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Itó measure = incoherent scatter target

Let us assume the target is illuminated with an uninterrupted (CW) sine
wave of unit transmission power. We assume a time-coherent but
spatially incoherent target. This means that the signal received from a
volume A can be described by a set function µ(A).

Complex function giving the phase and amplitude of the signal.

Incoherence: 〈µ(A)µ(B)〉 = 0, if A
⋂

B = ∅.
Additivity: µ(A

⋃
B) = µ(A) + µ(B), if A

⋂
B = ∅.

Also, it is understood as a random variable.

In mathematics, this is known as Itó measure. In physics, it is just the
basic idea of spatially incoherent scatter!

It is characterized by 〈µ(dr)µ(dr′)〉 = X(r)δ(r − r′)dr dr′

X(r) is the structure function of the measure. Physically: target density.
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Simple use of these relations

What is 〈µ(A)µ(B)〉. We can calculate this by using the formal equations
above and the fact

µ(A) =

∫
r∈A

µ(dr) (1)

Then

〈µ(A)µ(B)〉 =

∫
r∈A

∫
r′∈B
〈µ(dr)µ(dr′)〉 =

∫
r∈A

∫
r′∈B

X(r)δ(r− r′)dr dr′ (2)

or simply,

〈µ(A)µ(B)〉 =

∫
r∈A

⋂
B

X(r)dr (3)

This gives a simple physical explanation of the structure function of the
measure X(r): It is simply the scattering power density.
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Incoherent scatter radar signal model (simplified, time-coherent)

The signal corresponding to a coded transmission is simply given by

zq(t) =

∫
r
εq(t − r)µq(dr) +

√
Tξq(t). (4)

We can now use the formal equation

〈µq(dr)µq(dr′)〉 = X(r)δ(r − r′)drdr′ , (5)

where X(r) is the structure function (or target density), we get the covariance
equations of the signal

〈zq(t)zq(t′)〉 =

∫ ∫
〈µq(dr)µq(dr′)〉εq(t − r)εq(t′ − r′) + Tδ(t − t′),

=

∫
X(r)εq(t − r)εq(t′ − r)dr + Tδ(t − t′). (6)

VanTrees, H., L., Detection, Estimation, and Modulation theory, part III, New
York: John Wiley and Sons, 1971
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Example: simple example for the structure function
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Samples of the measure and their mean
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Analysis result of 50 integrations
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White noise added
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We need more integration
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With less noise this looks very good:
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We get sharper response by shortening the pulse, but have to reduce noise:
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General signal model (time-dependent)

The signal corresponding to a coded transmission is simply given by

zq(t) =

∫
r
εq(t − r)µq(dr; t) +

√
Tξq(t). (7)

We can now use the formal equation

〈µq(dr; t)µq(dr′; t′)〉 = X(r; t − t′)δ(r − r′)drdr′ , (8)

where X(r; t − t′) is now the plasma autocorrelation function. Then

〈zq(t)zq(t′)〉 =

∫ ∫
〈µq(dr; t)µq(dr′; t′)〉εq(t − r)εq(t′ − r′) + Tδ(t − t′),

Even more complication arises from the fact that the signal is convolved with
the receiver impulse response p(t).

s(t) =

∫
τ

p(τ)z(t − τ)dτ (9)

In our new way of signal processing p(t) is typically so narrow that this last
complication is avoided.
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Discretization of the incoherent scatter signal model

Discretization based on staircase spline basis function, which is defined by

ψ(r) = 1, if 0 ≤ r < 1, and ψ(r) = 0, otherwise. (10)

X(r) =
∑

n

xnψ(r/∆r − n), (11)
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Discretization of the received signal

The incoherent scatter signal model can be discretized by taking the
average of the signal in a time interval ∆t
If we denote the signal sampled at i∆t by zi, one may get

zq
i =

1
∆t

∫ i∆t

(i−1)∆t
zq(t)dt. (12)

