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ABSTRACT

We have developed further the methods used in EISCAT
for analysing radar measurements of space debris, and
have re-analysed part of the satellite data taken in 2010
during SSA CO-VI campaign. The updated analysis
makes Bayesian estimates of range and range rate, and in-
cludes proper error analysis which was largely missing in
the earlier work. The new analysis achieves centimetres
per second statistical accuracy in range rate by determin-
ing the maximum of the the continuous-ω periodogram,
and achieves a few tens of centimetres statistical accuracy
in range by utilising the detailed shape of the receiver im-
pulse response. Systematic errors remain to be fixed, but
even as it is, the new analysis improves the accuracy of
the range and range rate estimates between one and two
orders of magnitude.

Key words: space debris; Bayesian analysis; sub-sample
resolution.

1. THE PROBLEM IN EISCAT STANDARD
SPACE DEBRIS DATA PROCESSING

In space debris work done in EISCAT under several ESA
contracts in 2000–2006, target’s range and range rate
were estimated essentially by finding the position of the
maximum of the two-dimensional radar ambiguity func-
tion, which we have been calling the match function
MF(R,ω) [4, 5]. In that work, the MF maximum po-
sition was determined by searching over a discrete grid
of range and frequency values. This approach is fast, and
sufficient for typical space debris targets, but the quanti-
sation in R and ω seriously limits the attainable accuracy
when signal to noise ratio is very high.

In range direction the discretization is due to signal sam-
pling (now with 1 µs sampling interval). In frequency di-
rection, the quantisation results from the discrete Fourier
transform, with modest zero-padding, used in evaluating
the MF. The standard analysis was applied to the satellite

measurements taken in December 2010 during the SSA
Preparatory Phase CO-VI campaign. The standard anal-
ysis does not give proper error estimates, and what was
quoted for the analysed data was residual r.m.s variations
of range and velocity fits during a beam pass. Even in
cases with signal to noise ratio of several thousands, the
quoted accuracy of range was only of the order of one
half of the sampling interval, some 50 metres, and the
quoted Doppler-accuracy was of the order of a one me-
tre per second. To our understanding, when the EISCAT
2011 results were evaluated for orbit determination pur-
poses [3], only the range results were used, the Doppler-
data having been considered too inaccurate.

2. THE UPDATED ANALYSIS METHOD

2.1. Bayesian method for determining range and
range rate and their errors

In order to achieve both optimal accuracy and well-
defined error estimates, we use Bayesian statistical in-
ference in a two-step procedure. We first determine
range and range rate from individual transmitted-received
pulses together with their statistical errors. Then we use
the results from the several hundred pulses of a typical
beam-pass event to produce the final range and range rate
values and their errors.

The starting point is a parametrized signal model, and the
aim is to make a statistically correct fit of the model to
the measured data. For a single pulse, about two mil-
liseconds long in this case, we can assume constant tar-
get velocity. By referring the per-pulse velocity to the
centre point of the pulse, this also takes correctly into ac-
count a linear variation of range rate during the pulse. We
model the received signal by a replicate of the transmis-
sion which is both delayed in time and Doppler-shifted
in frequency. In particular, we consider reflection from a
point target so that we do not take into account the actual
target size. In our derivation below, we ignore various
back-and-forth frequency translations in the radar system
and write the formulas for the base-band signals. During
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the 2010 campaign, the EISCAT receiver sampled contin-
uously with 1 µs sampling interval, providing samples at
this rate both from the transmitted pulse and the received
echo. The number of samples per each 1920 µs pulse
was thus (about) 1920. The pulse repetition frequency of
20 ms was used. The baud length of the phase code was
60 µs.

The samples zm of the complex-valued base-band radar
echo during the reception of a single echo pulse are mod-
elled by

zm = Aε(tm − 2R/c) exp(iωtm) + γm . (1)

Here A is a complex constant, ε is a filtered real-valued
phase modulation pattern, tm is the sampling time, R is
the range, ω is the angular Doppler-frequency and γm
is the noise term. The amplitude A contains both the
phase variation along the signal path and all factors af-
fecting the signal amplitude, including a possible am-
plitude droop. The argument of the phase modulation
ε contains the time delay from transmitter to target and
back, and the modulation has unit magnitude except at
the slopes near the phase flips. These slopes are due to
filtering in the receiver. The angular frequency is given
by ω = −2vr ωr/c, where vr is the radial target ve-
locity and ωr is the radar angular frequency. The noise
term γm is taken to obey Gaussian noise with a variance
σ2 = |A|2/SNR, where SNR is the signal-to-noise ra-
tio of the received signal. The value of SNR is estimated
separately using samples from times with no echo signal.

