world days" coordinated between all the radars (653 hours in 2010).
- Otherwise scheduling is done individually for each radar (the SRI radars - Sondrestrom, PFISR and RISR - are scheduled together).
- We are working toward more coordinated scheduling and operation of all the UAF radars.

6 slide pre-AMISR history of the US radars (Bob Robinson):

1958-1959

Bill Gordon conceives of the idea of incoherent scatter and construction begins at Arecibo, Puerto Rico, with funding from the **Defense Advanced Research Project** Office (DARPA)

<u>1961</u>

The Jicamarca Observatory is constructed near Lima, Peru, by the National Bureau of Standards.

1962
Construction of Arecibo is completed.

1963

The Millstone Hill zenith antenna is constructed by MIT Lincoln Laboratories at a site near Boston, MA

<u> 1971</u>

The Chatanika Radar is moved from Stanford University to a new site near Fairbanks, Alaska.

1982
The Chatanika
Radar is moved to a
new location near
Sondrestrom,
Greenland,

<u>1970 – 1980</u>

The U.S. National Science Foundation takes over operation of four incoherent scatter radars

Jicamarca

Arecibo

The radars:

Incoherent Scatter Radars

JULIA – Imaging (1)

JULIA Observations

JULIA – Imaging (2)

Incoherent Scatter Radars

Map: Thomas Ulich

... Photo courtesy of the NAIC - Arecibo Observatory, a facility of the NSF ... Photo by David Parker / Science Photo Library Arecibo ISR •latitude 18 ° 20'36.6"North •longitude 66 ° 45'11.1"W West •430 Mhz •2.5 MW transmitters •305m diameter fixed dish Two feeds - line feed and Gregorian feed Also used as 2.4 GHz planetary radar Also used as (the worlds largest single dish) radio telescope New heater in 2011

A Model with More Freedom

Conclusion:

Separate 0+ and H+ temperatures are necessary and sufficient to obtain a good fit.

Incoherent Scatter Radars

Map: Thomas Ulich

Millstone Hill UHF Incoherent Scatter Radar Westford, MA USA

440.2 MHz frequency 2.5 MW peak TX System temperature ~150-200 K overall

Fully steerable 46m antenna 68m zenith antenna

In operation since 1960

Litton 5773 UHF klystrons

2 x 1.25 MW peak 6% max duty cycle

Millstone Hill Geospace Science Center

- Modernized control, receiver area
- Displays for multiple instruments
- Smartboards for interactive teaching
- Community resource for coordinated campaigns, workshops
- Focus for North American Regional Distributed Arrays (DASI) activities

Millstone Hill research: Geospace System Science

Lower/upper atmospheric coupling
[Stratospheric sudden warming]
and mesoscale effects on ionosphere, thermosphere
Goncharenko, Coster

Long term ionospheric trend studies Zhang, Holt

Subauroral ionospheric redistribution in SED/SAPS regions
Erickson, Foster, Coster

Incoherent Scatter Radars

- •latitude 66 °59'12"North
- •Longitude 309° 03'02" East
- •1290 Mhz
- •3 MW transmitters
- •32m diameter steerable dish
- Colocated lidars and ASIs
- About 20 other colocated instruments
- Operational in Kangerlussuaq since 1982 (after a solar cycle in Chatanika, Alaska)

Ion Velocity (E-field) Maps

Incoherent Scatter Radars

Map: Thomas Ulich

...but first some general words about AMISR...

AMISR

- First US ISR designed under NSF funding for pure scientific research
- First modular pulse-to-pulse steerable Incoherent scatter radar

Abbriviations!!!!

- AMISR Advanced Modular Incoherent Scatter Radar
 - Refers to the technology and the overall kind of radar
- PFISR Poker Flat Incoherent Scatter Radar
 - An AMISR radar located in Poker Flat, Alaska
- RISR-N Resolute Bay Incoherent Scatter Radar -North (toward ESR!)
 - An AMISR Radar in Resolute Bay, Canada. Pointing northward
- RISR-S/RISR-C Resolute Bay Incoherent Scatter Radar - South/Canada
 - An AMISR radar under construction in Resolute Bay,
 Canada. Pointing South. Funded (and owned) by Canada.
 Official name RISR-C

The lego set

AMISR: Advanced Modular Incoherent Scatter Radar

- Panel: smallest "lego" piece (consist of 32 AEU)
- Group: Set of Panels (consist of 8 panels)
- Face: Set of groups (one complete radar ("Face") consist of 16 groups, 128 panels, 4096 AEU...)