Similarly, the transmission radar waveform can be described in discrete
form by

ε(t) =
∑

i

εiψ(t/∆t − i). (13)

Here we consider a simple boxcar pulse by choosing

εi = N−1/2
b , if 0 ≤ i < Nb and

εi = 0, otherwise. (14)
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The measurement as an inverse problem

The lag estimates of the received signal can be described in discrete form
by

〈zizj〉 =
∑

k

x(k∆t)ε(i− k∆t)ε(j− k∆t) +
T
∆t
δij,

=
∑

k

x(k)ε(i− k)ε(j− k) +
T
∆t
δij, (15)

where the index k represents the time instant k∆t.

Using the discrete representation of the structure function, one gets

〈zizj〉 =
∑

k

∑
n

xnψ(k/∆r − n)ε(i− k)ε(j− k) +
T
∆t
δij. (16)
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The measurement as an inverse problem

we can carry out the summation in Eq.18 along k within the range
resolution cell to obtain

〈zizj〉 =
∑

n

xn

∑
k

ψ(k/∆r − n)ε(i− k)ε(j− k) +
T
∆t
δij. (17)

The inner summation in Eq.17 is carried out step by step for each range
resolution cell and this yields a more compact equation of the form

mij =
∑

n

Wn
ijxn + ε, (18)

where
mij = 〈zizj〉
Wn

ij =
∑

k ψ(k/∆r − n)ε(i− k)ε(j− k)

ε = T
∆tδij
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The measurement as an inverse problem

By merging the measurements from all the possible time pairs into
Eq.18, we readily obtain the matrix equation (the equation for the inverse
problem)

m = Wx + ε, (19)

where
m contains all the possible lagged product estimates
W is the theory matrix that contains the corresponding range ambiguity
functions
ε is the measurement error
x consists of the unknown coefficients of the structure function.

We focus on investigations of the characteristics of posteriori variance of
the unknown coefficients by considering several combinations of radar
pulse length and spatial resolution for any kind of SNR scenarios.
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The posteriori variance calculation

The posteriori variance can be extracted from the fluctuation of the
covariance of the measurements (lag estimates) by using the associated
theory matrix.

Let us denote the measurement fluctuation covariance matrix by Σm

It is then easy to show that posterior covariance of the unknown vector
Σp is given by

Σp = (WTΣ−1
m W)−1. (20)

The values of the diagonal of the matrix Σp are the variance of the
unknown coefficients.

We know how to calculate W from radar pulse after discretization based
on the basis functions.

If we get Σm, we can readily calculate Σp.

How do we determine Σm from the measurements?
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Determining the fluctuation of the measurements

Let Mij denotes the different lag estimates, which can be calculated by

Mij =
1

Nq

Nq∑
q=1

zq
i zq

j , (21)

where Nq denotes the number of times the experiment is repeated.
The covariances of these estimates around their expected values, which
is by definition Σm, is given by

Σm = 〈{(Mij − 〈Mij〉)(Mi′j′ − 〈Mi′j′〉)}〉. (22)

Using the fourth moments theorem for Gaussian random variables, the
right side of Eq.22 can be described in terms of lag estimates to obtain

Σm = {〈zizi′〉〈zjzj′〉+ 〈zizj′〉〈zi′zj〉}/(2Nq). (23)
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Optimal radar pulse for the case of low SNR (Lehtinen, 1989)
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Optimal radar pulse for different range resolution and SNR scenarios

At high SNR we need
very dense signal
samples to get useful
variance estimates

Optimal baud =

For SNR> 1:

∆topt =
1.2 ·∆r

SNR
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Conclusions

Improving SNR always improves time resolution
With poor SNR integration time goes as SNR−2

Then with increasing SNR as SNR−1

There is a penalty for using bauds not matching resolution and SNR
... and we plan to derive analytic formulas for it in limiting cases
Like: for ∆t� ∆topt, we lose proportionally to (∆t/∆topt)