The number of samples from a single pulse is denoted
by M . We collect the various quantities in Eq. (1) into
M -point column vectors

z = (z0, . . . , zM−1)T

ε(R) = [ε(t0 − 2R/c), . . . , ε(tM−1 − 2R/c)]T

ξ(ω) = [exp(iωt0), . . . , exp(iωtM−1)]T

and denote the standard inner product of complex vectors
x and y as

x · y =

M−1∑

m=0

xmym .

For brevity, we also denote the point-wise product of
ε(R) and ξ(ω) by

Ξ(R,ω) = ε(R)� ξ(ω) = (ε0ξ0, . . . , εM−1ξM−1)T .

When the samples at the phase flips are skipped, the norm
of Ξ is independent of R and ω, i.e.

‖Ξ‖2 = Ξ ·Ξ ≈M . (2)

The Bayesian solution for the model parameters A, R
and ω proceeds as follows. With non-informative priors,
the posterior probability density for parameters, given the
measurement, is

p(A,R, ω|z) ∝ exp

{
−‖z−A ε(R)� ξ(ω)‖2

σ2

}

= exp

{
−‖z−AΞ(R,ω)‖2

σ2

}
. (3)
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Figure 1. Geometric interpretation of the range and fre-
quency estimation problem in terms of vectors in the lin-
ear space CM . Measured echo+noise vector z and a
set of basic echo model vectors {Ξ(R,ω)}, which is ex-
tended linearly to the full set of model vectors {AΞ}. zΞ

is the orthogonal projection of z onto Ξ. The best esti-
mate Ξ̂ is the element of {Ξ} that is as parallel to z as
possible (there can be elements in the basic set which are
nearer to z than Ξ̂). At Ξ̂, zΞ attains its maximum length.

With reference to Fig. 1 and the Pythagorean theorem,
the norm squared in Eq. (3) is expanded as

‖z−AΞ‖2 = ‖AΞ− zΞ‖2 + ‖z− zΞ‖2 . (4)

where zΞ is the orthogonal projection of z onto Ξ,

zΞ =
z ·Ξ
‖Ξ‖2 Ξ =

z ·Ξ
M

Ξ . (5)

Using Eq. (5) and Eq. (2), the first term on the right-hand
side of Eq. (4) becomes

‖AΞ− zΞ‖2 = M

∣∣∣∣A−
z ·Ξ
M

∣∣∣∣
2

. (6)

Using the Pythagorean theorem for a second time, the
second term on the right-hand side of Eq. (4) becomes

‖z− zΞ‖2 = ‖z‖2 − ‖zΞ‖2

= ‖z‖2 − |z ·Ξ|
2

M
. (7)

Collecting these results, the posteriori density is

p(A,R, ω|z) = Cz exp

{
−M
σ2

∣∣∣∣A−
z ·Ξ(R,ω)

M

∣∣∣∣
2
}

× exp

{ |z ·Ξ(R,ω)|2
Mσ2

}
. (8)

where Cz is a probability-normalising constant.

With the measurement z fixed, the parameter values
that maximise the posterior probability—the MAP, max-
imum a posteriori, estimate—are found from Eq. (8)
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by simultaneously maximising |z · Ξ|2, and minimis-
ing |A− z ·Ξ/M |2 to its absolute minimum, zero. The
MAP estimate is

(R̂, ω̂) = arg max
R,ω

|z ·Ξ(R,ω)|2
‖Ξ(R,ω)‖2 (9)

and

Â =
z ·Ξ(R̂, ω̂)

‖Ξ(R̂, ω̂)‖2
. (10)