Panel

Face

More about the "current" AMISR

- NSF originally funded 3 full faces. Funding was sufficient to two (and a bit)
 - One operational since January 2007 in Poker Flat, Alaska (PFISR)
 - Second operational since Dec 2009 in Resolute Bay, Canada (RISR-N)
 - A collaboration with Canada will lead to the completion of the third face of the original AMISR plan (RISR-S now RISR-C).
- Modular/Transportable/Reconfigurable
- Phased array pulse-to-pulse steering
- Solid state
 - No moving parts, can hence be remotelly controlled
- Gentle degrade
- 430-450 MHz TX frequency
- ~2 MW peak power per radar (10% duty cycle)
- 1 μs to 2 ms pulses

Tristatic Configuration

AMISR Sensitivity vs. Size

AMISR Sensitivity vs. Size

ospheric Summer Echoes)

Imaging PMSE over Poker Flat

Ionospheric-Atmospheric Coupling 12/13/2006

Naturally enhanced ion-acoustic lines (NEIAL):

- Order of magnitude enhancement in either or both ion-acoustic lines.
- Over extended altitude range (300 km and up).
- Aligned with the geomagnetic field.
- Rapidly varying in time.

Raw density in all the 7 positions $_{\rm 12-15-2006~2.228~UT~12-15-2006~2.527~UT}$

Strong Coherent Elongated Structures in the upper F-region

PFISR raw electron densities 15. Dec 2006

The Ion Line Spectra are Enhanced and Asymmetric

The Experiment Stromme01

- •9 positions in 3 degree grid
- •10th position up B
- •480 μs pulses (72 km range)
- Raw voltage sampling
- •Plasma line data

We cycle through the 10 pulses in a fixed order

- •7.5 ms between pulses
- •75 ms between pulses in same direction

Voltage level data -> pulse-to-pulse time resolution

High Resolution PFISR data and narrow field of view imagers 2007-03-23

Courtesy of Joshua Semeter

E-fields with AMISR

Combined velocities

Plasma lines

Plasma line observations

Asti Bhatt 2008

D region

Janches et al 2009

12-21-2007 20.323 UT - 12-21-2007 20.848 UT

Joule 2 and PFISR

International Polar Year Support

- EISCAT Svalbard
 Radar and PFISR are
 operating 24 hours per
 day in support of the
 IPY
- Low duty-cycle, single beam mode at PFISR (some augmentation)
- Longest ever IS ionospheric dataset
- Supposed to emphasize "quiet time variability" - coupling from below

Incoherent Scatter Radars

Map: Thomas Ulich

Photo: John Kelly

Photo: Craig Heinselman

Pulse to Pulse Spectra at RISR

Resolved winds at PFISR (black and red)
Comparison to balloons (blue)
Note we get vertical velocity – balloon does not

Other AMISRs...

MUIR - at the HAARP facility in Gakona, Alaska

AMISR at Jicamarca

AMISRs to be...

Report on the

Concept Development for an Upper Atmospheric Research Facility at the Arecibo Geomagnetic Conjugate Point in Argentina

NAIC Arecibo Observatory • April 17-19, 2006

Edited By

Dr. Diego Janches, Northwest Research Associates

Dr. Robert L. Brown, National Astronomy and Ionosphere Center

Incoherent Scatter Radars of the World

ftp://isr.sri.com/pub/Antarctic-ISR/Antarctic_ISR_Workshop_2008.pdf

Antarctica is different

Minimum Air Temperatures in the Polar Lower Stratosphere

Antarctica is different

From Laundal and Østgaard 2009

Antarctic Stations and the conjunct points for the northern ISRs Rothera Halley Sanae McMurdc Sondrestrom Poker • Resolute Vostok Showa Davis Shan • EISCAT

Some possible locations

Conjugate pair	Geographic lat & lon		Geomagnetic lat & lon	
Syowa	-69.0,	39.6	-70.4,	83.6
Leirvogur (Iceland)	64.2,	338.3	69.3,	71.1
McMurdo	-77.9,	166.7	-79.0,	290.1
Resolute	74.7,	265.1	82.9,	303.0
Davis	-68.6,	78.0	-76.5,	128.2
Zhonshan	-69.4,	76.4	-74.6,	96.5
Longyeabyen	78.2,	15.8	75.3,	112.1

Timeline:

ftp://isr.sri.com/pub/Antarctic-ISR/Antarctic_ISR_Workshop_2008.pdf

Multiple Radar use

e.g. meridional coverage of fixed beams using mainland and ESR radars

ESR ESR 42m 32m

Plus you have Cluster & Doublestar, TIMED, DMSP, Fast

"Summary"

- As scientists we should focus more on the science and processes then on the instruments
- There are no (national or institutional) borders in space!