−1

And: for ∆t� ∆topt, we lose proportionally to (∆t/∆topt)
? probably

(∆t/∆topt)
1

Proper variance calculations are very expensive
We plan SNR> 1 -proof analysis in amplitude space
This is because then noise is always white
... but the problem is always underdetermined ...
We need real processing power and FLIPS
But using correlated data we would need impossible processing power

HPC power will be necessary with EISCAT3D data analysis
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3D conclusions

For SNR≥ 1 there are two ways to proceed:
Shorten ∆t
Widen the transmitter beam and use many receiver beams

Asymptotically both ways work the same way
But for just moderately good SNR the optimum is probably in between:

Widening the transmit beam and using many receive beams produces
probably same kind of improvement as fractional lags (factor 1.5)
My guess however, because of 2 dimensions, even more, like 1.52

We are just at a start of a learning process in antenna coding !

The worst mistake we can do now:

Make the radar non-flexible – fix things in hardware or FPGA firmware

Next talk: HPC architecture instead of fixed FPGA solution
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Perfect codes

First explained in last WS

Lehtinen, Damtie, Piiroinen and Orispää: PERFECT AND ALMOST
PERFECT PULSE COMPRESSION CODES FOR RANGE SPREAD
RADAR TARGETS, Inverse Problems and Imaging, Volume 3, No. 3,
2009, 465–486
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13-bit Barker
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Perfect code made from 13-bit Barker
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A very nice almost perfect 3-main-bit code:
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Code comparison

First fully rigorous results for SNR> 1

However, just for stationary targets

Anyway valid over short enough codes for any targets
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Comparison theorem

Theorem
Let us denote the minimum and maximum values of the spectrum of the code
by Pmin = minω∈[0,2π) |ên(ω)|2 and Pmax = maxω∈[0,2π) |ên(ω)|2, respectively.
It is possible to add independent simulated noise to the measurement values
so that the modified measurements are equivalent to measurements using a
simple pulse of any power P ≤ Pmin. Also, it is possible to add independent
simulated noise to a single-pulse measurement of power P ≥ Pmax so that the
modified measurement is equivalent to the radar measurement coded with en.

This provides us to a rigorous way to compare (almost) perfect codes e to
single pulses with same total power:

P1/2
minδ.,0 ≺x e ≺

x
P1/2

maxδ.,0 , (24)

where a single pulse code with unit power is denoted by with δ.,0.

EISCAT radar school, Sodankylä Aug 31, 2010 EISCAT 31 / 51



Pulse length State of the art Performance specifications Summary

Proof. In the first case, consider a Gaussian stationary noise process ξ1
independent of all the other processes considered. Adding this to our
measurement values gives our measurement values gives

z = e ∗ µ+ ξ + ξ1, (25)

which is equivalent to
√

P̂̂e−1 ∗ z =
√

P(µ+ ̂̂e−1 ∗ ξ + ̂̂e−1 ∗ ξ1). (26)

The spectrum of the noise P(|ξ̂1(ω)|2 + 1)|ê(ω)|−2 is equal to a constant 1, if

|ξ̂1(ω)|2 = P−1|ê(ω)|2 − 1. (27)

This is non-negative and thus specifies a Gaussian stationary process ξ1 for
any

P ≤ min
ω∈[0,2π)

|ê(ω)|2. (28)

With this choise the modified measurement equation corresponds to that of a
single pulse of power P and normalized additive white noise, which proves
the first part of the theorem.
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Multipurpose codes

The idea:

Extend the perfect properties of alternating codes to pulse-to-pulse

Can be done trivially with very long (or hierarchic) codes

Becomes too long to be practical

The solution:

Lag profiles are convolutions of the profile and range ambiguity

Invert this convolution away

Analogy: target = lag profile, radar pulse = ambiguity function

Code comparison applied to lag profile inversion in this case

Thus results rigorous just for SNR� 1

Computer searches to find almost perfect sets
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A group of 4 10-baud codes to replace AC
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More conclusions

With multipurpose codes the choice of code is reduced to choosing of
best baud length, compatible with range resolution and SNR.