For error estimates of the parameters, we use the posterior
variances computed from Eq. (8). For error estimates of
R̂ and ω̂, we marginalise Eq. (8) by integrating over A
for all values of A = Ar + iAi; that is, both over the real
part and imaginary parts from −∞ to +∞. The factor in
Eq. (8) that depends on A splits into two exponentials

exp

{
−|Ξ

2|
σ2

∣∣∣∣A−
z ·Ξ
‖Ξ‖2

∣∣∣∣
2
}

=

exp

{
−‖Ξ‖

2(Ar−ar)2

σ2

}
×exp

{
−‖Ξ‖

2(Ai−ai)2

σ2

}

(11)

where ar and ai are the real and imaginary parts of
z ·Ξ/‖Ξ‖2. The integral

∫ ∞

−∞
dAk exp

[
−‖Ξ‖

2(Ak − ak)2

σ2

]
(12)

is readily evaluated and does not depend on ak. Neither
does it depend on R or ω since, with the usually good
approximation in Eq. (2), ‖Ξ‖2 is constant. Then the over
signal amplitude marginalised posteriori density takes the
particularly simple form

p(R,ω|z) = Cz exp

[ |z ·Ξ(R,ω)|2
Mσ2

]
. (13)

To the degree that the model functions Ξ(R,ω) are
known and correct, equations Eq. (9) and (13) provide
a complete, well-defined Bayesian solution for the range
and range rate estimation problem. This two-parameter
model is approximate, and here it is defined for a single
pulse only. In the case of weak space debris targets, co-
herent integration would be needed. Then the data vector
would contain multiple pulses and the model would con-
tain a larger number of parameters.

The problem is how to calculate R̂ and ω̂ in Eq. (9) and
their error estimates at a high numerical accuracy. Our
current way of making use of Eq. (9) and (13) proceeds
in several steps. We first apply these equations to a single
transmission-reception cycle at a time. In typical satel-
lite beam pass events, lasting a few seconds, we get hun-
dreds of such single-pulse estimates. Then these are used
to further improve the accuracy. Before describing the
single-pulse processing in more detail, we summarise the
fairly standard way of how these single-pulse values are
used to produce the final analysis results.

3. COMBINING SINGLE-PULSE ANALYSIS RE-
SULTS

The single-pulse range and range rate values and their
errors are used as input in a separate Bayesian estima-
tion problem. This step is equivalent to a weighted
least squares fit of a (vector-valued) model function
[R(T ), v(T )] to the beam pass data. As the model func-
tion for range measurements (Tn, R̂n) during a single
beam pass, we use a third-order polynomial of (UTC-)
time T ,

R̂n = a T 3
n + b T 2

n + c Tn + d , n = 1 . . . Nr . (14)

The time derivative of Eq. (14) is used as a model
function for the single-pulse range rate measurements
(Tk, vk)

v̂k = 3a T 2
k + 2b Tk + c , k = 1 . . . Nv . (15)

The inverses of the variances σ2(R̂n) and σ2(v̂k) of the
single-pulse range and range range estimates R̂n and v̂k
are used as the weights of the data points. Eq. (14)
and (15) provide a linear system of Nr + Nv equations
for the four unknown model coefficients a, b, c and d,
which we solve using standard matrix formalism, tak-
ing into account the weights. Details of the procedure
are given in [6]. With the presumption that the weights
represent independent Gaussian errors, the solution pro-
vides Bayesian estimates of the four model coefficients
and their errors, and allows one to estimate the range and
range rate for any desired instant of time, with error esti-
mates. As the final analysis results we tabulate, for each
beam pass event, a single range and range rate value and
their 1-sigma errors, and the associated UTC instant of
time.

4. SINGLE-PULSE ANALYSIS

4.1. Grid search to get initial estimates

The first step is to find good initial estimates for the range
and the Doppler frequency from Eq. (9). We do this sim-
ply by making an exhaustive grid search over a set of
about 20 000 range values Rj and about 8000 Doppler-
values ωk. We implement the search using the FFT-based
fast match function method developed for EISCAT space
debris work [5]. For large SNR, this gives the range es-
timate with one sample accuracy, that is, with the range
resolution corresponding to the sampling interval. We get
also an initial Doppler estimate with the fairly coarse FFT
resolution.

The second step in the single-pulse processing is to re-
fine the initial estimates. With the phase code used in the
satellite experiment, the function Ξ(R,ω) depends rela-
tively slowly on R so that when determining the veloc-
ity with high accuracy, the precise value of the R does
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not matter much. This allows us to separate the high-
resolution determination of R from the high-resolution
determination of ω, which reduces the two-parameter es-
timation problem to two single-parameter problems. The
analysis first handles the range rate.

4.2. High resolution determination of range rate

When the range is known with one-sample resolution
from the grid search, the M samples representing the
received echo of the form Eq. (1) are selected from the
much longer total data vector. The position of the trans-
mitted pulse in the total data vector is known a priori.
The samples of the transmitted pulse, normalised to unit
amplitude, give the sampled envelope ε(tm). This en-
velope is complex conjugated and multiplied point by
point with the echo vector. With the complex conjuga-
tion, the point-wise multiplication helps to cancel, in ad-
dition to the phase code sign alternations, also a small
linear phase distortion that is often present in the trans-
mitted and hence in the received pulse as well. The result
is an M -point complex-valued echo vector z′ with ele-
ments modelled as

z′m = A exp(iωtm) + γm . (16)

Multiplication by a phase factor does not change the noise
statistics so no prime mark is needed in γm. This model
no more contains phase flips and therefore ‖ξ(ω)‖2 is al-
ways exactly equal to M , the number of samples used.

The marginalised Bayesian solution for the frequency in
Eq. (16) can be copied down from Eq. (9) and (13), es-
sentially by replacing Ξ with ξ. This gives

ω̂ = arg max
ω

|z′ · ξ(ω)|2
M

(17)

and

p(ω|z′) = Cz′ exp

{ |z′ · ξ(ω)|2
Mσ2

}
. (18)

In addition, the complex amplitude A can be computed
as

Â =
z′ · ξ(ω̂)

M
. (19)

Within the model of Eq. (16), there are no approximations
involved, for ‖ξ(ω)‖2 is always exactly M , the number
of samples used.

The Bayesian solution for determining the frequency of
a single-frequency real-valued signal in noise was pub-
lished by Jaynes and Bretthorst in the 1980s [1]. For
a complex quadrature signal, solution corresponding to
Eq. (17) and Eq. (18) was given by Bretthorst in 2001 [2].

The quantity to be maximised in Eq. (17) is the squared
modulus of the discrete-in-time, continuous-in-frequency
Fourier transform, and is called the Schuster peri-
odogram. Equation (17) says that the frequency is found

by locating the maximum of the periodogram. Equa-
tion (18) shows that the periodogram as function of ω
fully characterises the solution. In [7], we have presented
a very fast approximate procedure for solving the fre-
quency.

We now use the distribution in Eq. (18) to derive the pos-
terior variance, which we will use as the error estimate
of the single-pulse frequency. We show that the posterior
density in Eq. (18) is well approximated by a Gaussian
distribution in the case of high SNR, which is the case in
satellite work.

The particular value of z′ determines the location of the
distribution on the frequency axis, but the overall shape of
the distribution should not change much when z′ varies a
little. For high SNR, we approximate the shape as if there
were no noise at all, that is, we take the measurement to
be z′ = A0ξ(ω0), and inspect the distribution as function
of ω in the neighbourhood of ω̂ = ω0. We assume uni-
formly spaced sampling times tm = mτ (while noting
that the basic result in Eq. (17) and Eq. (18) in no way
depends on uniform sampling), and get

|z′ · ξ|2 = |A0|2
∣∣∣∣∣
M−1∑

m=0

exp{i(ω̂ − ω)tm}
∣∣∣∣∣

2

= |A0|2
∣∣∣∣
sin[(ω̂ − ω)τM/2]

sin[(ω̂ − ω)τ/2]

∣∣∣∣
2

≈ |A0|2 [M2−(M4/3)(τ/2)2(ω−ω̂)2] . (20)

Inserting Eq. (20) into Eq. (18) and switching from angu-
lar to linear frequency, gives

p(f |z′) ≈ Cz′ exp

[
− (f − f̂)2

2σ2
f

]
, (21)

where the variance parameter is

σ2
f =

3

2π2

1

M SNR

1

L2
. (22)

Here L = Mτ is the pulse length and SNR = |A0|2/σ2

is the signal to noise ratio. This result is used as the
single-pulse error estimate for the Doppler frequency.