The codes then work near-optimally in every layer.

However, in places where the baud length is not the optimum, one pays a
price in integration time or variance – very roughly estimated:
proportional in the mismatch of the actual baud length and the optimal
baud length.
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Implications on radar design

Our algorithms assume band-limited amplitude data.

Inversion is used a a decoding method.

Optimal analysis for moderate or high SNR needs to be developed using
amplitude analysis and MCMC methods.

All this implies need of HPC capability
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Original performance specifications of the EISCAT3D

Table: Performance requirements set for the EISCAT 3D

R [km] h [m] Ne Te/Ti Int time
150 100 1 · 1010 1 1
300 300 3 · 1010 2 1
800 1000 3 · 1010 3 10
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Single-pulse performances from the Deliverable 3.2

Table: System #8 single pulse performance

R [km] h [m] SNR N IPP1 [ms] tp [µs] tint[s]
150 100 2.2 · 10−3 2.1 · 107 1 0.67 9200
300 300 1.7 · 10−2 3.5 · 105 2 2.0 700
800 1000 1.3 · 10−2 6.4 · 104 5.3 6.67 3400

Table: System #9 single pulse performance

R [km] h [m] SNR N IPP1 [ms] tp [µs] tint[s]
150 100 1.1 · 10−2 8.3 · 105 1 0.67 830
300 300 8.4 · 10−2 1.4 · 104 2 2.0 28
800 1000 6.3 · 10−2 2.5 · 103 a 5.3 6.67 133

aFor 10 s integration time, the total number of samples needed is 2.5 · 104
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This raises an alarm:

We see to our dismay that a System 8 configuration using short single pulses
under Section 2.12 conditions falls hopelessly short of the target. Even a
System 9 configuration fails to meet the desired time resolution at all
altitudes; at 150-km by a factor of over 800! This highlights the need for
running the system with advanced modulation schemes at all times, as this
will allow the extraction of a substantial number of essentially uncorrelated
target estimates from each radar cycle, corresponding to a reduction in the
required integration time by factor of ≈ 10.

sorry, no problem here!
Assuming 1 ms IPP, 200 µs is well available for coding, facilitating a
code of 300 pulses 0.66 µs each.

Pulse compression increases the power by 300, and as integration time
goes as SNR−2, we have 90 000 instead of 10
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With HPC architecture and advanced coding schemes we avoid the following:

The radar performance analysis in Section 5 demonstrates that the extreme joint
time/height resolution requirements laid down in PSD Section 2.12 are quite
unrealistic; as shown in Table 5, even a 36000-element array configuration utilising
advanced modulation schemes would fail to meet the targets at all altitudes by a
factor of (70. . .920)!
However, if the altitude resolution is relaxed by a factor of (2. . .10), even a

16000-element system will be in a position to meet the 1-s/10-s time resolution
requirement at 150. . .800 km altitude. As shown in Table 6, the SNR will then exceed
20 % at all altitudes, which already brings the system into the region of diminishing
returns. Any substantial improvement in altitude resolution would require
significantly longer integration times.

The user community is strongly advised to review its requirements and consider
whether incoherent-scatter altitude resolutions better than 1 km are really
meaningful and required at altitudes above 150 km, keeping in mind that demands for
extreme simultaneous time and height resolution must be bought at very high capital
investment and operating cost.
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Specifications revisited

Calculations similar to what will
be discussed in Ilkka Virtanen’s
talk

high SNR properly accounted.