4.3. High resolution determination of range

Once the pulse position is found with one sample resolu-
tion, and the high resolution Doppler shift ω̂ and the sig-
nal amplitude Â have been accurately determined, they
can be taken into account in Eq. (1), leaving only a real-
valued estimation problem of type

xm = ε(tm −∆) + ηm , m = 0, . . . , M − 1 , (23)

where the real-valued noise η has standard deviation
given by

σ2
η = 1/(2 SNR) (24)
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Figure 2. Determining pulse position with sub-sample
resolution. The top panel shows sampling of an ideal,
very-wide-band phase-coded signal. The position of that
kind of signal can only be determined with the resolution
of the sampling interval. The middle panel shows a more
realistic situation, where the ideal signal is smoothed (av-
eraged) by the receiver, in a way determined by the re-
ceiver’s known impulse response. With duration of the
impulse response equal to the sampling interval, there
will be one slope sample (black dots) per phase flip. The
bottom panel illustrates how the value x of a slope sam-
ple contains information about the shift ∆ of the pulse
with respect to the sampling times.

in terms of the SNR of the original complex signal.

The time shift ∆ represents the time interval from the
start of a phase flip to the next sample, as illustrated in
the bottom panel of Fig. 2. The figure indicates that the
information on the pulse timing is present in the pulse
“slopes”. The slopes are formed when filtering in the re-
ceiver smooths the initially sharp phase flips produced by
the transmitter. With filtering matched to sampling rate,
one gets about one sample per phase flip. In the set of
phase codes used in the satellite measurement, the num-
ber of phase flips N in a pulse varies between 10 and
21. For determination of the range at a high resolution,
we made use only of the slope samples and neglected the
pulse front and rear ends.

Equation (23) defines a single-parameter estimation prob-
lem. In particular, there is no adjustable amplitude fac-
tor in the model function. The implication is that a
match function approach analogous to Eq. (17) does not
quite work now. In analogy with Eq. (17), one might be
tempted to try an estimate

∆̂ = arg max
∆

|x · ε(∆)|2
‖ε(∆)‖2 , (25)

where a notation ε(∆) = [ε(t0−∆), . . . , ε(tM−1−∆)]T

is applied. Here the numerator is just the conventional
cross-correlation function often used in pattern matching.
Indeed, the estimation recipe Eq. (25) possesses the re-
quired property that, without noise, the estimate recovers
the actual value of the parameter (provided that in addi-
tion to the slope samples, at least one non-slope sample

is included in x and ε). Note also that the norm in the
denominator depends, possibly strongly, on ∆.

In order to apply Eq. (25) for achieving sub-sample reso-
lution in range, one should compute the shifted envelope
ε(∆) with the corresponding time resolution. One could
try to design the radar measurement so that the transmis-
sion is sampled tightly enough so that an FFT-based inter-
polation scheme would allow recovering the continuous
ε from its samples accurately enough. This would be the
ideal way, since it requires no extra information outside
the data itself. In the experiment, however, the transmis-
sion was sampled at the same rate as the reception, and
our attempts in this direction have been disappointing.
Therefore, in our present analysis, we have resorted to
stronger modelling of the phase flip slopes in ε. Such an
approach brings its own perils in the form of modelling
errors.

We have not really inspected how good or bad the esti-
mate Eq. (25) would be in practice. Anyway, it would
only be an approximation of the exact solution given by
Eq. (9). Instead, our present choice is to minimise the
least squares norm, i.e. to find

∆̂ = arg min
∆
‖x− ε(∆)‖2 , (26)

which is the proper Bayesian solution of Eq. (23). We
derive an error estimate for this estimate later in this sec-
tion.

In order to obtain a continuous-time envelope ε, we use
the precisely known numerical impulse response of the
digital back-end of the EISCAT receiver, only adding a
small correction to approximately account for the im-
pulse response of the wider bandwidth of the EISCAT
analogue receiver. We further assume that the transmit-
ted pulse itself has a bandwidth that is much larger than
the bandwidth of the combined receiver, so that the phase
code in the receiver front end is just equal to the ideal
phase code (such as shown schematically in the top-panel
of Fig. 2). With these assumptions, ε can be computed for
all instants of time, resulting in a smoothed shape such as
that illustrated in the middle panel of Fig. 2.

It would be convenient, if the slopes at the phase flips
were linear like those in Fig. 2. Then Eq. (23) would
pose a linear estimation problem, and the solution would
be straightforward. Linear slopes are produced when the
impulse response has a boxcar shape. The actual impulse
response in the satellite measurement was closer to tri-
angular in shape and its length was about 1.4 µs. As a
result, the phase flip curves are not linear, and the estima-
tion problem is also non-linear. With the 1 µs sampling
interval, there will be either one or two samples per phase
flip. In the case of two samples at a flip, we only used a
single sample for simplicity.

It became evident in the data analysis that the model
phase flip curve was inaccurate at large departures from
the zero level, i.e. when the value of the sample at the flip
slope was close to −1 or +1. This was at least partly due
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to a non-ideal shape of the transmission envelope. For
our final analysis results, we ended up using only slope
samples with magnitudes |xn| < 0.7. Although this re-
striction led to the rejection of large number of pulses
from individual beam passes, it reduced the fit residues
drastically.

The most straightforward way to estimate the sub-sample
shifts of transmitted and received pulses, would be to cal-
culate them directly from Eq. (26). Then the pulse prop-
agation time from transmission via the target to recep-
tion, which gives the range estimate, would just be the
difference of the fine-resolution times of the transmission
and reception pulses. However, the length of the received
pulse changes due to the Doppler shift, and this should
be taken into account in the analysis at the resolutions we
are aiming at. Therefore our analysis actually proceeds
differently.

When an accurate range rate is already known, one could
in principle account for the change of pulse length by re-
interpreting the sampling times. However, we sidestep
the issue by examining each phase flip individually, and
calculate the time from its transmission to reception at a
high accuracy. After this has been done for all the flips
of the pulse, we make a properly weighted linear fit to
the range estimates to get a final single-pulse range esti-
mate for that transmission-reception cycle, and an error
estimate for it.

A benefit in examining a single flip at a time is that,
with a single data point only, Eq. (26) becomes trivial to
solve. Denoting by fn(t) the monotonous (increasing or
decreasing) slope function associated with the slope sam-
ple xn, and by ∆n the shift from the start of the slope to
the sampling time tn, the MAP estimate is

∆̂n = f−1
n (xn). (27)

We apply this only for slope points with |xn| < 0.7. An
additional simplification is that, in the satellite experi-
ment, the phase flips are programmed to be exact integer
number of samples apart, so only two different functions
fn(t) actually need to be tabulated, one for the “up” phase
flips and the other for the “down” phase flips.

Is there some price in terms of accuracy in the single flip
at a time approach compared using all flips at once? For
high SNR, the answer seems to be no. We get essentially
the same error estimate in both cases, at least when SNR
is so high that the theory in Eq. (23) becomes essentially
linear. We have not inspected the case of low SNR, which
would be relevant e.g. for most space debris targets. But
then the achievable range accuracy will anyway become
lower, and one might not need to worry about the effect of
the Doppler shift to the pulse length. Then one probably
should use all flips at the same time in finding the range
estimate for a single pulse.

In both cases, when assessing the error in the single-pulse
range, we only account for the error in the position of the
received pulse. The transmitted pulse has such a high

SNR (104) that the statistical error in its position is in-
significant.

Consider first the position error of a single flip. Linearis-
ing the model of Eq. (23) around a delay ∆0, so that
∆ = ∆0 + δ, gives

xn ≈ fn(∆0) + ḟn(∆0) δ + ηn . (28)

Standard linear theory (or in this case, simply considering
differentials dxn and dδ) gives for the variance σ2

n of the
shift ∆n of the n’th flip

σ2
n =

σ2
η

[ḟn(∆0)]2
=

1

2 SNR [2 pn(∆0)]2
, (29)

where we used Eq. (24) and also replaced the slope func-
tion’s derivative by the impulse response p. The final per
pulse position error is, essentially, the error of the fitted
∆ in a linear fit

∆n = ktn + b (30)

where the values tn are the times of the slope samples.