Lags up to first zero crossing of
the ACF used for raw Ne

estimates

No. lags denoted by kmax
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Table: System #8

R [km] Nb kmax Ns PRF [Hz] N#8 tint,#8 [s]
150 560 450 150,525 666 2.1 · 107 0.21
300 375 65 22,230 333 3.5 · 105 0.05
800 300 16 4,664 125 6.4 · 105 1.10

Table: System #8, corrected for SNR >≈ 1

R [km] Nb kmax SNR SNRcompr corr tint,#8 [s]
150 560 450 2.2 · 10−3 0.99 100.5 0.66
300 375 65 1.7 · 10−2 1.1 100.5 0.15
800 300 16 1.3 · 10−2 0.21 100.2 1.73
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Table: System #9

R [km] Nb kmax Ns PRF [Hz] N#9 tint,#9 [s]
150 560 450 150,525 666 8.3 · 105 0.009
300 375 65 22,230 333 1.4 · 104 0.003a

800 300 16 4,664 125 2.5 · 104 0.043

a1/PRF, only one pulse needed

Table: System #9, corrected for SNR >≈ 1

R [km] Nb kmax SNR SNRcompr corr tint,#9 [s]
150 560 450 1.1 · 10−2 4.95 100.9 0.071
300 375 65 8.4 · 10−2 5.46 100.9 0.024
800 300 16 6.3 · 10−2 1.01 100.5 0.14
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What does this mean in terms of 3D

0.66 s integration time and 100 m range resolution seems of course more
than sufficient for most purposes.

Not for 3D, however

If we have a 3D grid of 30 · 30 directions, this is as long as
0.66 · 302 = 594 s.

This is not too good – maybe we reduce resolution to 1000 m with
single-pulse tint = 0.92 s. This is reduced to 0.92/452 by compression,
but as compressed signal-to-noise goes to 9.9, we get 101.3 reduction in
this, leading to 0.0091 s with single direction, but 8.15 s for the 30 · 30
scan. Design study promises (0.92/10) ∗ 302 = 83 s or little more
because of their idea of SNR correction.

With proper coding, we can scan a 30 · 30 grid of 1000 m range
resolution in 8.15 s. While with the design study we need 83 s.
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Remember polarization agility!

Polarization switching can be used as a coding method with high SNR.

Tor Hagfors often tried to promote this

A fresh paper by Gustavsson and Grydeland in Radio Sci explains this in
simpler terms. With very high SNR a factor 4 will be gained.

Look again at the curves: SNR 9.9 reduced to SNR 2.5 – We are not
quite yet in the asymptotic regime and have to relax the improvement
estimate by 100.1. Thus we get 8.15/4 · 100.1 =2.6 s.

1000 m resolution is 6.7 µs. Optimal baud lengthens from 1 µs to 3 µs.

We might still get 1.5 . . . 1.52 by fractional beams and antenna coding.

So – it will be something like 1.5 . . . 2 s in a 30 · 30 grid and 1000 m
range resolution.
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So - where is the simplicity ?

Decide what is the time correlation length of your target

Decide what is the desired spatial resolution

Use a pulse with total energy equal to radar power times the target
correlation time

... but compress it in a pulse 1.5 times the desired spatial resolution

... if then SNR > 1, compress it to a still shorter pulse so that with it
SNR ≈ 1

This has a proven mathematical background. We have found ways to prove
theorems that almost perfect codes arbitrarily close to perfect codes of any
length exist.
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What about time-changing targets ?

Multipurpose codes of Ilkka Virtanen are the key

Conjecture: if baud length selection is made as in the previous slide, we
are close to optimal

This is still speculation. Actually, we know this method results in good codes.
The only thing we do not know is that they truly are the best possible.
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How to do this in practise ?

Forget GUISDAP

Forget legacy signal processing - take raw data samples instead

Analysis developed by I. Virtanen

This will further be developed in the EISCAT3D preparatory phase
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Is this the final word ?

No - LPI is designed to work effectively for poor SNR

However, with the conjecture that codes are compressed to produce
SNR ≈ 1, this is not too bad

However, full error analysis calls for amplitude-domain analysis (LPI
does inversion on lag profiles internally)

Very high computational cost – but still lower than through lag profiles
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What else ?

3D mapping:

Phased array antenna geometries

Based on Itó model of radiation fields on directional sphere

Transmitter and receiver in unsymmetric position
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