To get a rough estimate of the error for the purpose of
a qualitative comparison, assume k = 0 in Eq. (30) so
that the fitted ∆ is just the weighted average of the ∆n,
where the inverses of the variances σ2

n are the weights.
The variance of such a mean is

σ2
∆ =

1∑
(1/σ2

n)
=

1

N · 2 SNR < 2 p(∆)2 >
(31)

where < p(∆)2 >=
∑

[pn(∆)]2/N .

Then consider the case of using all the N flips simultane-
ously in Eq. (26). Instead of the scalar equation Eq. (28),
we have a vector-valued, single parameter, linear model
where Eq. (28) provides the components,

x− f0 ≈ ḟ δ + η . (32)

The variance of the shift δ is the (single-element) covari-
ance matrix of the linear theory of Eq. (32),

σ2
δ =

(
ḟT 1

σ2
η

ḟ

)−1

. (33)

Eq. (33) reproduces Eq. (31), which shows that for the
case of high SNR, our single flip at a time approach does
not unnecessary lose accuracy.

5. WHAT ACCURACY TO EXPECT

The EISCAT Tromsø 930 MHz-radar operates at a power
of 1.5 MW. A complex signal from a one square metre
target at a range of 1000 km, as received by this radar,
can reach SNR values up to about 300. In the satellite
experiment, 1.92 ms phase coded pulses with interpulse
period of 20 ms were transmitted and sampled continu-
ously at the rate of one megasamples per second. The
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32 m antenna’s half-power beam width is about 0.6◦. At
the radar zenith, it takes 1.5 s, i.e. 75 interpulse periods,
for a polar orbiting satellite at 1000 km altitude to cross
that angle.

One expects from Eq. (22) that, at the beam centre, the 1-
sigma error of a single pulse Doppler frequency is about
0.25 Hz. Then the velocity error is about 4 cm s−1. To
get a rough estimate for the expected range error from
Eq. (29) and Eq. (31), assume a constant receiver impulse
response of 1.0 µs duration, so that the constant phase flip
slope is ḟ = 2 (µs)−1. Then the single phase flip position
error σn in Eq. (29) is 1/(2

√
2× 300) µs = 0.02 µs,

which corresponds to a range error of 3 m. Assuming
ten such flips for the per-pulse range estimate, the error is
expected to drop by about

√
10 to about 1 m.

It is less straightforward to estimate the error after the
per-pulse estimates are utilised in Eq. (14) and Eq. (15)
to produce the final range and Doppler velocity estimates
for a single beam pass. We may still expect the errors
scale roughly proportional to the inverse of the square
root of the number of points used in the fits, by a fac-
tor of 5–10 (depending how large fraction of the pulses
can actually be used). This brings the final velocity error
to a few millimetres per second and the final range error
to a few tens of centimetres.

The SNR at the beam center in the 154 beam pass events
measured on 1-Dec-2010 varied between 1 dB (Jason at
2400 km range) and 45 dB (Metop at 840 km range).
Fourteen events had SNR compatible with the above es-
timate, with a peak SNR between 200 and 400. For those
14 events, the 1-sigma range error varied between 7 cm
and 19 cm, while the 1-sigma error in range rate varied
between 0.4 cm/s and 1 cm/s.

In Fig. 3 we show the range and range rate error for all
154 events. The figure is broadly compatible with the
above estimate. The figure shows three things. First,
it suggests that our analysis machinery probably imple-
ments our basic theoretical error estimates Eq. (22) and
Eq. (29) and the error propagation correctly, or at least
consistently. Second, it shows as a function of SNR, what
kind of accuracy one can expect from a fairly standard
EISCAT measurement if all the systematic errors can be
ironed out. Third, already somewhere near SNR = 5 dB,
the error model starts to break down, especially with the
range data. This probably indicates that the whole single-
pulse based analysis is becoming problematic. This in
turn suggests that, without coherent integration of some
kind, our improved analysis cannot be applied to typical
space debris targets.

6. SYSTEMATIC ERRORS

In our analysis, there are several potential sources of sys-
tematic error that need to be kept in mind when using
the analysis results for orbit determination purposes. A
trivial (but embarrassing) problem is that the geographic
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Figure 3. One-sigma statistical range errors (+) and
range rate errors (◦) in the 154 beam pass events mea-
sured at EISCAT on 1-Dec-2010.

position (latitude, longitude, altitude) of the Tromsø radar
antenna is currently under dispute. The coordinates, and
especially the longitude, that one gets from modern maps,
including those given by Google Earth, handheld GPS re-
ceivers, as well as the local area maps provided by the
Norwegian land survey, differ by several tens of meters
from the coordinates given by EISCAT official web site.

A second, a somewhat trickier, problem is defining and
determining a point, presumably somewhere within the
antenna structure, to which the pulse propagation time
measurements should be referred to; that is, what precise
point the “antenna position” refers to. There is no fixed
centre of rotation of the Tromsø antenna. Peculiarities
of the antenna construct have the consequence that when
the antenna pointing in azimuth or elevation is changed,
the length of the ray path from the antenna to the target
changes by a few meters even if the true satellite distance
would be the same. This means that the antenna position
to be used in orbit calculation depends on the pointing
direction by several metres.

A third issue is related to signal delays in the receiver.
The directly estimated pulse transmit and receive times
refer to the position of the pulse’s leading edge with re-
spect to the sampling instances (the UTC time of each
sample is known within a fraction of a microsecond,
and the time is stable within a few nanoseconds between
transmission and reception from pulse to pulse). Before
getting sampled, both the echo signal and the transmis-
sion sample signal have travelled a lengthy, but unknown,
distance in the receiver. This travel path is almost, but not
quite, the same for both signals. The result is that, when
the pulse propagation time is estimated as the difference
of the two signals’ measured leading edge times, the re-
ceiver delays almost, but not precisely, cancel out. This
may cause a constant error of maybe a few metres in the
range estimates.

A fourth issue, related to the antenna geometry, is the
extra delays of the signal due to the antenna’s Cassegrain
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optics. Finally, there is also the issue of delays in the
ionosphere.

All these sources of errors need to be accounted for
when using the analysis results for orbit determination,
although they do not directly show up in the analysis re-
sults themselves. But there are effects that will show up
in the range and velocity fit residues. These are related to
problems in the signal model of Eq. (1).

The most obvious problem in the signal model is that the
amplitude parameter A is a constant, which corresponds
to assuming a point-like, structureless, target. But even
the smallest of the campaign targets, the Proba-1 satel-
lite which, according to its web page is a cube of the size
60× 60× 80 cm, is more than two radar wave-lengths in
size, and so the reflected pulse can be subject to strong
interference effects which can modulate both the echo
phase and the amplitude. All the other targets are several
metres or even tens of meters in size, and are quite irregu-
lar in shape with possibly multiple strong scattering cen-
tres, which makes the point-target assumption even more
incorrect.

The manifestly non-zero size of a target means that, even
if the target were stabilised in an inertial frame, it would
appear be rotating in the radar frame. This would show
up in the Doppler velocity. The modulation of the sig-
nal amplitude due to interference can disturb the phase
flip shapes that our range estimates depend on. And even
if the target were very smooth, just its finite size would
already mean that it takes time for the target to become
fully illuminated, and this would also affect the signal
shape. For instance, it could make the observed phase
flip slopes longer and less steep.

A second problem in the signal model is that we assume
a specific form of the receiver impulse response on one
hand, and a very wide band, sharp phase flip in transmis-
sion on the other hand, when we compute the code en-
velopes ε, and both of these assumptions can be wrong.
They do not need to be much wrong to become visible in
the fit residues.

When fitting results from individual pulses to the beam
pass model of Eq. (14), it becomes clear that the scatter
in the ranges and range rates is considerably larger than
their statistical errors suggest. Quite often, the residue
does not look like noise, but there are slow semi-periodic
variations of the same general size or slightly larger than
the 1-sigma error bars in data from the individual pulses.

7. CONCLUSION

Based mainly on the behaviour of the fit residues, it seems
probable that the actual uncertainty in the per beam pas-
sage ranges and range rates can be up to an order of mag-
nitude larger than the statistical error bars suggest. That
is, the accuracy may not be much better than what one
could get already from the single-pulse analysis, typically

a few metres in range, and several centimetres per sec-
onds in range rate. But even this is a significant improve-
ment over EISCAT’s original analysis of the 2010 data. It
would be interesting to see the updated results tested for
orbit determination purposes.
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